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Derivations with a hereditary domain, II

by
A, R. VILLENA (Granada)

Abstract. The nilpotency of the separating gubspace of an everywhere defined deriva-
tion on a Banach algebra is an intriguing question which remains still unsolved, even
for commutative Banach algebras. On the other hand, closability of paxtially defined
derivations on Banach algebras is a fundamental problem motivated by the study of
time evolution of quantum systems. We show that the separating subspace §(D) of a
Jordan derivation defined on a subalgebra B of a complex Banach algebra A satisfies
B{BNS(D))B C Radg(A) provided that BAB C A and dim(Rad7{4)NN;2, B") < o0,
where Rad 7 (A) and Radg(A) denote the Jacobson and the Baer radicals of A respectively.
From this we deduce the closability of partially defined derivations on complex semiprime
Banach algebrag with appropriate domains. The result applies to several relevant classes
of algebras.

0. Introduction. The study of partially defined derivations is moti-
vated by the time evolution and spatial translation in quantum physics.
The general theory of partially defined derivations on Banach algebras is
mainly concerned with the theory of closability, generator properties and
classification of closed derivations. For a thorough treatment of this topic
we refer the reader to [1] and [20]. On the other hand, avy everywhere de-
fined derivation on a nonassociative complete normed algebra A yields a
meaningful partially defined derivation on the Banach algebra L(A) of all
continuous linear operator on A (see [23, 24] for more details).

Tt is appropriate to point out that there are examples of nonclosable par-
tially defined derivations on C*-algebras (see [1; Example 1.4.4]). In contrast,
the case where derivations are everywhere defined is by far more satisfac-
tory. B. E. Johnson and A. M. Sinclair [14] showed that everywhere defined
derivations on semisimple Banach algebras are automatically continuous.
However, at present the answers to the following equivalent questions re-
main open, even for commutative Banach. algebras (see [3, 7, 8, 16, 19]).

1. Is the separating subspace of any everywhere defined derivation on a
Banach algebra contained in the Baer radical of the algebra?
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2. Are everywhere defined derivations continuous on semiprime Banach
algebras?

3. Are everywhere defined derivations continuous on prime Banach alge-
bras?

R. V. Garimella [7, 8] and V. Runde [19] give some affirmative answers
to the preceding questions provided that suitable additional requirements
on the algebra are fulfilled. J. Cusack [3] showed that if the answer to any of
the preceding question is negative, then there exists a topologically simple
radical Banach algebra, no example of which is currently known.

In this paper we continue the work started in [25, 26] by investigating
the questions listed above for a Jordan derivation D) defined on a subalge-
bra B, which is not assumed to be closed or dense, of a complex Banach
algebra A, satisfying BAB C A. We prove that B[BN S(D)]B C Radg(A4)
if dim(Rad 7 (A) N e, B™} < oo, where Rad s (A} and Rads(A4) denote the
Jacobson and the Baer radicals of A respectively. From this we deduce that
D is automatically closable in each of the following situations.

1. A is semiprime, B is dense in 4, and dim(Rad s (4) Now, B™) < 0.

2. A is prime, B is dense, and dim (.., [bB NRadr(A)]™ < oo for some
b € B with b # 0.

3. Ais an integral domain and dim (.-, [bBNRad 7 (4)]™ < oo for some
nongero b € B.

1. Algebraic preliminaries. We call a subalgebra B of an algebra A
hereditary if it satisfies

BAB C B.

For a historical account of this concept we refer the reader to [17], where
several remarkable properties of hereditary subalgebras can be found.

The important point to note here is the following result stated in
[26; Lemma 1].

LEMMA 1. Let B be o hereditary subalgebra of a complex Banach algebra
A acting irreducibly on a compler Banach space X such that B3X # 0.
Then B is strictly dense on the gquotient complez normed space BX/M,
where M = {y € BX : By = 0}, with the natural action b(y+ M) = by+ M.

ExaMPLES 1. 1. Pedersen [18; 1.5.1] defines the hereditary subalgebras
of a C*-algebra A as those *-subalgebras B of A for which 0 < a < b,
be B and a € A implies a € B. Assume that B is a hereditary subalgebra
of a C*-algebra A in the sense of Pedersen. Let b € B, If 0 € A with
0 < a, then [18; Proposition 1.3.5] shows that b*ab < |lal|t*h € B and
therefore b™ab les in B. For an arbitrary a € A we can write g = (a1 — az)
+i(as — a4) for suitable ay, € A with 0 < a4, for k = 1,2,3,4. Hence
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b ab = b*a1b —b*axb+i(b*azb— b*ab) € B. 1f by, by € B and a € A we have
braby = 3 308 _o(—0)* (b4 +iFby)*a(} +i%by) € B. Consequently, BAB C B.
Actually, it is known [6] that for a closed *-subalgebra B of A, Pedersen’s
condition and the property BAB C B are equivalent.

2. The one-sided ideals of an algebra A are easily checked to be hereditary
subalgebras of A.

3. For any elements a,b in an algebra A, adb is a hereditary subalgebra
of A.

4. The intersection of an arbitrary family of hereditary subalgebras of an
algebra 4 is a hereditary subalgebra of A. Accordingly, the intersection of
a left ideal and a right ideal of A is a hereditary subalgebra of A. However,
arbitrary hereditary subalgebras of A may be far from having this form. We
lustrate this fact in the following example.

