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Reverse-Holder classes in the Orlicz spaces setting
by

E. HARBOURE, O. SALINAS and B. VIVIANI (Santa Fe)

Abstract. In connection with the Ay classes of weights (see [K-T] and [B-K]), we
study, in the context of Orlicz spaces, the corresponding reverse-Halder classes RHy We
prove that when ¢ is A2 and has lower index greater than one, the class RH, coincides
with some reverse-Hdlder class RHy, g > 1. For more general ¢ we still get RHy C Ao =
U1 BHy although the intersection of all these RH, gives a proper subset of ) 41 BHg.

1. Introduction. By a weight w we mean a non-negative and locally
integrable function on R™. As is well known, a weight w is said to belong to
the reverse-Hélder class with exponent ¢, RH, if it satisfies the inequality

1 Ya 1
(@éw(m)q dm) < C@ 6Sgw(m) da

for any cube @ C R™ with sides parallel to the axes; here [Q! denotes
the Lebesgue measure of ). These classes appeared in connection with the
Ap classes of Muckenhoupt which characterize the weights such that the
Hardy-Littlewood maximal operator is bounded on LP(w), 1 < p < oco. To
be precise, the A, weights are defined as those weights such that

(o 04) G e s

for any cube @ < R™. The limiting case p = 1, A;, is defined as the weights
satisfying

<O
mg(w) < C’mugg2 w(z)

for any cube @ C R™, where mq(w) denotes the average of w over Q. For
P = 0, Ao consists of the weights w such that for any @ and any measurable
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246 E. Harboure et al.

subset E C @, there exists § > 0 satisfying
w(E)/w(Q) < C(1B|/1Q])°.

Note that these definitions can be extended to more general measures p
instead of Lebesgue measure, with the obvious changes. So we can, and will,
talk about Ao (du), A;(dp) or Ay(du) classes and we drop the notation dy
in the case of Lebesgue measure.

The precise connection between the two classes is given by the following
identities:

| RHy = 4p = Ao
g>1 p>1

Kerman and Torchinsky [K-T] and later Bloom and Kerman {B-K} stud-
ied the boundedness of the Hardy-Littlewood maximal operator on weighted
Orlicz spaces. In this context they introduced, for ¢ a Young function, the
classes Ay and more generally Wy, both giving extensions of Ay, p > 1.

The aim of this paper is to study the corresponding reverse-Holder classes
of weights in the Orlicz spaces setting.

For a non-negative, increasing, continuous and convex function ¢ defined
on [0,00) we say that a weight w belongs to RH if there exists a positive
constant ' such that

¢~ (t/1QD) d
- (gt ) % <

for any cube @ C B® and ¢t > 0.

It is easy to check that when ¢(s) = s%, ¢ > 1, the above inequality
coincides with the reverse-Holder condition with exponent ¢, g > 1. Also, for
¢ as above, the reverse inequality to (1.1) holds with ' = 1 as a consequence
of the Jensen inequality for convex functions. Finally, we remark that the
parameter ¢ is necessary to make the class RHy invariant under dilations
in the sense that if w € RHy then w()z) € RHy with the constant C
independent of A > 0.

Relating to these classes we prove a result similar to that of Kerman and
Torchinsky for the class Ay, that is, when ¢ is “between power functions
with exponents greater than one”, in a sense that will be made precise later,
the class RHy coincides with some RH,. For more general ¢, including
functions “near the identity”, although the above result is not necessarily
true, we still get RHy C Ay = ., RHy.

On the other hand, we also characterize the intersection of RHy for those
general ¢ as the class RH,, introduced by Franchi ([F]), which is a proper

subset of (,..; RH}, as shown in [CU-N]. These results correspond to those
obtained in [B-K] for W.
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2. Statement of main theorems. In this paper we say that a non-
negative function ¢ defined on [0, 0o0) is an N-function (or a Young function)
if it is convex and satisfies

o) _ .t
ey T =

Clearly, under these conditions ¢ has a derivative ¢ which is non-decreasing
and non-negative with {0) == 0 and (o0} = oc. For such ¢, the comple-
mentary function defined by

é(s) = sup(st - ()

is also an N-function. Moreover, it can be proved that there exist constants
C; and C5 such that

Cit < ¢~ (D) L(t) < Cat

for every t > 0.

