

The ratio and generating function of cogrowth coefficients of finitely generated groups

by

RYSZARD SZWARC (Wrocław)

Abstract. Let G be a group generated by r elements g_1, \ldots, g_r . Among the reduced words in g_1, \ldots, g_r of length n some, say γ_n , represent the identity element of the group G. It has been shown in a combinatorial way that the 2nth root of γ_{2n} has a limit, called the cogrowth exponent with respect to the generators g_1, \ldots, g_r . We show by analytic methods that the numbers γ_n vary regularly, i.e. the ratio $\gamma_{2n+2}/\gamma_{2n}$ is also convergent. Moreover, we derive new precise information on the domain of holomorphy of $\gamma(z)$, the generating function associated with the coefficients γ_n .

Every group G generated by r elements can be realized as a quotient of the free group \mathbb{F}_r on r generators by a normal subgroup N of \mathbb{F}_r , in such a way that the generators of the free group \mathbb{F}_r are sent to the generators of the group G. With the set of generators of \mathbb{F}_r we associate the length function of words in these generators. The cogrowth coefficients $\gamma_n = \#\{x \in N \mid |x| = n\}$ were first introduced by Grigorchuk in [2]. They measure how large the group G is compared with \mathbb{F}_r . It has been shown that the quantities $\sqrt[2n]{\gamma_{2n}}$ have a limit, denoted by γ and called the cogrowth exponent of N in \mathbb{F}_r . Since the subgroup N can have at most $2r(2r-1)^{n-1}$ elements of length n, the cogrowth exponent γ can be at most 2r-1. The famous Grigorchuk result, proved independently by J. M. Cohen in [1], states that the group G is amenable if and only if $\gamma = 2r-1$ (see also [6], [8]).

The main result of this note is that the coefficients γ_{2n} satisfy not only the Cauchy *n*th root test but also the d'Alembert ratio test.

THEOREM 1. The ratio of two consecutive even cogrowth coefficients $\gamma_{2n+2}/\gamma_{2n}$ has a limit. Thus the ratio tends to γ^2 , the square of the cogrowth exponent.

¹⁹⁹¹ Mathematics Subject Classification: Primary 20F05, 20E05.

Key words and phrases: cogrowth of subgroups, free group, amenable groups.

Research partially supported by KBN (Poland).

Proof. Let g_1, \ldots, g_r be generators of G. Let μ be the measure equidistributed over the generators and their inverses according to the formula

$$\mu = \frac{1}{2\sqrt{q}} \sum_{i=1}^{r} (g_i + g_i^{-1}),$$

where q = 2r - 1. By an easy transformation of [6, Formula (*)] we obtain

(1)
$$\frac{z}{1-z^2} \sum_{n=0}^{\infty} \gamma_n z^n = \frac{1}{2\sqrt{q}} \sum_{n=0}^{\infty} \mu^{*n}(e) \left(\frac{2\sqrt{q}z}{qz^2+1}\right)^{n+1},$$

for small values of |z|. Let ϱ denote the spectral radius of the random walk defined by μ , i.e.

$$\varrho = \lim_{n \to \infty} \sqrt[2n]{\mu^{*2n}(e)}$$

We denote by $d\sigma(x)$ the spectral measure of this random walk. Hence

(2)
$$\mu^{*n}(e) = \int_{-\rho}^{\varrho} x^n \, d\sigma(x).$$

Note that ϱ belongs to the support of σ . Combining (1) and (2) gives

(3)
$$\frac{z}{1-z^2} \sum_{n=0}^{\infty} \gamma_n z^n = \frac{1}{2\sqrt{q}} \int_{-\varrho}^{\varrho} \sum_{n=0}^{\infty} x^n \left(\frac{2\sqrt{q}z}{qz^2+1}\right)^{n+1} d\sigma(x)$$
$$= \frac{1}{2\sqrt{q}} \int_{-\varrho}^{\varrho} \frac{z}{1-2\sqrt{q}xz+qz^2} d\sigma(x).$$

By the well known formula for the generating function of the second kind Chebyshev polynomials $U_n(x)$ (see [4, (4.7.23), p. 82]) where

(4)
$$U_n(\frac{1}{2}(t+t^{-1})) = \frac{t^{n+1} - t^{-n-1}}{t - t^{-1}},$$

we have

$$\frac{1}{1 - 2\sqrt{q} xz + qz^2} = \sum_{n=0}^{\infty} U_n(x) q^{n/2} z^n.$$

Thus

$$\frac{z}{1-z^2}\sum_{n=0}^{\infty}\gamma_n z^n = z\sum_{n=0}^{\infty}q^{n/2}z^n\int_{-\varrho}^{\varrho}U_n(x)\,d\sigma(x).$$