5. Let A be the commutative Banach algebra of all bounded complex-
valued functions on the interval [0, 1]. The set B of those f in A which are
differentiable at 0 and satisfy f(0) = 0 is easily seen to be a hereditary
subalgebra of A which is not an ideal of A.

Let A be an algebra. A linear map D from a subalgebra B of A to A is
said to be a derivation if it satisfies

D{ab) = D{a)b+ aD(b)
D is said to be a Jordan derivation if

D(a*) = D(a)a + aD{a) Vq € B.

Yo, b € B.

The Jordan derivation identity is equivalent to assuming that
D(a-by=D(a)-b+a D) Va,beB,
where
a-b=1(ab+ ba)

is the Jordan product of ¢ and b in A. It should be noted that every deriva-
tion ig a Jordan derivation. I. N. Herstein [12] showed that any everywhere
defined Jordan derivation on a prime ring of characteristic other than 2 is
a derivation, and J. M. Cusack [2] extended this result to the case of any
semiprime ring in which 2a = 0 implies a = 0.

A linear gubsgpace I of A is said to be a Jordan ideal of 4 if

I-A+A-ITcl
We also define
Ua(b) =2a - (a-b) —a® - b= aba
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for all a,b € A. For an arbitrary subset C of A we define

cW = (Vo k. Us(C) and €O = (CM)D
k=1L

for all n € N. If Ua(C) ¢ C, then {C{™)} is a decreasing sequence of subsets
of C. Furthermore, if Uc(A) C C, then Uy (A) C C (=) for all n & N since
UUa(b) (c) = U UpU,(c) for all a,b,c € A

ExaMPLES 2. 1. Let A be any Banach algebra of power series with com-
plex coefficients and B the two-sided ideal of A of those power series in A
with zero constant term. It is easy to see that BO =0,

2. Let A denote the Banach space of those formal power series with com-
plex coefficients f = 3100 | anz™+ 3 o0 bpy™ such that | f| =377 [lan ||+
3o 1 IIball < 0o. We make A into a Banach algebra by defining the product

(Zanm -l-any )(icnm”-i-idny”)

n=1

-5 5 e (S sn(Sa)r 5 3w

n=2i+j=n n=2 it j=n

An easy computation shows that A1) = {f € A:a, =0 for all n € N} and
A®®) = 0. Furthermore, A is easily seen to be semiprime.

The Baer radical of an algebra A, from now on denoted by Radg(4), is
the intersection of all prime ideals of A. A is semiprime if Radg(A4) = 0.

In order to study, in the fifth section, the nilpotency of the separating
subspace of a partially defined Jordan derivation we require the following
results about the Baer radical.

LEMMA 2. Let I be o Jordan ideal of an algebra A satisfying ¥ €
Radp(A) for all b € I for some fired n € N. Then I C Radg(4).

Proof. First, we claim that 5 € Radg(4) for all b € I. Indeed, let
b € I and consider the quotient linear space A/Radg(A) endowed with the
product defined by

(a1 + Radg(4)) o (a2 + Radg(A)) = arb®az + Radg(A4).

For each a € A we have bab € I and therefore (bab)" € Radg(4), which gives
(a+Radg({A))™*? = 0, [17; Proposition 4.4.10] shows that (4/Radg(4))¥
= () for a suitable ¥ € N. From this it may be concluded that the principal
two-sided ideal I of A generated by b satisfies I3 2N+1 ¢ Radg(4). Hence
Iy2 C Radg(A), which proves our claim,

Ifae Aandb €l then ab+ ba € I and consequently (ab -+ ba)? €
Radg(4). Therefore babab = b(ab--ba)? —bab?a —b?a?b — b?aba € Radg(A).
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Arguing as before with the product on A/Radg(A) replaced by
{a1 + Radg(A)) o (a2 + Radp(A)) = aibaz + Radg{4)

we deduce that a suitable power of the principal two-sided ideal I}, of A
generated by b is contained in Radg(A). Thus b € Radg(4). »

LeMMA 3. Let B be o hereditary subalgebra of a Banach algebra A. Then
BnNRadg(A) C Radg(B) and BRadg(B)B C Radg(4).

Proof Let b € BN Radg(A). It is a simple matter to check that A
becomes a Banach algebra for the product ay o ag = aybas and norm |a| =
(1+[j8])]lall. For each a € A, ba lies in Radg({A) and therefore (ba)" =
for a suitable n € N. This clearly forces that the (n + 2)th power of a
with respect to the new product equals zero. Accordingly (4,]-|,¢} is a nil
Banach algebra and [17; Proposition 4.4.11(b)] shows that it is nilpotent.
This means that there is a fixed N € N such that a1b...bay = 0 for all
a1,...,ay € A. Hence the principal two-sided ideal I of B generated by
b satisfies J?Y = 0. Thus [17; Theorem 4.4.7] shows that [ is contained in
Radg(B). Consequently, b € Radg(B), which proves our first assertion.