Given an N-function ¢ and a finite Borel measure i on R™, the Orlicz
space Lg(dp) consists of all measurable functions f : R* — R for which
there exists a constant ¢ such that

§ 6(17(2)1C) du(a) < oo.
en
Furthermore, the space Lg{dp) equipped with the Luxemburg norm

£ = mf {2 > 0 § $(1F(5)1/X) du() < 1}

B
is a Banach space. Also, if ¢ denotes the complementary function of ¢, then
the Holder inequality

§ (2)9(=) du(z) < Cllf |1 samllglzgiam
IR'n
holds,
Sometimes, we will impose further conditions on the function ¢. To this
end, we introduce the notions of lower and upper types.
‘We say that ¢ is of lower type p if there exists a constant C such that

(2.1) d(st) < CsPp(t) fors<landt>0,
and that ¢ is of upper type q if there exists a constant C such that
(2.2) d(st) < Cs¥¢(t) fors>1andt>0.

Observe that for our kind of functions ¢, if p and ¢ satisfy the above
inequalities then we have

1<p<g< .
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Whenever ¢ has a finite upper type, we say that ¢ satisfies the A,-
condition, which is equivalent to asking that ¢(2t) < C¢(t) for all ¢ > 0.

CGiven ¢ satisfying the Ag-condition, the lower and wupper indices are
defined by

i($) = lim log h{s) I log h(s)
a0 log s o<s<l lOES
and
() = lim log h(s)  inf log h(s)
s—oo logs s>l logs
respectively, where
@(st
o= cup 55

For the existence of the above limits we refer to the book of Kokilashvili
and Krbec [K-K].

This notion of index is related to that of type in the following sense:
for any £ > 0, ¢ is of lower type i(¢) — & and of upper type I(¢) + . This
statement may fail for £ = 0. Finally, we point out that when 1 < i(¢) and
I{$) < oo, we have the following relationship between the indices of ¢ and
those of the complementary function 5:

i(¢) = {I(¢)) and I(¢)=(i(¢)),

where r' = r/ (f: — 1) is the conjugate exponent of r. Frorn this, we easily
deduce that I{¢) is finite if and only if i(¢) > 1. Whenever this happens we
say that ¢ satisfies the As-complementary condition, or simply the AS.

Finally, from the above definitions, we observe that a function ¢ satisfies
both Az and A§ if and only if 1 < i(¢) < I{¢) < oo if and only if ¢ is of
lower type p > 1 and of upper type g < co. In this work, we use freely any
of these equivalent statements.

We are now in a position to state our main results.

THEOREM 1. Let ¢ be an N-function satisfying both the Ay and A§ con-
ditions. For ¢ weight w and g = I{¢) the following assertions are equivalent:

(a) w € RH,.

(b) For any b > 0, ¢p(bw) € Ao, with a uniform constant.

{c) w? e Ay.

(d) w € RH,.

THEOREM IL If N denotes the class of all N-functions, we have:

(8) Upen RHp = Aoo = {w : 1/w € Aco(wda)} = U5, RH,.
(b) Ngen BHy = RHoo = {w: 1jw € Ay (wdz)}, strictly contained in
Ng>1 RH,.
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3. Lemmas and preliminary results. In this section we give some
equivalent definitions of RHy and we study some properties of the weights
belonging to these classes.

First of all, we note that inequality {1.1) defining RHy can be written
by using Orlicz norms as

¢~ (/1R xewlz, (gaty < Cmg(w)

for any cube @ C B™ and £ > 0.
We now give two more ways of describing the classes RHy. '

(3.1) PROPOSITION. The following statements are equivalent:

(3.2) weE RH¢,.
(33)  lxqw/elir,(az/qqisasey < Cmg(w) for any cube @ C R™ and
e > 0.

