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Weighted inequalities for one-sided
maximal functions in Orlicz spaces

by
PEDRO QRTEGA SALVADOR (Mialaga)

Abstract. Let M_j“ be the maximal operator defined by

Sm-{-h

. . |flg
My () = sup Ty

3

where g is a positive locally integrable function on R. Let & be an N-function such f:l?at
both & and its complementary N-function satisfy As. We characterize the pairs of positive
functions (v, w) such that the weak type inequality

c
ullw € R| M5 1) > M) < 3555 nﬂlé(ifl)w

holds for every f in the Orlicz space La{w). We also characterize the positive functions
w such that the integral inequality

{atadf fw < §e(siw

R R
holds for every f € Lg{w). Our results include some already obtained for functions in
IP and yield as consequences one-dimensional theorems due to Gallardo and Kerman-—
Torchinsky.

1. Introduction and results. Let g be a positive locally integrable
function on R and consider the maximal operator acting on measurable
functions on R defined by

o iflg
+ = 81 E f
Mg f(fﬂ) h>18 Sz_l_hg
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The good weights for M g' have been studied in [MOT] and, when g = 1, in
[S]. The results obtained there were the following:

THEOREM A. The operator M s of weak type (1,1) with respect 1o the
measures udz and wdz if and only if the couple (u,w) solisfics condition
AT (9), which means that there ezists C > 0 such that

My (g7 <Cg e ae,
where M is the left maximal operator defined in the obvious way.

THEOREM B. Let 1 < p < oo, The operator M) s of weak type (p,p)
with respect to the measures ude and wdw if and only if (u,w) satisfies
condition AT, which means that there cxists C > 0 such that

[

Su(sgi"wl'ﬂ”)fhl < O’(Kg)y

b o

Jor everya,b,c € R witha < b < ¢, where p' is the conjugate exponent of p.

TrEOREM C. Let 1 < p < oo and let w be o nonnegative measurable
function. The following statements are equivalent:

(i) M is of weak type (p, p) with respect to the measure wds.
(i) M} is bounded in L¥(wdz).
(iil) w satisfies Al(g) (i.e., (w,w) satisfies AT (9)).

Muckenhoupt’s results for the Hardy-Littlewood maxima} operator (sce
fM]) in the one-dimensional case are consequences of Theorems A, BandC.
It is interesting to ask whether generalizations of these theorems to Orlicz
spaces are possible, as was done in [KT] and {G] for the Hardy-Littlewood
maximal operator. The purpose of this paper is to give an affirmative answer
to this question. In the proofs of our results we use arguments and techniques
due to Gallardo [G], Kerman-Torchinsky KT] and Martin Reyes [MR],
whose new simple proofs of Theorems A, B and C have been fundamental.
. Before giving the statements of the theorems we recall the basic defini-
tions and results about N-functions and Orlicz spaces which will he used
later. Detailed treatments can be found in KR] and [Mu].
An N-function is a continuous and convex function & : [0, 00} — R such
that &(s) > 0if s > 0, s7'®(s) — 0 as s — 0 and §71P(s) — oo as g — oo,
Every N-function ¢ admits a representation of the form B(s) = {; B(t) dt,
where ¢ : [0,00) — R is nondecreasing right-continaous with qﬁ(]ﬂ) = (0,
$(s) > 0 s > 0 and ¢(s) — 00 as 5 — oo. The function ¢ is called the
density function of &.
- Associated with ¢.we have a function ¥ :[0,00) — R defined by w(t) =
sup{s : ¢(s) < t}. The function 7 has the same properties as ¢ and is called
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the generalized inverse of ¢. The N-function ¥ defined by ¥(t) = Sto W(s)ds
is called the complementary N-function of @.

An N-function ¢ satisfies condition A, in [0,c0) if sup,..q®(25)/P(s)
< oo. If ¢ is the density function of @, then & satisfies A, if and only if
there exists a > 1 such that s¢(s) < a®{s) for every s > 0. Condition
Aj can also be expressed in the following equivalent way: for every A > 0
there exists B > 0 such that @(At) < Bd(¢) for every t > 0. Condition
Ay does not necessarily pass to the complementary N-function. A necessary
and sufficient condition for & to satisfy As is that there exists § > 1 such
that BP(s) < sd(s) for every s > 0.