Therefore for n > 2 we have

(5)
$$\gamma_n = q^{n/2} \int_{-\varrho}^{\varrho} \{U_n(x) - q^{-1}U_{n-2}(x)\} d\sigma(x).$$

Since $U_{2n}(-x) = U_{2n}(x)$ we get

(6)
$$\gamma_{2n} = q^n \int_0^{\varrho} \{ U_{2n}(x) - q^{-1} U_{2n-2}(x) \} d\widetilde{\sigma}(x),$$

where $\widetilde{\sigma}(A) = \sigma(A) + \sigma(-A)$ for $A \subset (0, \varrho]$ and $\widetilde{\sigma}(\{0\}) = \sigma(\{0\})$. Let

$$I_n = \int_{0}^{\varrho} \{U_{2n}(x) - q^{-1}U_{2n-2}(x)\} d\widetilde{\sigma}(x).$$

By [3, Corollary 2] we have $\varrho > 1$. Hence we can split the integral I_n into two integrals: $I_{n,1}$ over $[0,\varrho_0]$, and $I_{n,2}$ over $[\varrho_0,\varrho]$, where $\varrho_0 = (1+\varrho)/2$. By (4) we have $|U_m(x)| \leq m+1$ for $x \in [0,1]$ and

$$|U_m(x)| \le (m+1)[x+\sqrt{x^2-1}]^m$$
 for $x \ge 1$.

Thus we get

(7)
$$I_{n,1} \leq 2(2n+1)(\varrho_0 + \sqrt{\varrho_0^2 - 1})^{2n} \int_0^{\varrho_0} d\widetilde{\sigma}(x)$$
$$\leq 2(2n+1)(\varrho_0 + \sqrt{\varrho_0^2 - 1})^{2n}.$$

Let us turn to estimating $I_{n,2}$. By (4) one can easily check that

$$\left| U_n(x) - \frac{(x + \sqrt{x^2 - 1})^{n+1}}{2\sqrt{x^2 - 1}} \right| = o(1) \quad \text{as } n \to \infty,$$

uniformly on $[\varrho_0, \varrho]$. Hence

$$\left| U_{2n}(x) - q^{-1}U_{2n-2}(x) - (x + \sqrt{x^2 - 1})^{2n-1} \frac{(x + \sqrt{x^2 - 1})^2 - q^{-1}}{2\sqrt{x^2 - 1}} \right| = o(1)$$

as $n \to \infty$, uniformly on $[\varrho_0, \varrho]$. This implies

(8)
$$I_{n,2} \approx \widetilde{I}_{n,2} = \int_{\rho_0}^{\varrho} (x + \sqrt{x^2 - 1})^{2n} \frac{(x + \sqrt{x^2 - 1})^2 - q^{-1}}{2\sqrt{x^2 - 1}(x + \sqrt{x^2 - 1})} d\widetilde{\sigma}(x).$$

Since the endpoint ϱ belongs to the support of $\tilde{\sigma}$, we get

(9)
$$\widetilde{I}_{n,2}^{1/(2n)} \to \varrho + \sqrt{\varrho^2 - 1}.$$

By combining this with (7) and (8) we obtain

(10)
$$I_n = I_{n,1} + I_{n,2} = \widetilde{I}_{n,2}(1 + o(1)) \quad \text{as } n \to \infty.$$

In view of (9) the integral $\tilde{I}_{n,2}$ tends to infinity. Thus by (6) and (10) we have

$$rac{\gamma_{2n+2}}{\gamma_{2n}}pprox qrac{\widetilde{I}_{n+1,2}}{\widetilde{I}_{n,2}}.$$

LEMMA 1 ([7]). Let f be a positive and continuous function on [a, b], and μ be a finite measure on [a, b]. Then

$$\lim_{n\to\infty}\frac{\int_a^b f(x)^{n+1}\,d\mu(x)}{\int_a^b f(x)^n\,d\mu(x)}=\max\{f(x)\mid x\in\operatorname{supp}\mu\}.$$

Applying Lemma 1 and using the fact that ϱ belongs to the support of $\widetilde{\sigma}$ gives

(11)
$$\frac{\gamma_{2n+2}}{\gamma_{2n}} \to qz\{\varrho + \sqrt{\varrho^2 - 1}\}^2. \blacksquare$$