(3.4) ¢ H1/IQN x|z, (de) < Crmg(dxw) for any cube @ C R™ and
A > 0, where S yw(z) = w(Az).

The proof is quite straightforward. In fact, that (3.3) is equivalent to
(3.2) follows by the change of parameter 1/c = ¢~ (¢/|Q|), and that (3.4)
is equivalent to (3.2) is immediate after a change of variable in the integrals
involved. A similar calculation shows that these classes remain invariant
under dilations, that is, w € RH, implies dyw € RHy for all A > 0, with
the constant C appearing in (1.1) independent of A. We finally observe that
the reverse of any of the inequalities stated in the proposition holds true
with ¢ = 1, as a consequence of the H8lder inequality in Orlicz spaces.

As is easy to check, a weight w € RHy with i(¢) > 1 also belongs to
RHy» for 1/i(¢) < r < 1. We shall show that if, moreover, ¢ has finite upper
type, then the above statement can be extended somewhat to the right of
r = 1. In order to prove this result, we need some technical lemmas.

(3.5) LEMMA. Let n be a non-negative, non-decreasing function of posi-
tive lower type o and finite upper type b. Then, for the function
t

ﬁ(t):éy—(-si)-ds, t >0,

we have c
—n(t) <7(t) < —2n(t),
o) ST < “En(h)

where C, and C, are the constants of type appearing in (2.1) and (2.2)
respectively.

Proof. From the definitions of lower type a and upper type b, it follows
that, for 0 < s < 1,

Sb
() < n(ts) < Cas™n(e).
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Dividing by s and integrating over {0 < s < t}, we arrive at the desired
conclusion after a change of variable. m

(3.6) LEMMA. Let n and h be non-negative functions with h non-in-
creasing. Assume also that v is non-decreasing, hos a lower type p > 1,
finite upper type ¢ and that

(3.7) —deh(v) < cigﬂh(t)

for any t > 1. Then there exist r > 1 and a constant C, both depending only
on p, ¢, on the constants Cp, and Cy associated with the types of n, and on
the constant C from (3.7}, such that

T g < oo+ T B ).

Proof. Without loss of generality we may assume that A has compact
support. Let r > 1 be a number to be fixed later.
Let

a(t) = | ) 4.

7.3

Using Lemma (3.5), integrating by parts and defining y(t) = %(£)"~?, we get
T n(v)
- —— dh(v)

1

S (ch)rwl(_osoﬁ(u)r 177( )dh('u))
1

_ o ( _ 7(1)053 ﬁ%ﬁl dh(u) 30 Z_Z (050 @ dh(u)) dv) .

By applying the hypothesis and integrating by parts again, the second term
in the sum above can be bounded by

1 0o 4
cqtert ( ~ h(1) S j—lﬂfl du — S (S %%@" du) dh(’u)).
0 Y]

The first term in brackets is non-positive while for the second we have

du u

¥ [FabOF A §ﬁ(u)f‘-23’%‘; du

90,y ¥ n(u)"u™?
<{r-—-1
— ( ) pr—l S n

]
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(= 1a0CE o)
pri(pr ~ 1) v

where we have used Lemma (3.5) for the functions 9, 77~ and n(u)"w"2.
With these estimates we get

-1 — 0 | 1 angy
-rCOrGZr—l o0 r
—(r- 1);_1(;_{ 3 § ”(z) dh(v).

