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Time-dependent perturbation theory for abstract evolution
equations of second order
by
YUHUA LIN (Okayama)

Abstract. A condition on a family {B(t) : ¢t € [0,T]} of linear operators is given
under which the inhomogeneous Cauchy problem for

W) = (A+ BO)ut) + ) fort € [0,7]

has a unique solution, where A is a linear operator satisfying the conditions characterizing
infinitesinal generators of cosine families except the density of their domains. The result
obtained is applied to the partial differential equation

{uu = uga + b(t, )uz (t, 2) + cft, )t z) + F(t, =) for (¢,2) € [0,7] x [0,1],
u(?,0) =u(t,1)=0 forte0,T],
w(0,2) =uglz), w(0,z) =v(z) forzeld,1)

in the space of continuous functions on [0, 1].

1. Introduction. In this paper we discuss the inhomogeneous Cauchy
problem of second order

S TORDNTE B b <liv i

in a general Banach space X with norm | - [|. We begin by setting up basic
hypotheses on A, {B(t) : t € [0,7]} and f appearing in (CP; ((ug,vo), f))2.

(a) A is a cloged linear operator in X. There exist K > 1 and w > 0 such
that {A% : A > w} C p(4) (the resolvent set of A) and

I(1/(m = DA = w)™(@/dN)™ AN - A)hu] < Klu]

forue X, A>wand m > 1
(b) {B(#) : t € [0, T} is a family of linear operators in X satisfying the
following conditions:

(by) D(A) c D{B(t)) for t € [0,T}].

1991 Mathematics Subject Classification: Primary 47D09.

12631



264 Y. Lin

(by) For u € X and t € [0,T], B(t )(A? — A)~lu is infinitely differen-
tiable in A > w. There exists M > 1 such that

11/ (m = DN = w)™(d/dN)™ B - A)”

forueX,tef0,7,A>wandm> L
(bs) For u € D(A), B(t)u € C*([0,T]; X).

(f) f e CH{{0,T; X).

If A is a densely defined operator satisfying condition (a), then it is
the infinitesimal generator of a cosine family on X (see Sova [8]). In this
case, problem (CP; ((ug, v9), 0))2 was extensively studied by several authors.
Among others, Lutz [3] dealt with the case where B(t) is in B(X, X) for
t € [0,T], and Serizawa and Watanabe [7] improved his result so that B(t)
can be replaced by a differential operator.

Our purpose in this paper is to show that their results remain true with-
out assuming the density of the domain of A, and with their conditions
on {B(t) : t € [0,7T1} replaced by the weaker condition (b). In the case
where B(t) is independent of #, condition (b) was proposed by Serizawa and
Watanabe [6].

Problem (CP; {{ug,vo), f))2 is an abstract version of the following initial-
boundary value problem for a partial differential equation, which will be
discussed in the final part of this paper:

Upy = Ugg + b(E, T)us(t, ) + et, T)ult, z) + f(t,z)
for (t,z) € [0,T] % [0,1],

tull < Ml

(1§ w0y =u(t,1) =0 for ¢ € 0,7,

u(0,2) = up(z), w(0,z) =wo(z} forz€[0,1].

As we want to find a solution of this problem such that (1.1) holds point-
wise in (t,z) € [0,T] x [0,1], in the applications of the abstract theory to
problem (1,1) we choose as X the Banach space of continuous functions on
[0,1] with supremum norm. This setting leads us to consider operators A
whose domains are not necessarily dense in X. The study of inhomogeneous
abstract Cauchy problems of first order in such setfings was initiated by
Da Prato and Sinestrari {1]. Their result has recently been extended to the
quasi-linear case by Tanaka [9]. Our argument in this paper needs his result
{Theorem A).

The author wishes to express her thanks to Professor Tanaka for sug-
gesting the problem and for many stimulating conversations.

2. Main Theorem. In this section we state the main theorem along
with some comments.
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It is natural to reduce problem (CP; ((uo, vq), f))2 to the Cauchy problem
of first order

2.1) { g( (g)) = ((qﬁ‘f ;; fo(t))ﬁ(t) +Ft) forte0,T),

A“o—_-(j é) Eo(t)=(s(ft) g) j?(t)z(f(()t))

for t € [0,T]. There is the “traditional” method of solving this Cauchy
problem of first order in a suitable phase space X C Z := X x X, if B(t) =
and f(t) = 0 for ¢ € [0,T]. This method is found in the paper by Kisyxiski
[2], and it was shown that the phase space is given by B x X where

E = {uec X : C(t)u is continuously differentiable in t € R},
ful = |full + sup{l (@/aC(Eu| : £ € (0,1} foru € E,

if A is the inifinitesimal generator of a cosine family {C(¢):t € R} on X.