Let b € Rads(B) and ¢,d € B. For each a € A, bead € Radg(B) and
therefore (bcad)™ = 0 for some n € N. We argue as before to prove that
A becomes a nilpotent Banach algebra for the product a; 0 az = a1 (dbc)ag
and norm |a| = (1 + ||dbe||)||a|. Consequently, the principal two-sided ideal
of A generated by dbe is a nilpotent ideal and therefore it is contained in
Radp(A4). This establishes our second assertion. w

2. Sliding hump sequences for Jordan ideals in hereditary subal-
gebras. This section is devoted to the construction of appropriate sequences
to apply a classical method in automatic continuity theory, the sliding hump
argument,

Throughout this section, B denotes a hereditary subalgebra of a complex
Banach algebra A, X a complex irreducible Banach left A-module, and I a
Jordan ideal of B such that BIBX #0. Let Y = BX and M = {y € Y :
By = 0}. To shorten notation, we let zM stand for the equivalence class
e+ M,

LEMMA 4. Let o,y € ¥ with Bz # 0. Then there is a € I such that
Blaz —y) =0,

Proof. We claim that there exists a; € I such that ;2™ # 0. Other-
wise, for all a &  and b € B, we have 0™ = (ba + ab)z™ = abz. Conse-
quently, IBX = I'Ba C M, a contradiction.

Assume that dim(Y/M ) > 1 and take a; € I with ayz™ # 0. Then
we can choose by € B such that byay2™ and oM are linearly independent,
Therefore there exists by € B satisfying bobiayz™ = y™ and baz™ = 0,
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Now a = (a1 b1) bz + a1 - (by - ba) — (a1 - b2) - by = a1b1ba + babray satisfies
our requirements,

If dim(Y/M) = 1, then we can take a; € I such that a1z™ = ™. Since
y™ = dzM for a suitable A € C, a = Aay has the desired properties. w

LEMMA 5. Let 2, y, 2 € BX with 2™ and y™ lnearly independent. Then
there exists o € T such that az = 0 and B{ay — 2) = 0.

Proof If 2™ = 0™, then we can take a = 0. Otherwise we can choose
by € I and by € B such that biz™ = yM, bya™ = 0™, and by = 2,
Then Uy, (by) € I and satisfies the required conditions. m

LeMMma 6. If J is o Jorden ideal of B such that BJBX # 0, then
B(INJ)BX #£0.

Procf. Take z € BX with Bz ¢ 0. According to Lemma 4, we can
choose o € I and b € J such that B{az —z)} = B(bz —z) = 0. We have bab €
INJ and B(babz—z) = 0. Consequently, 0 # Bz = Bbabz C B{INJ)BX . n

LEMMA 7. Let z,y€Y with Bz 0 and assume that there exist c€ B and
a linear functional g on B such that B{ez —y) =0 and (cbe — g(b)c) X =0
for all b € B. Then there exist o € I and a linear functionol f on B
satisfying Blaz —y) = 0 and (aba — f(b)a)X =0 for all b € B.

Proof. If By # 0, then Lemma 4 gives a; € I such that B{a;y~xz) = 0.
Take a = Uy(a1} € I and f(b) = g(beaq) for all b € B. If By = 0, then we
choose a; € I with Blaijz —y) = 0. Take a = Uy, (¢) and f(b) = g{arba1)
forallbe B. m

LEMMA 8. One of the following assertions hold:

1. For all z,y € Y with Bz £ 0, there are a € I and o linear functional
f on B such that B(ax —y) =0 and {aba — f(b)a)X =0 for all b B.

2. There are sequences {an} in I and {z,} Y such that Ba, ...a12,
#0, apt1...a12, =0, and a3 ...0,BX #0.

Proof. If dimb(Y/M) =1 for some b € B, then [26; Lemma 4] and the
preceding lemma show that our first assertion holds.

Assume that dimd(Y/M) > 2 for every b € B\ {0}. Take z; € BX with
Bz # 0 and apply Lemma 4 to get a; € I such that B(aiz; — 1) = 0.
Assume that a3,...,0, € [ and z1,..., 2, € BX have been chosen satis-
fying the required conditions. Since dim(a, ...a;)(Y/M) > 2, ap...a1z¥
and ay, ... ayz, | are linearly independent for a suitable 2,4, € BX. More-
over, there is y, € BX such that a1 ...anyn % 0. By Lemma 5 there is
tny1 € I such that apy16m...012, = 0 and an+1a.n...a1:sﬂ’ﬂ“1 = yM.
Note that Banyi...01%n41 = Byp, # 0 and a1...@nt1(an - .- @1%pe1) =
a1...8.4n # 0. The sequences {a,} and {z,} constructed in this way sat-
isfy the requirements of the second assertion of the lemma. =
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3. The sliding hump procedure for partially defined operators
between Banach spaces. Let X and Y be Banach spaces. A linear op-
erator I from a linear subspace Xy of X into Y is said to be closed if its
graph is a closed subset of X x Y, and we call F closable if there is a closed
extension. of J'. We can measure the closability of P’ by considering its sep-
arating subspace, which is defined as the subspace S(F) of those elements
yin ¥ for which there is a sequence {x,} in X¢ satisfying lim 2, = 0 and
lim Fxy) = y. S(F) is a closed linear subspace of ¥ and F is closable if,
and only if, S(F) = 0. In this case there is a smallest closed extension of F
called the closure of F, the domain of which is the set of those z € X for
which there exists a sequence {z,} in Xy such that limz, =z and {Fz,}
CONVErges.