Theorem 2. The generating function $\gamma(z) = \sum_{n=0}^{\infty} \gamma_n z^n$ can be decomposed into a sum of two functions $\gamma^{(0)}(z)$ and $\gamma^{(1)}(z)$ such that $\gamma^{(0)}(z)$ is analytic in the open disc of radius $q^{-1/2}$ (where q=2r-1), while $\gamma^{(1)}(z)$ is analytic in the whole complex plane with the two real intervals $[-\gamma q^{-1}, -\gamma^{-1}]$ and $[\gamma^{-1}, \gamma q^{-1}]$ removed. Moreover, $\gamma^{(1)}$ satisfies the functional equation

$$\frac{z\gamma^{(1)}(z)}{1-z^2} = \frac{(q/z)\gamma^{(1)}(q/z)}{q/z}.$$

Proof. By (3) we have

$$\gamma(z) = (1 - z^2) \int_{-\rho}^{\rho} \frac{1}{1 - 2\sqrt{q} xz + qz^2} d\sigma(x).$$

Let

$$\gamma^{(0)}(z) = (1 - z^2) \int_{-1}^{1} \frac{1}{1 - 2\sqrt{q} xz + qz^2} d\sigma(x),$$
$$\gamma^{(1)}(z) = (1 - z^2) \int_{1 < |x| \le \varrho} \frac{1}{1 - 2\sqrt{q} xz + qz^2} d\sigma(x).$$

For $-1 \le x \le 1$ the expression $1 - 2\sqrt{q} xz + qz^2$ vanishes only on the circle of radius $q^{-1/2}$. Thus $\gamma^{(0)}(z)$ has the desired property. For $1 < |x| \le \varrho$ the same expression vanishes only on the intervals

$$\left[-\frac{\varrho+\sqrt{\varrho^2-1}}{\sqrt{q}}, -\frac{\varrho-\sqrt{\varrho^2-1}}{\sqrt{q}}\right], \quad \left[\frac{\varrho-\sqrt{\varrho^2-1}}{\sqrt{q}}, \frac{\varrho+\sqrt{\varrho^2-1}}{\sqrt{q}}\right].$$

By (11) we have $\gamma = q^{1/2}(\varrho + \sqrt{\varrho^2 - 1})$. This shows that $\gamma^{(1)}$ is analytic where required.

The functional equation follows immediately from the formula

$$\frac{z\gamma^{(1)}(z)}{1-z^2} = \int_{1 < |x| < \rho} \frac{1}{z^{-1} - 2\sqrt{q} \, x + qz} \, d\sigma(x). \quad \blacksquare$$

$$\gamma_{2n} = q^n \left\{ \int_{\varrho_0}^{\varrho} (x + \sqrt{x^2 - 1})^{2n} \frac{(x + \sqrt{x^2 - 1})^2 - q^{-1}}{2\sqrt{x^2 - 1}(x + \sqrt{x^2 - 1})} d\widetilde{\sigma}(x) + o(1) \right\}.$$

We have

$$h(\varrho_0) := \frac{(\varrho_0 + \sqrt{\varrho_0^2 - 1})^2 - q^{-1}}{2\sqrt{\varrho_0^2 - 1} (\varrho_0 + \sqrt{\varrho_0^2 - 1})} \ge \frac{(x + \sqrt{x^2 - 1})^2 - q^{-1}}{2\sqrt{x^2 - 1} (x + \sqrt{x^2 - 1})},$$
$$\frac{\varrho + \sqrt{\varrho^2 - 1}}{\varrho} x \ge x + \sqrt{x^2 - 1}.$$

Therefore, in view of (2), we get

$$\gamma_{2n} \le q^n \left\{ h(\varrho_0) \frac{(\varrho + \sqrt{\varrho^2 - 1})^{2n}}{\varrho^{2n}} \int_0^\varrho x^{2n} d\widetilde{\sigma}(x) + o(1) \right\}$$
$$= q^n h(\varrho_0) \left\{ (\varrho + \sqrt{\varrho^2 - 1})^{2n} \frac{\mu^{*2n}(e)}{\varrho^{2n}} + o(1) \right\}.$$

Finally, we obtain

$$\frac{\gamma_{2n}}{\gamma^{2n}} \frac{\varrho^{2n}}{\mu^{*2n}(e)} = \frac{\gamma_{2n}}{\mu^{*2n}(e)} \left\{ \frac{\varrho}{\sqrt{q}(\varrho + \sqrt{\varrho^2 - 1})} \right\}^{2n} \le h(\varrho_0) + o(1).$$

We conjecture that the opposite estimate also holds, i.e. the quantity on the left hand side is bounded away from zero, by a positive constant depending only on ϱ . This conjecture can be checked easily if the measure σ is smooth in the neighbourhood of ϱ and the density has a zero of finite order at ϱ .