We recall the following fundamental existence theorem concerning the
inhomogeneous Cauchy problem of first order, which will be used in later
arguments,

where

(2.2)

THEOREM A ([9, Theorem 1.10]). Let X be o Banach space with norm
Il and ¥ another Banach space which is continuously imbedded in X .
Suppose that o family {A(z)
satisfies the following condz’tz’c)m'

(Ay) D(AR) =V Jorte (0,77.

(Az) There exist M > 1 and @ > 0 such that (B3,00) C o(A(®)) for
t€[0,7], and

| T - A~
k==l

and every finite sequence {ti )i, with 0 <t <
1,2,...
(Ay) Forue ¥V, A(t)d e C*{[0,T]; X).

¥ e oMoT:X) and Gy € ¥ satisfy the compatibility condition that

€ [0,T)} of closed linear operators in X

1H2 <HA-0)™™ forA>@

Sty < T and m =

-~ —~ =X ~ ~
A0)ip+f(0) € ¥ (the closure of Y in X), then the inhomogeneous Cauchy
prablem of first order

VWWU
0) = Up,

has a unique solution T in the class C([0,T; Y) N CY{[0,T]; b )-

Ayac) + fit) fort €[0,7),
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The central part of this paper is to determine the phase space X =VxX
so that D(A) C V and (A;) through (A3z) of Thecrem A are satisfied with
the family {4 + B(t) : £ € [0, T]} of linear operators in X defined by

Alu,v) = (v, Au) for (u,v) € D(A) x V =: ¥,
B(t)(u,v) = (0, B(t)u)  for (u,v) € D(A) x X.

Now, we write for simplicity

(2.3)

A—w)™ /d\™*
F(,m)= Il (—*) AN~ At for A>wand m>1

(m — dA
and
m m—1
GA m, ) = % (a‘i/\) ABE)(A - 4)1

for A>w, m>1andte€{0,T],
and define two Banach spaces V| and V3 by
={u e X :sup{||F(A, mul : A >w, m =1} < o0},
luly, = sup{||F(A,m)ull : A >w, m>1}+{ul| forueW

and

Vo={ue X :sup{|G(A,m,)ull : A>w, m2>1, te{0,T]} < oo},
[uly, = sup{|G(A,m, hul| : A>w, m>1, t€[0,T)}+ ||u| forue V.

Note that D(A) ¢ Vi N Va. Indeed, B(t) € B([D(A)], X) by (bz), where
[D(A)] is the Banach space D(A)} equipped with the graph norm of A

Condition (a) and this fact together imply D(A) C V,. By Leibniz’s rule we
have

24 {1/ fm =)D —w)™(d/dA)" N — A)Hul] < (K/w)ful
for v € X, A > wand m > 1, which implies D(4) C Vi. Hence D(4) C

T nNW.
In Section 3, it will be proved that the Banach space V defined by

(2.5) V=VinVy, luly =max(|uly,|uly,) forueV
is as desired. The main result of this paper is given by the following theorem.
MAIN THEOREM. Assume that conditions (a), (b} and (f) are satisfied.

If g € D(4), vy € D(A) and (A4 B(0)ug + f(0) € , then (CP;
((uo,v0), f))2 has a unigue solution u in the class

(26) C([0,T]; D(4)) n C([0, T); V) n C*([0, T); X).

CoroLLARY ([7]). Assume that A is the infinitesimal generator of a
cosine family on X, B(t) € B(E, X) fort € [¢,T], B(t)u € C*([0, T]; X) for
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u € B, where E is the Banach space defined by (2.2), and f € C1([0,T}; X).