LEMMA 9. Let X and Y be Banach spoces, and let F be a closable linear
operator from o linear subspace Xo of X into Y. If T is a continuous linear
operotor from X into Xo, then I'T is continuous.

Proaf Let G be the closure of F and let Xy be its domain. .X; becomes
a Banach space for the norm given by |z]| = |z]| + | Gz].

It is clear that G is | - ||| - ||-continuous. Moreover, it is immediate that
T is a closed linear operator from X into (Xi,|:|) and the closed graph
theorem shows that it is || - ||| - |-continuous. Accordingly, the composition
FT=GTis ||| [[-continuous. m

The next important results illustrate the typical sliding hump procedure.
The first one was essentially stated by M. P. Thomas in [22; Proposition 1.3]
for everywhere defined operators between Banach spaces. We adapt the proof
given there to partially defined operators between Banach spaces.

LeEmMaA 10. Let X be o Banach space, ¥ a normed space, {In} a se-
quence of continuous linear operators from X info a Iinear subspace Xp
of X, and {Qn} be a sequence of continuous linear operators from Y into
Banach spaces Y. If F is a linear operator from Xy into ¥ such that
QnFTy ... Ty, is continuous for m > n, then QuFTy ... Ty i3 continuous on
Xo for suffictently large n.

Proof. There is no loss of generality in assuming ||@ul = [|Tull £ 1
for all n & N. If the result fails, then we could choose a strictly increasing
sequence {ny} of natural numbers and a sequence {zx} in Xo such that

k|| <27 % min{|@n, FT1 ... Tnll : § < i < K},
k—1
[QuFTy ... Toyon]| = 1+ k+ HFZTl . .Tnjij,

i=1

for all ¥ € N, Consider the element € X given by z = 2;‘_)-:1 Ty .. To;;
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and, for every k € N, let yp = zx + Z;??—*k+1 Tost1---Tn;%; (the series
can easily be shown to converge). Note that z = T1.. a1 € Xy and
yp = T+ Tnptt - - Tnppn Yet1 € Xo for all £ € N. As in the proof of
[22; Proposition 1.3], for each k € N we would have | Fz{| > k, a contradic-
tion. =

The following result was established by N. P. Jewell and A. M. Sin-
clair [13] for everywhere defined operators between Banach spaces but the
basic principle was stated earlier by Sinclair [21; Lemma 1.6].

LEMMA 11. Let X and Y be Banach spaces, {T,,} o sequence of contin-
uous linear operators from X into a linear subspace Xy of X, and {R,} be
& sequence of continuous linear operators from Y into dtself. If F is a linear
operator from X into Y such that FT, — R, F is continuous on Xg for all
n € N, then there is m € N such that Ry ... R,S(F) = R1... R, 8(F) for
all n>m.

Proof. Suppose the lemma were false. Then, as in the classical proof, we
could assume that Ry...Re1S(F) is strictly contained in Ry ... R,S(F)
and ||T,]| < 1 for all n € N. For each n € N, let ¢}, denote the quo-
tient map from Y onto Y/R; ... R,S(F). [17 Proposition 6.1.9(c)] shows

that Q. R; ... R, F is closable and @, Ry ... R,_1 F is discontinuous for each
n & N
Note that for n,m € N with m > n,
QuFTr. .. Ty = (Qan R F) n+l- I

_ZRl

Ry 1{RpF — F1)Tkq1. - - T is continuous.
If m > n, then Lemma 9 shows that {QnRi... RoF)Tnyr... T and
hence G, FTY ... T, are continuous. The preceding lemma now yields that
QnFTy ... T, and consequently Q, R ... R, F are continuous for sufficiently
large n. The rest of the proof runs as in [13, 21]. The details are left to the
reader. m

Ry 1(BeF — FT ) lgr ... T

and the operator 3, _, Ry...

Levma 12, Let X and Y be Banach spaces, T a continuous linear op-
erator from X into o linear subspace Xo of X, and let F be o lineor op-
erator from X into Y such that FT — TF is continuous on Xg. Then
MNowy TUS(FY) is dense in T™(S(F)) for a suitable m € N,

Proof. By the preceding lemma, there is m € N such that T(S(F)) =
T™(S(F)) for all n > m. Since

THHS(F) ¢ T(T™(S(F) c T(T™(S(F)) =T™

(S{F)),
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T is a continuous linear operator from the Banach space T™(S(F)) onto a
dense linear subspace of it. The Mittag-Leffer theorem [4; Theorem 5. 3] now
shows that (5= T"(T™(S(F))) is dense in T(S(F)). T(S(F)) is easily
checked to be a subset of S(F). Hence T™(S(F)) < S(F) and therefore
Tm(S(F)) C S(F). Consequently,
=]
ﬂ Tﬂ(gpm

e

ﬂT"

which establishes the desired conclusmn. N

C T™(S(F),

4. Quasinilpotency of the separating subspace of a Jordan
derivation. From now on, D stands for a Jordan derivation on a complex
Banach algebra A defined on a hereditary subalgebra B of A.

