icm

STUDIA MATHEMATICA 131 (2) (1998)

New examples of holomorphic foliations without algebraic leaves
by
HENRYK ZOLADEK ({Warszawa)

Abstract. We present a series of polynomial planar vector fields without algebraic
invariant curves in CP2.

1. Introduction. In {1} Jouanolou has shown that the holomorphic fo-
liation in CP? defined in the affine plane by the vector field

(1) =1- myss y = ms - ys-i-l, § 2 2:

does not have algebraic leaves. This implies that the set of foliations without
algebraic leaves is dense in the set of all foliations with fixed degree. Lins-
Neto in [2] proved that this set is also open. (The degree of a foliation is
defined as the number of its tangency points with a generic line.)

An important problem in the theory of analytic foliations is the problem
of existence of strange limit sets, i.e. not containing algebraic leaves and
singular points. There is a need for other explicit examples of algebraic
foliations without algebraic leaves. The author thanks Prof. R. Moussu for
asking this question.

In [3] the author presented his own proof of Jouanoclou’s theorem. (There
are many of them in fact.} It turns out that the method of [3] works well
for the following series of polynomial vector fields:

bﬁ-lyc, y - fL‘d _ xbyc-{-l, a< d < b+ c.
THEOREM 1. If the integer ezponents a,b,c,d satisfy the assumptions

A 1-A5 stated below, then the system (2) does not have invariant algebraic
curves in CP2.

(2) t=y*—=x

The systems (2) are very similar to the system (1) and probably will not
be much more useful in the problem of limit sets. Anyway they are new.

Note also that the set of systems (2) is discrete in the space of all systems
modulo the affine changes of variables and time. It would be very interest-
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ing to find an explicit l-parameter family of polynomial systems without
algebraic leaves.

The remaining part of the work is devoted to the proof of Theorem 1
which, as we have said, follows the proof from [3].

2. Symmetries. The Jouanolou system (1) admits a very large group
of symmetries:

(i) the cyclic permutations of homogeneous coordinates, Z/3Z;
(ii) the complex conjugation ¢ : (z,y) — (%,7), Z/2Z;
(iit) the cyclic group Z/NZ, N = s? + s+ 1, with generator o : (z,y) —
(&2, Cvy), (v =m0
For the system (2) the symmetry (i) breaks down (it was not used in [3]
in fact), the conjugation (ii) holds and the cyclic symmetry (iii} is replaced
by the eyclic group of order

N=(b+1)c+1) = (a—c)d—b).

The transformations from this group are of the form 0% : (z,y) — (pz, vy),
where p®t! = v%¢ and p?7% = vT!. One can see that u, v are roots of
unity of order N.

We also have N=a(b+c—d) +e(d—a)+b+c+1>0.

3. Phase portrait

3.1. There are N singular points Py = (1,1) € R? and B, = o'Fp, i =
1,...,N =1, in C? with the same phase portrait near them. The character-
istic equation for the eigenvalues of Py is

At (bte+ 22+ N=0.
Our first assumption is that its discriminant is negative:
(A.1) (b+c+2)> —4N <.

In that case, the ratio of the eigenvalues at the point Py is non-real.
Because the symmetries ¢! transform the phase portrait near Py to the
phase portraits near F;, alsc the ratios of the eigenvalues at F; are the same
and non-real. One also sees that the point Py is a stable focus. The points
FP; are, in a sense, “complex” foci.

It is known that a singular point of the “complex” focus type has only
two invariant local analytic curves passing through it (if £ = Mz, ¥ = Jay,
then the phase curves are 2 = 0, y = 0 and the non-analytic curves y =
Cd2/21),

Therefore, through each P; only two invariant local analytic curves pass.
Moreover, they intersect transversally.
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32.If a > 0 and d > 0, then the point Q@ = (0,0) is also singular.
The principal part of the vector field near  is hamiltonian with Hamilton
function H = Ayt — 7724t and with separatrices H = 0. This picture
also holds for the whole system.