If (X, M, u) is a o-finite measure space and @ is an N-function, the Orlicz
spaces Ly and Lg are defined as follows:

Lo = {f X —R l / is measurable and S S| f) < oo}
X

and
Lg = {f: X — R f is measurable and fg € L, for every g € Lg},

where ¥ is the complementary N-function of $. We always have Lg C La.
If & satisfies Agp, we have Ly = Lg.
The Orlicz space Lg is a Banach space with the norms

[flle =int {2 >0 ‘ [o(ifNdu< 1}
X

and
| Fllay = sup { § ifgldn | g € Su},
X

where Sg = {g € Lw | {, #(lg]) < 1}. These norms are called, respectively,
the Luzemburg norm and the Orlicz norm. They are equivalent; in fact, the
inequalities | flle < || £lli#) < 2||f!ls hold. . '
The Holder inequality in LP spaces has a natural extension to Orlicz
spaces: if f € Lg and g € Ly, then fg € L' and
V(291 <17l llglle < 21if lollglhe-
s
When hoth ¢ and ¥ satisfy As, the Banach space Lg is reflexive.
If & is an N-function, we can define its upper and lower indices, respec-
tively, as follows:
—loghs(s) ~log ha(8)
= 2 =l and = sup —————~
0<s<1 logs be o>n logs

where hg(8) = supyso P ()/ 87 (st).

Qg
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104 P. Ortepa Salvador

The inequalities 0 < B < cg < 1 are always satisfied. If ¢ satisfies
Ay, then By > 0 and if the complementary function of & satisfies A,, then
ag < 1. The numbers py = o Land ¢s = Bz 1 are called, respectively, the
lower exponent and upper ezponent of &.

We will need, finally, the following interpolation theorem (see [G]):

THEOREM D. Let (X, M, p) and (Y, F,v) be two o-finite measure spaces.
Let @ be an N-function with complernentary N-function ¥. Suppose that &
and ¥ satisfy Az. Letp and g be, respectively, the lower and upper exponents
of &. Let T be u sublinear operator which is of weak type (r,r) and of weak

type (s,s), where L <r <p and g < s < co. Then T maps La(u) into Ls(v)
and there exists C > 0 such that

fe(Ts)dv < C [ &( 1) d
Y X

Jor every f € Lg{u).

In what follows, ¢ will be an N-function with density ¢, ¢ will be the
generalized inverse of ¢ and ¥ the complementary N-function of $. We will
suppose that both ¢ and ¥ satisfy Ap. Throughout the paper, C' will stand
for a positive constant, not necessarily the same at each occurrence. We

will often use the notation A(E) for the integral of the function h over the
measurable set E.

DEFINITION. A couple (u,w) of positive functions on R satisfies AF (g)
if there exists K > 0 such that

b c
(xaceu) of o/ o))
lag fa9

for every a,b,c € R with a < b < ¢ and every € > 0.

It is clear that if #(t) = t¥, p > 1, then A} (g) is nothing but Af(g).
Our results are the following:

THEOREM 1. The following statements are equivalent:

(a) The couple (u,w) satisfies A (g).

(b) There exists C > 0 such that

w({z € R| M f(5) > \}) < %é@umw

for every A > 0 and every f € Lg(w).

THEOREM 2. Let w be a positive measurable function. Let pL be the
upper index of &. The following statements are equivalent:
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(a) There exists C > 0 such that

ooy fHiw < c{a(f)w
R R
for every f € La{w).
(b) There exists C > 0 such that

C
, +
(e € B 1M 1(6) > < gy 12l
for every A > 0 and every f € Lo(w).
(c) The function w satisfies A (g)-
(d) The function w satisfies AJ (g).

It is clear that the results of [K'T] and [G] are consequences of Theorems
1 and 2 in the one-dimensional case.