In the sequel, Rady(A) denotes the Jocobson radical of A so that
Rads(A) is the intersection of all the primitive ideals of A. It is well known
that Rads(A) is the largest two-sided ideal of A, each element a of which
is quasinilpotent, i.e. lim [|a™||*/" = 0.

The separating subspace of D s easily checked to satisfy

. B.8(D)c S(D).
Consequently, B N §(D) is a Jordan ideal of B.

LemMa 13, Let {X,} be o sequence of complez irreducible Banach left
A-modules. Assume that {a,} is a sequence in B and, for each n € N,
there exists T, € X, satisfying Bon...a12, # 0, Gpy1..-018, = 0, and
a1...anBX, # 0. Then B[BNS(D)BX,, =0 for somen €N,

Proof We apply Lemma 11 to the operators F' = D and R, =T, = U,
for n € N to deduce that

ai ... Qg1 S(D)0mp1 .. 6L =a1... amé’(D)am I

for a suitable m € N. Since a1 ...0m+1S(D)ame1 ... 012m = 0, it follows
that a3 ... amS(D)am . .. G123y = 0. We claim that B[B N S(D)]|BXy, = 0.
Suppose, contrary to our claim, that B[B N §(D)|BX,, # 0. We con-
clude from Lemwma 4 that B N S(D)am, ... a1&m = BXy and hence that
a1 .. A, BX,, = 0, a contradiction. m

LEMMA 14, Let X be a complex irreducible Banach left A-module and T a
Jordan ideol of B such that BIBX # 0. Assume that there are ay,...,an €
B such that ay...0nBX #0, Bag...01 X 30, and dim Uy, ... U, (I) < oo0.
Then BIBN S(D)|BX = 0.

Proof Let 2 € X and y € BX such that Ba, ...a1z # 0and ay ... any
# 0, Leroma 4 shows that bay, ...a1z = y for a suitable b € I.
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If B][B NS(D)|BX were not 0, Lemma 4 would give an a € 8(D) such
that ay = an...ma. Since Uy(B) C I, we have dimUs, ... U, Up(B) <o
and therefore DU,, ... U, Uy is continuous. On the other hand, it is im-
mediate that DU, ... Us, Up — Usy . Un U D I8 continucus. Accordingly,
Us, - . Ua, Uy D is continuous and hence U, ... Ua, Uy (§(D)) = 0. Therefore
we would have 0= aj ... anbabay ...a12 = a1 ... nY, Which contradicts the
choice of /. =

Since, for every b € B, DUy — Up D is easily seen to be continuous, a
straightforward application of Lemma 12 gives the following.

LEMMA 15. If b € B, then (o, B"S(D)b" is dense in b™S(DW™ for a
sustable m € N.

LEMMA 16. Let X be a complex irreducible Banach left A-module, I a
Jordan ideal of B contained in S{D) such that BIBX # 0, and p € N.
Then, for all ©,y € BX with Bz 5 0, there emist ¢ € I® and a linear
functional f on B such that Blaz —y) = 0 end (aba ~ f(b)a)X = 0 for
all b€ B.

Proof Fix z € BX with Bz # 0. Let us prove that for every p € N
there exist a, and f, on B satisfying the desired conditions with ¥ = =.

From Lemmas 8 and 13 we deduce that there are b; € I and a linear
functional g; on B such that B(bjz — x) = 0 and (bibby — g(b)b1)X =0 for
all b € B. According to the preceding lemma, (oo, b7S(D)b} is dense in
7S (DB for a suitable m € N. Since 2™z — & = Spm, b (biz — z) =
bz — x we have B(B2™ 1y — ) = 0, which gives Bb;™ "'z = Bz # 0. As
BT € bRS(D)BT there exists

o3 o0 o0
bpe (RS = (Y URBIS(D)BY) € () UR (U, (B)) € I

n=1 nw=l =1
such that Bbyz £ 0. If byx™ and 2™ are linearly independent, then we
choose by € I satisfying bsz™ = bsbpaz™ = M, Otherwise hyz™ = Mz
for a nonzero A € € and we set by € I such that bya™ = A"z, Anyway,
we have oy = Up, by € IV and B(ayz —z) = 0. We can put by = by b} by fora
suitable b} € S{D). Define fi on B by f1(b) = g(b|b1bsbbs). It is immediate
that (a1baq — f(D)eqr)X =0 for all b & B,

Assume that there exist a, € I® and a linear functional f, on B such
that B(apz—z) = 0 and (apba,— fr(b)a,) X = 0. We can apply the preceding
argument again, with by replaced by a,. The only points to note here are
that U,,(B) C I, which gives (Yoo, UZ (Us,(B)) < (IP)) = [+
and a1 € Itet1),