Ifup € D{A) and vy € E, then (CP; ((uo,vo), f))2 has o unique solution u
in the class

C([0,T]; D(4)) n C* (10, T; E) n C*([0, T]; X).
REMARK. (i) The main theorem is a generalization of [6, Theorem).
(i) The condition that uo € D(4), vo € D(A) and (44 B(0)yuo-+ £(0)
€ 7" in the Main Theorem is necessary for (CP; ((uo,v0), f))2 to have a
solution in the clags (2.6).
Indeed, let u be a solution of (CP; ((up, vo), f))2 in the class (2.6); hence
u(t) € D{A) and u’(t) € V for t 2 0. Since limyo(u(h) — u(0))/h = vy in V

and limp, o (w'(h) —4/'(0))/h = (A—I—B(O))ug-l-f(O) in X we have vy € D(A)
and (A -+ B(0))uo +f(0) eT7*

3. Proofs of the Main Theorem and Corollary. We set Z=XxX
and define linear operators Ao and By () in Z by

Ag(u,v) = (v, 4u)  for (u,v) € D(A) x X
and
Bo(t)(u,v) = (0, B(t)u)  for (u,v) € D(B(t)) x X.
Condition (a) implies (w,00) C o(Ap) and
31D (A= A0) " (w,v)

e (i) m_l(,\(/\2 = At (N = A) 7,

(m =1\ dx
AN — Aty + A% - A) )

form >1, A >w and (u,v) € Z. R

First introduce the Banach space X defined by

={G € Z:sup{(A — w)™| (A — Ao} ™| 5: A > w, m >0} <oc},
g, = sup{(A = )" (A= )"l 5: A >w, m 20} forde R,

Clearly, ||(u, v}z = [lull + Il € |(wv)|5, for (wv) € Xi. Tt is known [4,
Section 5] that (A — Ag)~1(X,;) ¢ Xy for A > w, and
(82) | —Ao)Malg, < (A-w)Millg, for@eXaand A >w;
that is, }?1 is a Banach space on which (A — w){A — ED)_l becomes a con-

traction for A > w. ThIS is the reason why we introduce the Banach space
Xl If Bo(ﬂ)(}\ Ag) (Xl) C X1 fort & [0 T} and

iBD( )()\—Ao)_lﬁf <L(A w) 1]u|
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for i€ X 1, t €[0,T) and A > w, then it is not difficult to check condition
(A2) of Theorem A with X = X,. However, we do not know whether the

fact above is true or not.
Now, it is necessary for us to use a Banach space X. defined by

Ry={ae 7 sup{(r~ )™ Bo()(N - Ao) "85
A>w,m>1,te[0,T} < oo},
], = max([fill, 5up{(A — @) ™| Bo(t)(A — Ao) ™l
A>w,m21,te(0,T]})
Note that Bo(t) € B({D(Ao)}, Z) for t € [0,T] and that
(3:3)  Bo(t)(A— Ao) (w)

= (o, ((%2_% (%)WIB@)A(A? —A)
(-y™~

. (_—_,,m_l);‘: (i) " B - A)-lv)

form > 1, A >w ¢t €[0,T] and (u,v) € 7. Indeed, the first assertion
follows readily from the fact that B(t) € B([D(4)], X). Since A(A? — 4)u
and (A2 — A)~u are differentiable in [D(A)] with respect to A > w, the
desired equality (3.3) is proved by the definition of By(t) and {3.1).

The following lemma is useful for the proof of condition (A2) of Theo-
rem A.

LEmMMA 1. Let .7?0 be the Banach space defined by

for i € 552.

Ro=%10Xs, oy, = wax(filg, Alg,) forie Xo.
Then:
(i) For A>w, (A= Eo}_l()?o) c Xo and
(A= Ao) Mg, <A -w)Halg, forie Xo.
(i) For ¢ € [0,T] and A > w, Bo(t)(A — Ao) (X} < Xo and
Bo(t) (A — Ag) Mg, < LA —w) Ml for@le Xo,

where L = (1 + 1/w)K + M.
Proof. To prove (i), we first note that for & € X1, 4> 2> wand
I > 1, the series Y oy _q xCio1(p ~ A — o)~ 17 is absolutely

convergent in Z, and
o]

(A— Eo)“l@ = Y xCioa(p— AP (- Ay~
k=1

(3.4)
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g;et lﬁ € Xo and m > 1. Since By(t) € B([D(Ap)], Z) we have by (3.4) with

(o~ W)mﬁo(t)(,u - EO)“W(A - A‘o)—ln

oo

= (u— w)™ Z(,u — W Bo(t) (u — Ag) (Rl
k=0

and the right-hand side is estimated by (A — w)~'d|g for x> A For u
with A > > w, the same cstimate is obtained by using (34) with i =m
Moreover, it is clear that [|(A — Ao)'@l|5 < (A — )™ il by (3.2). It
follows that '
(0= Ag)~Mlg, < (- w) Al

for A > w. Assertion (i) is proved by combining this estimate and (3.2).