2. Proof of Theorem 1. (a)=(b). Let f be a measurable function
and A > 0. We may assume without loss of generality that f is a bounded
nonnegative function with compact support. Let Oy = {z € R | M} f(z)
> A}. Let {I;} be the sequence of the connected components of 0,. Each
I; is a bounded open interval {a;,b;) with

by bs
(1} )\Sgsifg for every = € Ij.
& T

Let I = (a,b) be one of the connected components of O, and consider
the following sequence: zg = a and, given Zx, Ti+1 is the real number such
that

Tr41 1 b
(2) | r9=51"rs

The sequence {u} is increasing with limit b and satisfies

b T
(3) S fo=4 S fg for every k.
Lp—1 Ujp

By (1) and (3) it follows that

b Tt
(4) A S g%4 S fg for every k.
Lp—1 Ty
Relation (4), monotonicity of ¢ and condition A, for @ give
! (Sz:H fg) for every k
< O —P| Zb—r .
(5) 1< 050y i
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By the Holder inequality, the right-hand side of {5) is smaller than

1
© Oy (g

Now, we are going to estimate the second norm which appears in {6).

By definition,
S W(————gx(mk’m"'*ﬂ))aw < 1}.
R Qs

gX(:z:k,mk+1)

fo(mk:‘rk >-1)||¢ gu o

) for all £ > 0.
¥.ew

Tk —1

GX(@y,mn11)
gw

:inf{a>0

W,ew

The existence of 81 > 1 such that 51%(s) < st(s) for every s > 0 and A7 (g)
give

Tl
IX(wy,2h41) < gl 9
(7) EW(——QW )aw <Brtet | giﬁ(am)

Ji:4 T

Lhpl K a1
<Brle S Qﬂb(%—l%) for every o > 0.
Tp—y L1
Let
L1 Tk 1
a=K § g@“l(a_l( S u) )
Lr—1 Lol

For this o, the last member of (7) equals
I A I
-~1mp—1 Th—1 Lr—1
K | vt (e u)ml))'

Since there exists 82 > 1 such that si(s) < F¥(s) for every s > 0 and
besides s < 371 {5)¥1(s), (8) is dominated by

Ti -1

where the last inequality holds if we take X > 8718, from the beginning.
Therefore, the definition of the Luxemburg norm gives

Tha+1 X -1
(10) H%ﬁ’ﬁ_ﬂ <K S g@wl(s—l( S u) )
ew Few Tp—1 Th-1

From (5), (6) and (10) we obtain

Smk+1 T

F=e (1))

Tp—1 Tpt

(11) 1< Ogs()\) (Kllfx(mk,mk+1 [E X
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for every e > (. Set € = (ka“ B(f)w) L. Then || f X (zp,2041) i#,20 = 1. From
(11) and As it now follows that

1 Sorrn @ (5o &(fHw ¢ T e(fu
12 1“@(/\)@(}"5;_19@ Cema)) e =
ie.,
Ty C Eh4
(13) mkS_l < TN wSk 2(f)w.

Summing up over k£ and then over I; we obtain (b).
(h)=(a). Let a,b,c € Rwitha < b < ¢, let ¢ > 0 and let f =
Xib.e)¥(g(ew) ). If © € (a,b), then
4 -1 ¢ —1
(14) Mo f(z) > i X(b,c)fﬁgg(&"w) )g S Xz,g’éb(?c(fw) ).
z ¥ ad

This means that

{s g (g(ew) ")
(15) (a,b)C{mER l M_jf(m)> b Szg }
From the weak type inequality (b) and (15) we obtain
C : L
. 3 S FT ) T atatemy Ty ) TP oEw) ™ ew

Inequality (16) and the existence of 81 > 1 such that s¢(s) < B18(s) for
every s > 0 give

b

C
07 Ve < o o e T D T av e o)
< | B(p(leu) " Yew,
b
Peu 1 gw(glew)™) §C B (glew)™")ew
1) Sig¢( s J o

%
which, upon taking into account ®((s)) < Csii(s), implies AL (g).