Finally, let z,47 € BX with Bz # 0 and p € N. If ¥ and y™ are
linearly independent, then we choose a, € 1), ay, € B, and a linear func-
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tional f, on B satisfying Blapy ~ y) = B{apz ~ y) = B(aLy —y) = 0, and
(apbay—fp(b)ap) X = 0 for all b € B. In this case the element o = Oyt ty, and
the linear functional f defined on B by f(b) = fy(apbal,) satisfy our require-
ments. If y™ = Az™ for some A € C, then we take a, € I} and a linear
functional f, on B satisfying Blape — ) = 0 and (apba, — fu(b)ay) X = 0
for all b € B. Now ¢ = Aay and f = Af, have the desived properties. m

To simplify notation, here and subsequently, we write {C') to denote the
linear subspace generated by the subset ¢ of A.
We can now improve the main result in [26] as follows,

TuroreM 1. If dim(B™ N Rads(4)) < oo for some p € N, then
B[8(D)n B]B C Radz(A).

Proof. Suppose, contrary to our claim, that the set P of those primitive
ideals P of A for which B[S(D)N B]B ¢ P is nonempty.

Define Iy = BN &(D). We take Py € P, which is the kernel of a contin-
uous irreducible representation of A on a complex Banach space X;. Since
BlgBX; # 0 we can choose 1 € BX; with Bx; # 0. Lemma 16 now
gives a1 € I(()p ) and a lincar functional fi on B such that B{ayz; —z1) =0
and ajbay — fi(b)ay € Py for all b € B. We observe that fi{e1) = 1 and
a.13 —ay & P.

Suppose that Py, ..., Py, X1, X0, 21,y Tpy @1, .-, 80p, a0d fy,. ..
vy fn have been chosen satisfying the following conditions for k= 1,...,n:

(i) Py € P is the kernel of a continuous irreducible representation of 4
on a complex Banach space Xy,

(i) 25 € Xy, ag € I;izf_)l, where I, = g NPLN...NPg, a1...05BX £ 0
and Bay...a1zg % 0,

(i) fr i a linear functional on B such that aybag — fr(b)ag € Py for all
be B,

We claim that there is P,,.; € P such that J, ¢ Pniq and a;1...a,3,
Bay...ay ¢ Py, Suppose the claim were false. Then we would have
ar-anB N Bay . .ay < [\pep,r,gp P from which we deduce that

dim Uy, ... Uy, (In-1) < 00. Indeed, for every a € Iy, we have
maq - fil@ed € ANBLBN{ ) P) n B)
PeP, Ih¢P
c BIbBN I N P) r B
PeP, ILIZP
< BLBN( ) P) N B® < Rady(4)n B®
PeP
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and, for every a € In-1, 61...0nGln ... 01 — fala)ay ... an .. .01 lies in

PanBLaB0( () P) 1 B® C Radg(4) N B®.
PeP,In¢F

Lemma 14 now shows that B[B N S(D)]B C P, a contradiction. Choose
P,.1 with the claimed properties and let Xn+41 be a complex irreducible
Banach left A-module such that Poy1 = {a € A : aXn41 = 0}. Since
ai-.-0nBXpni1 #0and Bag...01 X541 # 0, we can take Tpyy € Xnyg and
Yn+1 € BXnga satisfying Bay, ... 0128541 # 0 and a1...0pYnt1 # 0. Let
b € B such that B(bay ...a1Zn41 — Tnt1) = 0. Hence
» 0 ?é By ...c12p401 = Bay, .. .o bay, ... 01 Tpt1 € BIn—lBXn-l-l,
and Lemma 6 shows that BI,BX,.1 # 0, since B(B N FP,)BX,41 # 0.
According to Lemma 16, there are ap 1 € I and a linear functional Frt1
on B such that

B(tn410n - - - 61Znt1 — Ynt1) =0 and  api1btnei — futi1(b)ants € Pags
for all b € B. Thus Bany1 - - 01%nt+1 = BYnt1 # 0 and

al.. .a,n+1(a.n e a.lsc,,,+1) =a1.-.0nlYn+1 -',ré 0.
From (ii) we see that the sequences {a,}, {Xn}, and {z,} satisfy the
requirements of Lemma 13 and therefore B{B N S(D)|B ¢ P, for some n,
which contradicts the choice of P,. w

5. Nilpotency of the separating subspace of a Jordan deriva-
tion. In this section we use Theorem 1 to study whether B[BN S(D}B C
Radg(A).

LEMMA 17. If dim{B® N Rad 7(A)) < oo for some p € N, then
Ursns(py@ (8(D)} = 0.

Proof, Theorem 1 gives B[BNS(D}]B C Rady(A) and therefore gB n
8(D))® ¢ B N Rady(A). On the other hand, for @ € [B N S(D)]|® we
have U,(B) C [BN&(D))®). This gives dim U, (B) < oc and hence DU, is
continuous. Consequently, U, (8(D)) == 0, as required. m

LemmMa 18, Let I be o subset of BN S(D) satisfying U{B) < I and
b9 =0 for all b € IV for some fired g € N. Then b* € Radg(4) for all
bel.