To prove (ii), let (u,v) € Xp, t € = (0,7 and A > w. By (3 1) and (3.3) we
represent each component of (u ~ Ag)~™Bo(£)(A — Ag)~(u, v) in terms of
A and B(t) for u > w and m > 0, and then use condition (a). This yields

(5~ w)™ || (e~ o)™ Bo(£)(A — Ao)"Hu,v)ll 5
< (14 1/w) K| B®AMN - A u+ B(E)(\? — 4)~ 1|,

and the right-hand side is equal to (1+1/w)K|Ba(t)(A — Ap)~*(x, )
(3.3) again. Hence

( B)  Bo()(A = Ao) M w,v)lg, <
( 3) we have
Bo(s

)i~ Ag) ™ Bo(t)(A = Ao) ™ (w,v)

(o GLT AN e 4y
- (0L (1) B0 - 4B - 9

|5 by

(L+ L) K - w) ™ 0)]g,

+ B{)(3? - A)”lfu))
for s € [0, T, 4 > w and m > 1. Similarly to the argument above, condition
(ba) implies
(Bo(t)(A — Ao) Hu,v)|g, < M - w) H(wv) g,
Assertion (ii) is obtained by combining this and (3.5). w

LeMMA 2. Xo = V x X, and the two norms {(u, u)ifo and |uly + [v]| are
equivalent.

‘Proof. Let A > w and m > 1. Making use of (3 1) we have by condition
(a) and (2.4),
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(- {0 - )l - ) (&) aoe -}

< K|ull + K1+ 1/w)|lv)|
for (u,v) € Z. We use (3.3) and condition (b) to find

‘(A—w)“*{nﬁott)(A—Eo)-m(u,wug

e

< Mo

§

for (u,v} € 7. These estimates imply that for each 4 = 1,2, V; x X = X,
and the two norms |(u,v)|g, and |uly, + [jv| are equwalent from which the

desired claim follows readily .

Pmof of Main Theorem Let V be the Banach space defined by (2.5), and
set X = Vx X and ¥ = D(A) x V. Clearly, the family {A+B@) :te0,T]}
of linear operators defined by (2.3) satisfies conditions (A1) and (As) of
Theorem A. N R

To check condition (As), we note that (A — A)™' = (A — Ap)7Y| g, for
A > w (by the fact that Ko = V x X D D(4) x X = D(A)) and B()E =
Bo(t)t for T e D(A) and t € [0,T]. By Lemma 1 we have
By 'a=

(r—-(A+ A=D1 BOC- D
k=0

for"u?e}?(} and A > B :=w+ L, and
[0~ (A+ By alg, < (A~ 6" lg,

for i € X and A > /8, which implies that condition (Az) is satisfied, since
Xo = X and their norms are equivalent by Lemma 2,
If we set T = {up,vo) and F(£) = (0, f(t)) for t € [0, 7], then Tp €
D(A) x D{A)’ c ¥ and
(A+ B(0))G + F(0) =

R _ X
(vo, (A+ B(0))ug+ f(0) € D(A) xV =V .
From Theorem A we deduce that the problem

(d/dt)(u(t), v(t)) = (A+B () (u(t), v(E)+F1E) = (0(8), (A+B(E))u(t)+£(2)

has a unique solution (u,v) € C([0,T]; ¥YNCL([0, T7; X). It follows that the
desired solution of (CP; {(uo, ), f))2 is given by u. m
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Proof of Corollary. Since D(A) is dense in X and D(A) c V, V is dense
in X. The condition that (A4 + B(0))ug -+ f(0) € V'

is thus automatically

satisfied. _ 5
Now, set X = I x X and define linear operators A and B{t) in X by
Au,v) = (v, Au)  for (u,v) € D(A) x E
and

Blt)(u,v) = (0, Bt)u)  for (u,v) & X.
It is known [2] that A is the infinitesimal generator of {T(#) : £ > 0} of class
(Co) on X satisfying HT( )l < Koeo® for t > 0. Note that D(4) C F.