3. Proof of Theorem 2. The implication (a)#( ) is clear and (b)=>(c)
is already proved in Theorem 1.
(c)=>(d). We will need several lemmas.
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LEMMA 1. The following statements are equivalent:

(i} The operator M; is of restricted weak type (p, ) with respect to the
measure wdx.
(ii) There exists C > 0 such that

9(B) _ o wE) \"
gla,c) = " \w(a,b)
for every a,b,c € R with a < b < ¢ and every measurable set £ C (b,c).

Proof. (i)=(ii). Let a,b,c e R with a < b < candlet E C (b,c) bea
measurable set with positive measure. If z € (a,b), we have

(19)

xeg . 9(E)
oo ~ o)
This implies that (a,b) C { | M; xz(z) > g(E)/(2¢9(a,c))}. Then, by (i),

a,C P
w(a, b) < 0(9;(];,))) w(E),

M xole) > 2XES

as we wished to prove.

(ii)=(i). Let E be a measurable set. We may assume without loss of
generality that E is bounded and has positive measure. Let X > 0 and
O = {z | M7 x#(z) > A}. We have O, = J; I;, where the intervals I; are
bounded, pairwise disjoint and every I; = (a;,b;) satisfies )\Sij g< Si’ XEg
for every « € I;. Let I = (a,b) be one of the component intervals and define
the sequence {z1} by zo = ¢ and by letting =311 be the only real number
such that S::“ XEpg = Sb

Th+1

xeg- Then, for every k > 1,

P, X9 _ 4 xeg

Er—1

> A
b b -
Smk-—l g Sﬁ:k—1 g

From this and (ii) it follows that

3 w(zp—1,58) (g(E N (21, 1))
mkShl ws M (g(z_1,b))P

< gw(mk—l,mk) (Q(E N (mksfﬂk+1)))p

A G(Zr-1, Thy1)
C c
< yw(En(mk,fﬂkH)) IO msk XEW.

Summing up over k we obtain S w < (C/AP) S xpw, and since O} is the dis-
joint union of the intervals I;, the restricted weak type inequality is proved.
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LemMa 2. If w e Af(q), then w € AT (g) for every r > p.

Proof. First we prove that w € A}(g) implies (19). Let a,b,c € R
with a < b < cand let E C (b,¢) be measurable with positive measure. If
w(E)/w(a,b) > 1, there is nothing to prove. Suppose that w(E )/w(a by < 1.
The Hélder inequality ensures that g(E) < [|x5|le.cw] gxpe " 'w™ g cw for
every £ > 0. If we argue as in Theorem 1 to dominate ||gxge™lw ™| @ cu
(the argument nses Af(g)), we obtain

loxme ™ w™ lpew < Kgla, )& (e (w(a, b)) 7).

Then
-1(_ 1 (E)
g(E) (ew(E) 1:)(a,b))
9(a,c) ]

for every £ > (. From the definition of the upper index of & it follows that
for every s € (0,1) there exists t > 0 such that ¢~ (st)/S1(t) < 2s1/P.
If we take s = w(E)/w(a,b) and € = 1/tw(E), we obtain (19). Now, (19),
Lemma 1 and the interpolation theorem of Stein and Weiss (Theorem 3.15
of [SW]) give w € Af (g) for every r > p.

LEMMA 3. Let § > 0.and let s(t) = ((£))1°. Let W5 be the N-function
with density s and let &5 be the complementary N-function of ¥5. Then the
upper index of Ps is greater than the upper index of &.

Lemma 3 and its proof can be found in [KT].

LEMMA 4. Let w € AL(g) ond let v(z)
two positive numbers o« and 3 such that

(20) g({z € (a,b) | v(z) > BA}) > ag(a,b)

Jor every A > 0 and every interval (a,b) satisfying A SZ g<
€ {a,b).