Proof. For each b € I, Lemma 15 shows that (-, b"S(D)b" is dense

in b™S(D)b™ for a suitable m € N, Further, we note that

ﬁ brS(D)" = ﬁ B b(bS(D)b)bb" C ﬁ Up(In) c IV,

n==l" ' ‘n=} n=1
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Consequently, b*™+ & 5™S8(D)b™ C I1W). By the preceding lemma we have
Upen (1) = 0. Hence Uy (IV) = 0 and therefore p*m+) < .

Fix b € I. For each a € 4, b*ab® € Uy(B) C I and therefore (b%ab?)™ =0
for some n € N, We argue as in Lemma 3 to prove that 4 becomes a
nilpotent Banach algebra for the product a1 0 a2 = a1b*as and norm |a| =
(1+|/6%] )[|a|. Hence the principal two-sided ideal I of A generated by b* is a
nilpotent ideal of 4 and therefore it is contained in Radg(4). Consequently,
t* € Radg(A) whenever b lies I. m

TrEoREM 2. If dim{BM NRads(A4)) < oo, then BNS(D) C Radg(B).
Accordingly, B[B N S(D)]B ¢ Radg(4).

Proof Write I = BN &(D). From Lemma 17 we see that Uza (S(D1)
= 0. Since IV ¢ 8(D), we have Uy (IV) = 0. The preceding result shows
that b* € Radg(4) for all b € I. Lerama 2 now leads to I C Radg(B). m

LeMMA 19. Let T be o subset of BN S(D) satisfying Uy(B) C I and
b2 =0 for all b € I¥) for suitable p,q € N. If B N Radp(A) is nilpotent,
then there is m € N such that 8™ =0 for all b e I.

Proof If p = 1, then Lemma 18 shows that b* € BNRadg(A4) and con-
sequently b4 = 0 for all b € I, where N € N satisfies (B N Radg(4))" = 0.
Assume the result holds for p. If there is ¢ € N such that 57 = 0 for all
be It = (7O then b4 = 0 for all b € I'?) and therefore 5*V = 0
forallbel. m

TrEOREM 3. If dim{B®) N Rads(A)) < co for some p € N and BN
Radg(A) is nilpotent, then B N S(D) C Radg(B). Accordingly, B[B N
S§(D)|B ¢ Radg(4).

Proof. Let I = BN &(D). Lemma 17 shows that Uz (I?)) = 0. From

Lemma 19 we dednce that 8™ = 0 for all b € I for some fixed m € N.
Lemma 2 completes the proof. m

COROLLARY 1. Assume that dim({[BNRads(4)]P) < oo for somep € N
and that BN Radg(A) is nilpotent. Then BNRads (A)NS(D) < Radg(B).

Proof, Let I = BNRads{A) and consider the regtriction D|;. According
to the preceding theorem we have I N S(D|;) € Radg(l) = Radg(B). It is
immediate that Uz(8(D)) ¢ §(D);) and therefore

Ufng('p) (INSD)cIn S(Du) ¢ Radg(B).
Consequently, b* € Radg(B) whenever b lies in I N §(D). Lemma 2 now
gives I N 8(D) C Radg(B) as required. w

CoroLLARY 2. If dim([bB N Rad 7(4)]P)) < oo for some p € N and
some nonzero b € B and A is an integral domain, then D is closable.
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Proof. Consider the restriction Dyp. The preceding corollary shows
that 5B N Rad 7 (4)NS(Djps) € Radg(bB) = 0. Since bS(D) C S(Dypp) we
have

¥*S(D)Rady(A) C BB N Rads(4) N S(Dpgs) = 0.
If S(D) = 0, then D is closable. Otherwise Rads(A) = 0 and Theorem 1
shows that B[B N §(D)]B = 0. From this we deduce that B2S(D)B? =,
which gives either B =0 or §(2) = 0 and hence D is closable. m

6. Densely defined derivations. Throughout this section, B is as-
sumed to be a dense hereditary subalgebra of 4. If in addition A is semi-
prime, then it is easy to check that the Cusack Theorem [2; Theorem 4]
remains true and D is a derivation whose separating subspace i8 a two-sided
ideal of A.

CoroLLARY 3. If dim{B® NnRads(A)) < oo for some p € N, then
5(D) C Rads(A).
Proof From Theorem 1 we deduce that
B*S(D)B? ¢ B[BN S(D))B C Rads(A)
and therefore A%S(D)A? C Rads(A), which gives the desired conclusion, u

COROLLARY 4. If dim{B® M Rads(A)) < oo for some p € N and A is
semiprime, then 1D is elosable.

Proof. B i3 easily seen to be semiprime and Theorem 3 yields
BN S8(D) = 0. On the other hand, Us(8(D)) C BNS(D) = 0. By density,
Ua(8(D)) = 0. Since S(D) is a two-sided ideal of A, we conclude that
S{D) C Radp(4)=10. m

CoroLLARY 5. If dim{[bB N Rad7{4)|®")) < oo for some p € N and
some b € B with b* #£ 0 and A is prime, then D is closable.

Proof. Consider the restriction Dypp. From Corollary 1, it follows that
bBNRads(A4)N S(Dpr) C Radg(bB).