Since (A — A)~t = (A - Ap)~ '3 for A > wo we have
(36) (A=A (wv)
= (AN = A) "t (OF — 4) 7w, AN~ A+ A2 — A) )

for (u,v) € X and ) > wy. It follows that

aN™t a1 2 4y—1 2 -1 2 a1
(3.7) (Ez‘,\‘) AA2=A) L (2= A) o, A2 —A) Mt AP —A) ")

o]
= | (-t)" e M T(t) (u, v) dt
0
for (u,v) € E x X, m > 1 and A > wo. To check condition (a}, let v € X.
Setting w = 0 in (3.7) we have

101/ Gm = (/A ™H(NF = 4) 7 0, AN —

A )llg
o
< Ko | #7209 di o] /(.- 1)
0
for m > 1 and A > wp, which implies that condition (a} is satisfied with
w=wy and K = Kj.
By the assumption of B we have B(t) e B(X) for t € [0,T], and B(t)i €
CH[0,T); X) for %1 € X; hence there exists Mo > 1 such that 1B®)ilz < Mo
for t € [0, T, by the principle of uniform boundedness. By (3.6) we have

(38)  BH)(d - D) "(wo)

) med _
((ml) 1)-1|L ( : ) Bty — A) " (u,v)
((ml)— 1! ( )mﬁl(o’ BAH(AAE — A) u+ (3 — 4) 1))

for (u,v) GX, A>wg, t€[0,Tand m = 1.
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Now, we check condition (bz). To this end, let v € X. Setting 4 = 0 in
(3.8) we have

1/ (m — DIYE/dN™ B (X — A) " oll = | BE(A = 4) 70, 0)] %

< Mo(A — wo) ™ o]
form > 1 and A > wg. This means that condition (bz) holds with w = wyp
and M = Mo. .

It remains to show that D(A) = E and the norm in F is equivalent to
that in V. Note that V is determined by wy instead of w. The fact that £ C V
and |u|y < max(Ma, Ko}|u|g for u € E is easily obtalned by estlmatmg the
equalities (3 7) and (3.8) with v == 0. Hence D(A) D D(A) = E, since
D(A) (= D(4) x E) is dense in X (= E x X).

We show the converse inclusion. From Lemmas 1(i) and 2 we deduce

that there exists a semigroup {T'(t) : ¢ > 0} of class (Cp) on D(A)
(=D(A)

X
) given by the exponential formula

T(t)(u,v) = lim (1~ tA/m)"™(u,v)

for (u,v) € D(A)V x 7* and ¢ > 0. Moreover, ||T(t)||5f~ < Lye¥et for t > 0.
By the fact above (in particular v = 0) we see that the limit

o (=ymhm g\
(39) Ut -—mh_f,ﬂwmr‘(ax) A=A

exists in X foru € D(A)V and £ > 0. If we define U (0} = 0 (the zero operator
on X) then the one-parameter family {U(t) : t > 0} has the following
properties:

1) ForueD(A , Utyu € C([0, 0o); X)

(i) | U (| < Loe”°t1u|v foru e D(A) .

Now, let u € D(A)
then

I {S(t) : t = 0} is the associated sine family on X

o (=miam ( d )m_l 2 -1
St = lim -t | — A
O = e @) WA

for v € X and £ > 0. Since A is closed we have by this representation
and (3.9), S(t)u € D(A) and AS(H)u = U(t}u for ¢t > 0. It is well known
that Ct)v = v+ ASE S(s}udt for v € X and ¢t > 0. Combining the last
two equalities we have C(t)u = u + SE U(s)uds for t > 0. Hence C(t)u €
C([0,00); X) and (d/dt)C(t)u = U(t)u for ¢ > 0, which implies u € F and
lulg < (Loe™ + 1)|uly. m
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4. Application. In this section we give an application of the main the-
orem to the initial-boundary value problem

Uty = Uge + b, 2)us (b, 2) + et D)ult, z) + F(t, =)
41 for (¢,2) € [0,T] x [0,1],
(41) u(t,0) =u(t,1) =0 forte[0,T],

w(0,2) = up(x), w(0,2) =vo{z) forz e [0,1)

Here it is assumed that b,¢, f & C1([0,T) x [0, 1]).

Let X be the Banach space C[0, 1] with the usual supremum norm |u|s
and define a closed linear operator A in X by (Au)(z) = u''(z) foru € D(4),
where D(A) = {u € C?[0,1] : u(0) = u(l) = 0}. It is known [, (4.13)] that
A satisfies condition (a).