By Lemma. (3.5),

r—1
(1) = (1) 1<§,, %,

so the last inequality can be written as

(- o ) (- 12 o)

< (20) oy (- T ),

Since p > 1, the constant on the left hand side can be made positive by
choosing » sufficiently close to 1. This gives the desired inequality. m

(3.8) LEMMA. Let 7 be an N-function and w a weight. For a fized cube
Q set h(t) = w(E(t)) with E(t) = {z € Q : w(z) > t}. Then

(3.9) S (w(z)) dz = S dh(s) foramyt>1.
E(2) :

Proof. Since 7 is a convex function it is absclutely continuous on any
bounded interval and therefore 7(s)/s is absolutely continuous on each
bounded interval which is away from zero. Then for ¢ > 1 we may write

4 (nis)
ARG s =100+ E§t)“’(””)( | (7)) as)

Since w(z), being locally integrable, is finite almost everywhere, changing
the order of integration and integrating by parts we get
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§ o ie="2n@+ | £(2)( | wiwdz)a
E(t) t E(s)
T d
= @h(f)-k § E(%)h(s) ds

The proof will be complete if we are able to show that under our assumptions
the above limit at oc is 0.

First suppose that the left hand side of (3.9) is finite and observe that
because of the convexity of n, n(s)/s is a non-decreasing function. Then for
s >t

h{s) = S w(z)de < _?:"_(s;)_ S w(z)i::%%)—)— dw
{weQ:u(w)>s} E(s)

=_“°'_S

(5} 5a)

and the last integral goes to zero as s — oo since n{w(z)) is integrable on
E(t) and |E(s)] — 0 as s — oo.
Finally, if the right hand side of (3.9} is finite we have

n(w(z)) de

b—ro00

T ns)
lim — | T2 da(s) = 0
) S
Using again the fact that n(s)/s is non-decreasing gives

3“”%@ ”@(—?%@ﬂz%?m@—ﬁﬁmgy
b b

But h(s) = § g, w(z) dz — 0 a8 § — oo, since w is locally integrable. m

With these lemmas we can now prove the key property of the classes
RH,; mentioned above.

(3.10) PROPOSITION. Let ¢ be an N-function satisfying the Ay and AS
conditions. Let w be a weight belonging to RHy. Then there exists r > 1
such that w belongs to RHye.

Proof. Let @ be a cube and assume that

No(w) = sup Ixew/ellLyazrq@loqren) = 1-
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Therefore
1 wlz
7] 5"5( £ = <oiase)

Given t > 1 we set 5 = QC’t with C' the constant appearing in the reverse-
Holder-¢ inequality. By our assumptions Ng(w) < s, and hence for any

fixed € > 0,
1 w(z)
i Lo(*) de <o)

So we may apply the Calderén-Zygmund decomposition to the function

H(w(z)/(gs)) on the cube Q with A =

$(1/¢) to obtain a family {@;} of
disjoint cubes satisfying

(3.11) d(l/e) < dz < 2"¢(1/e
a1 (%) )
and
(3.12) ¢($) < ¢(1/e) for almost any = € Q — UQJ-.

F
Let E(s) = {zr € Q : w(z) > s}. The last assertion implies that up to a
set of measure zero, E(s) C |JQ; = G. Then from (3.11) we have

(3.13) | (w(m)ss) dz < Z S ( )) dz < 2"¢(1/e)|G|.

B{s)
In order to estimate |G| we observe t;hat the first inequality in (3.11) implies

Ix@;w/el|Lgtansiiqien/en > 5
Since w € RHy we get

and then
w(z)dr

S‘G-—SZ|QJ]<CZQS
<oy |

w(z) de + C’tz 1Q;]
i QunE(t) J

<¢ | wiz)dz+CHG.
E(t)
So, we get
@lsi | wl)ds
E(t)
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Inserting this estimate in (3.13), we obtain

KCIETE

E(s) B(t)

w(x) dz,
to conclude that

wiz)\ dz _C i wz))_dv
| ¢’( es )qﬁ(l/e) S35 E§t)w( )dm+E(t)SE(8 ¢( £s >¢(1/6)

B(t)

Since ¢ is increasing, the last term can be bounded by |E(t)|, which in
turn, by the Chebyshev inequality, is bounded by the first term of the sum
above,

Since ¢ = 2Ct and ¢ is of finite upper type we have proved that

| o)) oo < 02D |

E(t) B(t)

w(z) de.