=¥ (g(z)/w(z)). Then there exist

S: gu for every

Proof Let A > 0 and let (a,b) be an interval with the above property.
Let {zp} be the sequencc defined by letting zp = a and 2y be the real
number which satisfies S gv = 2 S“’W gv. This implies Sb L gv=4 Sz’““

Then

(21)  g({z € (a,b) {v(@) S BAN) = g({z € (mr-1,m) | v(z) < BA})
k=1

< gg({x € (@hmr, ax) | vie) < 4/3551,9 e gg(m),
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where

v{z) <48

e
faros 9

If we take 7 < 1/4 and r with 1 < r < p, then the definition of Ey, the fact
that the function g{z)/¢(v(z}) is essentially equal to w(z), the property
P(st) < Cs"P(t) (0 < s < 1, t > 0}, which implies ¢(st) < Cs" 1e(t)
(0< s<1,t>0),and AJ(g) give

o9 g(x) z
(22) g(Ek) < Sfﬂk—l dlw(z)) dm¢(4ﬁw)
9zp—1,201) = Szkwl g

The 1
fens @ (for o
< OWUs) =S 7 ¢(S 5 ) < CE(48) .

Smk—l

E, = {CE S (Q’Ik_l,mk)

Smk—1

From (22) and (21) we get

(23)  g({z € (a,b) | v(z) < BA}) < CK(4B) ' Y glwpe, @)

k=1
< 2CK(48)" " g(a,b).
Finally, from (23) it follows that
g({w € (2.8) | o(z) > BA}) > g(a,b) — 20K (46 g(a,b)
= (1 —2CK (48 H)g(a,b).
Taking 3 small enough, we are done.

LEMMA 5. Let w € AL {g). Then there exist 6 > 0 and C > 0 such that

@ o (2) =l (2) (4 (4 Eeen) )

for every interval (a,b) and, therefore,

(25) M7 (’4’6 (%)xta,b)) (@) <0 (M; (w (1%) X(a,b)> (a.)) M.

The proof of Lemma 5 can be done by arguing as in Lemma 5 of [MR].
The main tool in the proof is Lemma. 4.

LEMMA 6. Ifw € A} (g), then there ezists C > 0 such that

(26) 245 (e (£) ) o) < 00 (343 (X2 o)

for every bounded interval I and every xz € I.

icm
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Proof. Since w € A}{g), the function g¢(g/w) is locally integrable. Let
I'= {a,b) and = € I. There exists h > 0 with = -+ h € I such that

z+h

(27) 27 (0 (2) o) < 200 Sffl(z/ a2l

For this h there exists ¢ with 0 < ¢ < h such that QSng = Sz"'hg. The
number ¢ satisfies

Sj-H QW(Q/U’) + g
(28) NG < M, (Xfw(w)){m).
From (27) and (28} we obtain
g 452" gu(g/w)
(29) ]V‘r;- (XIT/J(‘L‘U“)) (z) < EWW
45" gu(g/w) 4 TE, avle/w)
S5, T8 pg
2 4 5517 gvig/w)
< 204 (s (2) ) o1 + e 200D S,
le., '
fors gv(g/w)
SR IO =

Finally, since w € A} (g), (30) gives

o0y (e L) o) < G¢(§f 2 < ov 35 (42 (a)),

which is the relationship we wished to prove.

LEMMA 7. If w € Af(g), then there emists § > 0 such that w € A;’fﬁ (g).

Proofl. Let § > 0 be the number associated with w by Lemma 5. Let
a,b,¢ € R with ¢ < b < ¢ and consider the finite sequence zp = b > =1 >
o> N 2 eyl = ¢ defined by

¢ g kc g .
o = s f“ﬁ e
} gwa(w) 2 §9¢a(w) fk=01,...,N
3

T g5 (%) < 2”59% (%)

a

and
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Then the definition of M, and the property $5(st) < Cs"Ps(t) (¢t > 0,
0 < s < 1andr > 1 smaller than the lower exponent of &;) give

b ¢
(32) Sw(m)qﬁg(wm) dz

2 o9
_ ’;mﬂw(m)gﬁ ( bm/’“(g/“’ )dm
_kzo o) (mg"“ e
< ’gw(m ( 9‘”5 (9/w) )dm
£ T soml (g
<czz—m~ T @) (m(w( )X(m,c))(az)) in.