From Lemma 3 we have bBRadp(bB)bB C Radp(A) = 0 and therefore
bARadg(bB)bA = 0. Since Radg(bB) is a two-sided ideal of A and b # 0,
the primeness of A shows that Radg(bB) = 0. On the other hand, bS(D) C
S(Dypg). Consequently,

5°S(D)BRady(A)B C bB NRads(4) N S(Dys) = 0.

Hence b*S(D) ARad 7(A)A = 0. Since b? % 0, the primeness of A gives either
S§(D) = 0 or Rads(4) = 0. In the last case, Corollary 3 shows that D is
closable, w
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CoROLLARY 6. If A is semiprime, then D is closable if, and only if,
[S(D)](P) = () for somep € N.

Proof. If [S(D)]® = 0, then we apply Theorem 3 to D\Bns(p) to obtain
BN S(D) N S(D\BHS(D)) = (), Note that

(BNS(D))? ¢ (BNS(D))S(D) ¢ BNS(D)NS(Dsnsip) = O

Lemma 2 shows that BN S(D) = 0 and therefore BS(D)B = 0. By density,
AS(D)A = 0, which implies S(D) = 0. m

7. Examples. 1. Algebras of power series. Let A be a complex Banach
algebra and let A[[z]] denote the algebra of formal power series in one inde-
terminate & with coefficients in A. It follows easily that if A is prime, then
s0 is any subalgebra of A[[z]] containing Az™ for some n € Ny. A Banach
algebra of power series with coefficients in 4 is a Banach space A which is
a subalgebra of A[[z]] containing Az such that the coefficient functionals
are continuous, The closed graph theorem shows that mudtiplication is sep-
arately continuous, and so A becomes a Banach algebra for an equivalent
norm.

For an example of such an algebra, let w be an algebra weight on Np,
that is, w is a function from Ny to RT satisfying w(0) = 1 and w(m +n) <
wlm)w(n) for all m,n € N, Let

o0 o0
Maw) = {f=3 " Ifl = ¥ lanllw(n) < o}.

n==0 n=0
Then £'(A,w) is a Banach algebra of power series with coefficients in A
It is well known that ¢'(C,w) is semisimple if lim (w(n})/ > 0, and
Rads(1(C,w)) = {f € £1(C,w) : £(0) = 0} if lim (w(n))*/» = 0. For a
thorough discussion of this class of Banach algebras with complex coeffi-
cients, we refer to [4] and [11].

It is well known that any everywhere defined derivation on a Banach
algebra of power series with complex coefficients is continuous. This was
first shown in [15]. On account of Corollaries 2 and 5 we deduce that any
derivation with a hereditary domain B on a Banach algebra A of power
serles with coefficients in a complex prime Banach algebra A is closable
provided that either A is commutative or B is dense in A. To prove this
we show that there is b € B with b% % 0. In the first case it is obvious. If
our assertion were false in the second case, then we would have BN =0 for
some N ¢ N. By density we would deduce that AN = 0, a contradiction.
We have bz = bab € B, (b2z)? = b%a? # 0, and [(b%x) B]) = 0.

2. Weighted convolution algebras on the half-line. Let w be a positive mea-
surable function on [0, oo such that w(s +1) < w(s)w(z) for all 5,1 € 0, o0;
such a function is said to be a weight function on [0, 00[. Let L' (w) denote the
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space of equivalence classes with respect to Lebesgue measure of complex-

valued measurable functions f on [0, cc[ for which ||f|l = {37 |F(£)|w(t) dt
< co. L'{w) becomes a complex Banach algebra for the norm || - ||, and

the convolution (f * 9)(f) = SB f(t — 8)g(s)ds as product. For a thorough
treatment of these algebras we refer the reader to [4, 5, 9. It is known [4]
that L'(w) is an integral domain. It is semisimple if limy o w(t)1/ > 0,
and radical if lim; . w(£)*/t = 0. For f € L*(w) \ {0}, define aff) =
gup{d > 0: f == 0 almost everywhere on [0,4]}, and set a(0) = oo.

For each weight function w, everywhere defined derivations on L'(w)
are continuous (see [4, 5, 10, 13]). From Corollary 2 we deduce that any
derivation defined on a hereditary subalgebra B of L'(w) is automatically
closable. Choose g € L*(w) \ {0} with a(g) > 0 and h € B\ {0}. The
function f = h* g * A lies in B\ {0} and Titchmarsh’s convolution theorem
[4; Theorem 7.4] shows that af) = 2a(h) + a(g) > 0 and (fB)Y) = 0,

3. Disc algebras. Set D = {2z € C : |z| < 1}. Given a complex Banach
algebra A, let A(D,.A) denote the set of all continuous A-valued functions
on 0 which are holomorphic on its interior. A{ID, A) becomes a Banach
algebra with pointwise algebraic operations and the supremum norm. From
the uniqueness theorem for holomorphic functions we deduce that A(ID, A) is
prime if A is. Any derivation defined on a hereditary subalgebra B of A(D, A)
is closable provided that either A is an integral domain or 4 is prime and
B is dense in A(ID, A). Indeed, we can argue as in the first example to find
g € B with g* # 0. The function f defined on D by f(z) = g(2)?z lies in B,
f2#0, and [fB]® =0.
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