Setting o = £t we may apply Lemma (3.8) to the left hand side with
n(s) = ¢(s/c) and the weight w, since the integrability on @ of w implies
the finiteness of both integrals. Then we have

[« 4]
- @ dh(s) < c-‘?-%/i)h(t)

3
for any t > 1 and ¢ > 0, where h(t) is defined by w(E(t)) = w({z € @ :
w(z) > t}).

Now we are in a position to apply Lemma (3.6) to the functions n(s} =

¢(s/c) and h(t). Since all these functions 1 have the same types of ¢, with
the same constants, there are r > 1 and a constant C such that

?f—(fg/—?—l dh(s)).

1

=3 2L i) < csajor (-

1

But the integral on the right is the same as {p;, ¢{w(z)/o) dz, which is

finite because of the local integrability of ¢(w(z)/c) implied by the reverse-
Hélder-¢ condition on w. Thus, the left hand side of the abhove inequality is
also finite, and we may also apply Lemma (3.8} to get for any o > 0,

| plu(z)/o) dz < Co(1/o) " | Plw(z)/e)de.
E(1) B(1)
On the other hand, for z € Q@ — E(1) we have
$w(z)/o)" = ¢(w(®)/o) " plw(z)/o) < ${1/0) 1f.b(’ii-’(-‘ﬂ)/ﬂ)
Integrating over @ — E(1) and combining with the estimate over E(1)
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we get
Vd(w(@)/o) dz < Cp(1/o) | d(w(w)/o) da.
Q Q
Now, since we assume NQ(w) = 1, we have
L 016)/0) iy < L otutel/ o) ity <

and therefore for any ¢ > 0,

IXQw/oll Ly (de/ti@iersom < C
and the reverse-Holder-¢ inequality for the cube @ implies

1
. <O _
U [x@w/7 g aestiera o) < Oy fw(z)de

Finally, if Ng(w) # 1 we take W(z) = w(z)/Ng(w). Since W satisfies
the reverse-Holder-¢ condition with the same constant and Np(W) =
we may apply the last inequality to W, which gives the same result for w
with a constant independent of the cube Q. This finishes the proof of the
theorem. w

4. Proof of the theorems

Proof of Theorem I. We first check that (a)=>{d). To this end we show
that if w € RHy then w € RH,_; for £ small enough. Then, using Propo-
sition (3.10) we know that w also belongs to RHg- for some r > 1. Since
I(¢™) = gr we may conclude w € RHy._,, and upon taking e = ¢(r —1) > 0
the result follows. Now, by the definition of ¢ = I(¢), we see that for any

721
$018) | .0
su
>0 98 =7
Therefore, for any v > 1, there exists 8 = s{y) such that
(4.1) 26(v8) 2 vé(s).

In particular, we can choose sy such that the above inequality holds for
v=2% k>0
On the other hand, our assumption w € RHy can be written as

w(z)p 1@/ |QD dz .
(42) §¢(W) T <1

for any cube @, ¢ > 0 and a fixed constant C. Now, in order to check that
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w & RH,_., we take a cube € and consider the disjoint sets

w(x) k1 i
e R } k> 0.

]c
Ekm—{xEQ 2 _CmQ(w

For each k we use (4.2) for t, = ¢(sx)|@Q|. This together with (4.1) gives

w(z)d ™ (Ee/|Q)) | du da
2 Jo(Mgg )i et

B
1 k dx 21‘:5
Z 9 S 2 q(b(sk)%;' 2 O€|Q[mq(w)q—s S

Ey By

w(z)?™e dz.

So we get

L S w(z)? ™ dx < Comg(w)I27k,
@ )

But if weset = {zx € Q cw(z) < Cmg(w)} we also have for small € >0,

@l Sw(:c)q £ dr < Comg(w)9e.

Adding up these inequalities and raising to the 1/ (g — &) power we get

1 et 1/(‘1”5)
Q

sow € RH,_..