Acknowledgements. For a long time I thought Theorem 1 followed from the following statement.

If $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is analytic in the complex plane except the half line $[1, \infty)$, then the ratio a_{n+1}/a_n converges to 1.

I am grateful to Jacek Zienkiewicz from my Department for constructing a fine counterexample to this statement.

References

- [1] J. M. Cohen, Cogrowth and amenability of discrete groups, J. Funct. Anal. 48 (1982), 301-309.
- [2] R. I. Grigorchuk, Symmetrical random walks on discrete groups, in: Multicomponent Random Systems, R. L. Dobrushin and Ya. G. Sinai (eds.), Nauka, Moscow, 1978, 132-152 (in Russian); English transl.: Adv. Probab. Related Topics 6, Marcel Dekker, 1980, 285-325.
- [3] H. Kesten, Full Banach mean values on countable groups, Math. Scand. 7 (1959), 149-156.

R. Szwarc

- [4] G. Szegő, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ. 23, Providence, R.I., 1975.
- [5] R. Szwarc, An analytic series of irreducible representations of the free group, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 1, 87-110.
- [6] —, A short proof of the Grigorchuk-Cohen cogrowth theorem, Proc. Amer. Math. Soc. 106 (1989), 663-665.
- [7] S. Wagon, Elementary problem E 3226, Amer. Math. Monthly 94 (1987), 786-787.
- [8] W. Woess, Cogrowth of groups and simple random walks, Arch. Math. (Basel) 41 (1983), 363-370.

Institute of Mathematics
Wrocław University
Pl. Grunwaldzki 2/4
50-384 Wrocław, Poland
E-mail: szwarc@math.uni.wroc.pl

94

Received November 3, 1997

(3988)

STUDIA MATHEMATICA 131 (1) (1998)

The minimum diagonal element of a positive matrix

by

M. R. F. SMYTH (Belfast) and T. T. WEST (Dublin)

Abstract. Properties of the minimum diagonal element of a positive matrix are exploited to obtain new bounds on the eigenvalues thus exhibiting a spectral bias along the positive real axis familiar in Perron-Frobenius theory.

The (i,j)th entry of an $n \times n$ matrix T is written $[T]_{ij}$. The matrix T is positive $(T \geq 0)$ if $[T]_{ij} \geq 0$ $(\forall i,j)$ while T is strictly positive (T>0) if $[T]_{ij} > 0$ $(\forall i,j)$. The spectrum, or set of eigenvalues of T, is denoted $\sigma(T)$, the spectral radius r(T) and the peripheral spectrum

$$\operatorname{Per} \sigma(T) = \{ \lambda \in \mathbb{C} : \lambda \in \sigma(T), |\lambda| = r(T) \}.$$

The trace of T will be written tr(T), and the complex field \mathbb{C} .

This paper combines properties of the minimum diagonal element $\varepsilon(T)$ of a positive matrix T,

$$\varepsilon(T) = \min_{1 \le i \le n} [T]_{ii},$$

with elementary spectral theory to show that $\sigma(T)$ lies inside the disc centred at $(\varepsilon(T), 0)$ with radius $r(T) - \varepsilon(T)$ (Proposition 6 and Figure 1) generalising a result known for stochastic matrices ([2], III.3.4.1). Various improvements of this result are then considered.

We start with the elementary properties of $\varepsilon(T)$ for positive T, and we note that $S \geq T \geq 0$ implies that $r(S) \geq r(T)$.

LEMMA 1. (i) If
$$T \ge 0$$
 then $\varepsilon(T) \le n^{-1} \operatorname{tr}(T) \le r(T)$. (ii) If $S, T \ge 0$ then $\varepsilon(ST) \ge \varepsilon(S)\varepsilon(T)$.

Proof. Property (i) follows from the fact that the trace of T is the sum of the eigenvalues of T repeated according to multiplicity. For (ii) we have

$$[ST]_{ii} = \sum_{k=1}^{n} [S]_{ik} [T]_{ki} \ge [S]_{ii} [T]_{ii} \quad (\forall i),$$

hence $[ST]_{ii} \geq \varepsilon(S)\varepsilon(T)$, giving $\varepsilon(ST) \geq \varepsilon(S)\varepsilon(T)$.

¹⁹⁹¹ Mathematics Subject Classification: Primary 15A48.