Tl

If we now apply Lemma 5 {inequality {25)), Lemma 6 and the definition of
)5, then the last term of (32) is smaller than or equal to

(33) GZT’“ [ )%((M;('@b(%)xm,c))(m))w)dm

< Jsonl(e (22 )
- E gk :f )8 (;bs (M+ (W) (m))) de.

The inequality $5(¢5(s)) < C¥5(s), the boundedness of M} in Ly, (w) and
the property W5(s) < Cstps(s) allow us to dominate the last term of (33) by

(34) 622 b T wlz )%(M;; (3‘%&9) (m))dm

Tat1

sckgoz“’w § w(m)%(MJ(&%ifﬂ)(w))dx

Ti+1

Weighted inegqualities in Orlicz spaces 113

<CZZ ’”mi !I’g( )
<022~’°r § w(z) 1,05(%)

Thot1

N ‘ [
_ 022—kr+k+12_(k+1) S w(.’l:)?,[)& (%)9 < CSQT,LHS (%)

k=0 LE+1
By (32)-(34) we get

(3) Suj(w)éa (S—bﬁ’%(j/—w))dm < GSm (2)-

If we take into account in (35) that there exist C; > 0 and C5 > 0 such that
Crsps(s) < @5(3) < Cysds(s) for all s > 0, we obtain

L, (Tovslg/w)
§i9¢6( fa9 )SC’

and since the whole argument can be repeated replacing w by ew without
changing the constants, it is proved that w € A}fﬁ (9).

Now, the proof of (c)=>(d) is easy. By Lemma 7, if w € A}(g) there
exists & > 0 such that w € A}fﬁ (g). By Lemma 3, the upper index of &5, say
r71, is greater than the upper index of &, which is p~!. Finally, Lemma 2
ensures that w € A} (g) for every s > r and, since p > r, w € 4} (g).

(d)={a). If w € Af(g), there exists r with 1 < r < p such that w &
AF{g). This means that M} is of weak type (r,r) with respect to wdz. On
the other hand, M, ;' is of weak type (¢,q) with respect to wdr for every
g > p and, in particular, for every ¢ > s, where s is the upper exponent of
&. Then Theorem D gives (a).
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B? for parabolic measures
by
CAROLINE SWEEZY (Las Cruces, N.Mex.)

Abstract., If £2 is a Lip(1,1/2) domain, & a doubling measure on 9,42, 8/8t — Ly,
i = 0,1, are two parabolic-type operators with coefficients bounded and measurable,
2 < g < oo, then the associated measures wy, w1 have the property that wp € BY(u) implies
wy s abseolutely continuous with respect to wg whenever a certain Carleson-type condition
holds on the difference function of the coeflicients of L1 and Lg. Also wy & BY{p) implies
w1 € BY(u) whenever both measures are center-doubling measures. This is B. Dahlberg’s
result for elliptic measures extended to parabolic-type measures on time-varying domains.
The method of proof is that of Fefferman, Kenig and Pipher.

A result of B. Dahlberg on two elliptic measures satisfying a BY{u) con-
dition for p a doubling measure is extended to parabolic-type measures on
time-varying domains. The B?{u) condition for w on 42 is

dw ~ N\% .~ N\ C duw
209 dud,5 2 du.

G,
BEA@ e
Here C is independent of (@, s), £y is a boundary cube in 802, ¥.(Q, s) is
a cylinder of dimension r centered at (@, s}, and r is any real number with
0<r<ry.

Dahlberg [D] proved that if one elliptic measure wp is in BY(p) and
if a certain Carleson-type condition holds for the difference function of
the coefficients of two elliptic operators Ly, Ly on a domain D with re-
spect to a doubling measure ¢ on 9D, then the second measure w; is also
in B(p).

The main result of this paper ig to obtain the preservation of the B?
condition for parabolic-type operators on Lip(1,1/2) domaing in R**1. This
result has been proved independently by Professor Kaj Nystrom [N

1991 Mathematics Subject Classification: Primary 35K20.

Key words and phrases: parabolic-type measures, Lip(1, 1/2) domain, good-A inegual-
ities.
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