That (c) is equivalent to (d) is an already known result. See for example
[S-T]. So we turn to the proof of (c¢)=-(b). For Q a cube and S a measurable
subset of Q we want to prove that there exist § > 0 and a constant C'
independent of b, ) and S such that

TQ— CSJ d.’L‘,

$(Bw)(S) 151\
“.3) Sow)(Q) = C(@i) '
Let 1 = {z € 5 : ¢p(buw(z)) < ¢(bw)(Q)/|Q|} and Sz = § — 51. Then we
have the estimates
i8] 5]
= | e < 31| ofuiein (,Q|) B (Q)

for any & < 1. Alsc since ¢ is of upper type r = g+ = for & > 0, we have, for
all tl Z t?m

P(t1) < Cr(ta/t2)"d(t2).

Since for z € Sy, bu(z) > ¢~ (mg(d(bw))), we may apply the latter
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inequality to get
44 b 55 Plw(e)) do < g T g(bw(m)) da.

Now since w? € A it is also true that w™ € A, for some r > ¢: for such
an r, the last integral can be bounded by

Cr(%)ag(l)fw( z))" dw < C, |Qy(|g}l) (EQI [ bu(s )d:c)r

for some & > 0, where in the last inequality we made use of the fact that
w" € A implies w € RH,.

Next we observe that the convexity of ¢ gives, for any locally integrable
function g,

d(mq(g)) < mo(4(9)),
which for ¢ = bw leads to
ma (bw) < ¢ [mo(p(bw))].
Inserting these estimates in (4.4) we get

L, <G, (||g||) (5 Bbw(z)) da).

Combining the I; and I estimates we get (4.3) for a constant C independent
of b. .

Finally, we prove that (b)=>(a). We begin by observing that, by an ap-
propriate change of the parameter b, we may assume mg{w) = 1. Our goal
is to show that for some choice of Cp,

~1
Co t
Q
for every t > 0. We use the following condition equivalent to v € Ay there
exist &, 8 > 0 such that
(4.6) [z € @ :v(@) > Bmg(v)}| > «|Q|.
Our hypothesis (b) implies that the latter inequality holds for v = ¢(bw) for

some a and 3 independent of b. We claim that then, for all b > 0,

dz C‘
P{bw (=

i1 4te) 55 S

where C' can be taken as ZOT /o, with r the upper type of qS and C’,. the

r-type constant.
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Otherwise, we would have for some b the opposite inequality, which to-
gether with (4.6), applied to ¢(bw), and the Chebyshev inequality would
lead to

al@] <

{m € Q: d(bw(z)) > l?g-l- S ¢ (bw(x)) dw}

<lze. S(50(e)) > COM = I € @ (s} > 5~ (CH,

__ Q)
< Jule)ds = oG

and hence we would have ¢~1(C¢(b)) < b/ or, in other words, C¢(d) <
#(b/c). Since that ¢ is of upper type », this would imply C' < C; /o, which
is a contradiction.

Therefore, the claim is true and setting b = ¢

~1(¢/|Q]) we have

1 C
g (w(z)d™ (t/lQD)“;;S 7

Since C'/8 > 1 the fact that ¢ has positive lower type allows us to replace
the constant outside ¢ by a perhaps different constant inside ¢ leading then
to the inequality (4.5).

Proof of Theorem II. (a) That the second inequality is true follows from
the fact that w € Ay if and only if there exist o, 8 > 0 such that for any
cube () and any measurable subset [E C @,

4.7) [BI/1Q| € o = w(B)/w(@) < 8

(see for example [C-F]). But, upon taking @ — E in place of E the last
assertion is equivalent to the existence of v and § such that

(4.8) w(B)/w(@) <v=|B|/|Q| 6.