We consider a family {B(t) : ¢t € {0, T]} of linear operators in X defined
by (B(t)u){(z) = b(¢, z)u/ (z) +c(t, z)u(z) for w € D(B(%)) = C*[0,1]. Condi-
tion (by) follows readily by noting that the differential operators d/da and
{d/dX\)™ commute [5, (4.16)]. Clearly, conditions (by} and (bs) are satisfied.

Let W = {u € C*[0,1] : u(0) = u(1) = 0} and |u|lw = lt|ec + |t'|0o for
u € W. By [5, (4.17)] we have W C V; and |w|y, < |w|w for w € W. Since
(d/d){((D? — A) " w){z) = (A - A)" w')(z) for w € W and z € [0,1],
we have by [5, (4.13)], W C V; and |w|v, < (||blloo + |lc]lee + 1)|w|w for
w € W, where [|bl|ea = sup{|b(#,2)|: (§,2) € {0,T] x [0,1]}. Hence W C V
and |w|y < ([iblloe + [|c]loo 4 1)|w|w for w € W. By this fact we have {u €
01{02,{1] . u(0) = u(l) = 0} C DA} and {ug C[0,1] : u(0) = u(l) = 0}
cv.

From the Main Theorem we deduce that if ug € C2[0,1] and vy € C[0,1]
satisfy the compatibility condition ug(0) = wuo(1) = 0, vo(0) = vo(1} =0
and

(42)  ug(0) +b(0, 0)up(0) + (0, 0)uo(0) + £(C, 0)
= ug (1) + b(0, Lyug(L) + (0, Luo(1) + £(0,1) = 0,
then problern (4:1) has a unique solution u in the class
C([0, 77 ¢*o, 1)) N C*([0,77; C*[0, 1]) N €*([0, T); €[0, 1)).

REMARK. If one considers solving problem (4.1) by applying the corol-
lary, then the following technical conditions are required instead of (4.2):

ug{0) = ug(1) = 0,
b(£,0) =b(t,1) =0, [f(t0)=
Indeed, it is necessary to set X = {u € C[0,1] : u(0}

(Au)(z) = v (z) for u & D(A), where D(4) = {u € C?[0,1]:
0, u"(0) = u(1) = 0}.

Ft,1)=0 forte0,T].

= (1) == 0} and
u(0) = (1) =
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Derivations with a hereditary domain, II

by
A, R. VILLENA (Granada)

Abstract. The nilpotency of the separating gubspace of an everywhere defined deriva-
tion on a Banach algebra is an intriguing question which remains still unsolved, even
for commutative Banach algebras. On the other hand, closability of paxtially defined
derivations on Banach algebras is a fundamental problem motivated by the study of
time evolution of quantum systems. We show that the separating subspace §(D) of a
Jordan derivation defined on a subalgebra B of a complex Banach algebra A satisfies
B{BNS(D))B C Radg(A) provided that BAB C A and dim(Rad7{4)NN;2, B") < o0,
where Rad 7 (A) and Radg(A) denote the Jacobson and the Baer radicals of A respectively.
From this we deduce the closability of partially defined derivations on complex semiprime
Banach algebrag with appropriate domains. The result applies to several relevant classes
of algebras.

0. Introduction. The study of partially defined derivations is moti-
vated by the time evolution and spatial translation in quantum physics.
The general theory of partially defined derivations on Banach algebras is
mainly concerned with the theory of closability, generator properties and
classification of closed derivations. For a thorough treatment of this topic
we refer the reader to [1] and [20]. On the other hand, avy everywhere de-
fined derivation on a nonassociative complete normed algebra A yields a
meaningful partially defined derivation on the Banach algebra L(A) of all
continuous linear operator on A (see [23, 24] for more details).

Tt is appropriate to point out that there are examples of nonclosable par-
tially defined derivations on C*-algebras (see [1; Example 1.4.4]). In contrast,
the case where derivations are everywhere defined is by far more satisfac-
tory. B. E. Johnson and A. M. Sinclair [14] showed that everywhere defined
derivations on semisimple Banach algebras are automatically continuous.
However, at present the answers to the following equivalent questions re-
main open, even for commutative Banach. algebras (see [3, 7, 8, 16, 19]).

1. Is the separating subspace of any everywhere defined derivation on a
Banach algebra contained in the Baer radical of the algebra?
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