Now if w € Ay, then du = w(z)dz is a doubling measure and therefore
Aoo(dp) also coincides with the weights v for which there exist v and § such
that

(49) WE) /@) <y = Yvdu/ fvdu<d
B Q
(see [C-F1); but (4.8) gives exactly this statement for v = 1/w. Conversely, if
a weight belongs to A (w), it satisfies the weaker condition (4.9), therefore
1/w € As{w) implies (4.8), which is equivalent to w € A,
For the first equality, using the fact that A, = U RH we only need

to show that RHy C A, for any ¢ € N. In fact we W111 check that if
w € RHy, then (4.7) holds for w.
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Let @ be a cube and E' a measurable subset. Then the Hilder inequality
for ¢(s) = ¢(s)/t gives

w(B) = {wlz)de < ||xqull,, Ixzllz;
E

Now since [|xzllz; = 1/¢;*(1/|B]), using the fact that s = ¢
we easily get

()67 (s),

Ixellz;, < ClE|6™(¢/|E]).
From this estimate and since w € RHy, we obtain

w(@) ¢7t/|E)
wiB) < CIBI o s=rion

which for ¢ = |@)| can be written as

w(B) . 2] 4
w(@) = C'|Q| HIQl/IB]).

Therefore, in order to get (4.7), we only need to show that if |E|/|Q)| is
small enough then (|E|/1Q))¢~*(|Q]/|E|) is also small. In other words, we

must show that the function s¢~2(1/s) goes to zero as s — 0. After setting
1/s = ¢(o) this is equivalent to

lim ——U or lim M:

Raden] qﬁ(a’) Fr—oo T
which is true for any ¢ € N.

(b) The easy part is to show that RH,, C ﬂ¢€N RHy. Infact,w € RH,
is equivalent to saying that for any cube @ we have

w(Q)

itelgw(m) L 0Ot Q-

Therefore for ¢ € N and C as above, we have
(/1<) dz _
g(ﬁ(w) S ¢(¢ (#/1Q0) P

Sow € RHq)

Let us see now that for ¢ € N, RHy C RH.

We are going to show that if w ¢ RHy, that is, 1/w & A;{w), then it is
possible to construct v € A such that w & RHy. In fact, if 1/w ¢ Az(w),
then for each k € N, there exists a cube @y such that

supw > 2k*w(Qx)/|Qk].

Consider now the sets

By = {z € Qr: wie) 2 K*w(Qk)/|Qul}-
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Setting t; = w(Bk)/w(Qk), we have 0 < #; < 1 and also the sequence
ap = maxi<i<k i/t is non-decreasing and, since ax > k, it goes to infinity.
Then we may choose an increasing subsequence ax, and define a continuous
increasing function g such that

Q(O) 201 g(kj) == gy y
and it is linear in-between. We claim that the function ¢ such that 1(0) =0
and ¢ = g gives the desired conclusion.
Clearly, by construction, ¢ is a non-negative, increasing and convex fune-

tion on [0,00), and being quadratic near zero, it also satisfies ¥(t)/t — 0 as
t —+ 0. Also by the convexity of ¢, we have

= (%) < 0 < g,

Since both bounds have limit infinity for ¢ tending to infinity, we conclude
that 9 € N.
On the other hand, for the cubes Qg; we have

(4.10)

1 ' 1Qk |w($) w 1 .
w(Qk;) Q{‘ v (kjuj(ij)) (z) dz 2 ) E{j@b (kj)w(z)dz
_ w(Ekj) ;
= w(ij)akj > 1.

Together with {4.10) this gives

i (“___21% I’”(m)) dz > 1.
|Qx; | st,- v kjw(Qx; ) v =

Setting ¢; = |Qk,|/k; we can rewrite the above inequality as

1 (Wl(tj/i% (e)

ts w{Qu, ) kgl L
I Q*‘j th _%¢ ( k:,‘ )

Now set Cy = (k;/2)4~(1/k;). We claim C; — oo, which will contradict

the fact that w € RHy. Since k; — oo as j — 0o, it is enough. to check that
$~1(s)/s — oo as s — 0. But
¥H(s) t

P Rl PN

)dmzl.

oa,

by hypothesis.
Finally, that RH, is & proper subset of ﬂq>1 RH, follows as in [CU-N]
by taking w(z) = max(log(1/|z|),1). =

icm
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