One can see this using the blowing-up associated with the quasi-homoge-
neous filtration in the space of germs of vector fields: d(x) = ~d(8,) = a+1,
d(y) = —d(8y) = d+1. Then the hamiltonian part has degree ad — 1 and the
terms z°T1y°8, and xby°t18, have greater degree b(a + 1} + c(d + 1) (the
difference is V). In this sense the system (2) is a small perturbation of the
hamiltonian system and has also analytic separatrices H + ... = 0, where
the dots mean terms of higher quasi-homogeneous degree.

We assume that there is exactly one local analytic irreducible invariant
curve I'p passing through Q:

(A.2) {(e+1,d+1)=1
(the greatest common divisor is 1).

The curve I'p has a 1-dimensional real part.

3.3. The system (2) is chosen in such a way that the line at infinity is
not invariant. The Jouanolou system does not have singularities at infinity
but the system (2) can have some.

In the chart z = 1/z, u = y/z we have the system

(3) =t — zb+c—a—|—1ua’ 0= zb+c—d _ zb-}—c—aua-i-l

with singular point R: z = u = 0, existing for d < b+ ¢ (recall that a < d).
Again the principal part of the system (3) is hamiltonian and we assume
that only one irreducible analytic invariant curve I'y passes through R:
{A.3) (c+1,b+c—d+1)=1.
In the chart r = 1/y, v = z/y we get
P b — pbte—dilyd

0= ,rb+|:ma = Tb+c~—d,ud+1

with singular point S : r = v = 0, existing for a < b + ¢. We assume that
only one irreducible analytic invariant curve I's passes through S:
(A.4) (b+Lb+c—a+1)=1

‘We see that all the other trajectories of the system (2) meeting the line
at infinity z = 0 (or r = 0) cross it transversally.

3.4. Because the divergence of the vector field {2)
(4) div = —{b + ¢+ 2)aby°

is negative for z > 0,y > 0, the whole quadrant A ={z > 0,y > 0} C R* is
attracted by the focus Fy. (Otherwise, by the Poincaré-Bendixson theorem
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there should exist a limit cycle v surrounding the stable focus Fo; by the
Dulac criterion {_ div < 0 it should be also stable.)

Because the curves [, I'r, ['s have some real parts in A, they cannot
be algebraic (spirals near Fq).

Notice also that if the numbers b and ¢ are both even, then div <0 (see
(4)) and the whole region R?\ I'p\ I'r \ I'y is attracted by Pp and/or other
real focus F;.

We can summarize the results of this section as follows.

LEMMA 3.5. If the assumptions (A.1})-(A.4) hold, then:

(i) any snvariant algebraic curve of the system (2) has singularities of
the simplest kind, the double points;
(ii) 4t intersects the line at infinity transversally;
(it} any two invariant algebraic curves intersect transversally and in the
finite part of CP%;
(iv) there are no triple intersections of invariant algebraic curves.

The statements (i}, (iii) and (iv) follow from the fact that singular points
and intersection peints of invariant algebraic curves are also singular points
of the holomorphic vector field. In particular, local branches of the invariant
curves form analytic separatrices of the singular points. By 3.2-3.4 these
singular points are not among @, R, S. They can be among F;’s and we
apply 3.1.

(i) follows from 3.2.

4. Vector fields with given invariant algebraic curves. In [3] (The-
orem 3, statement B) the following result was proved.

LEMMA 4.1. Assume that irreducible algebraic curves Cq, ..., C of de-
grees k1, ..., k. respectively satisfy the conditions (i)—(iv) from Lemma 3.5.
Let K{z,y) be a polynomial of degree k vanishing at all the double points of
these curves. If a polynomial vector field V of degree n < (3 ki) —k —1 is
tangent to oll these curves, then V =0.

REMARK. If we know that the curves are smooth, then the assertion of
this lemma holds when n < >k — 1.

We shall apply this result to the vector fleld (2) using its first component
as the function K. We shall strive to prove the inequality

(5) 2b+et+1) <y k-1

(under the assumption that some invariant algebraic curves exist).

5. Proof of the inequality (5). Assume that there is an invariant ir-
reducible algebraic curve Cp. Then the curves 6°Cy, i1 =1,...,N — 1 (see
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Section 2), are also invariant. (It may happen that 6'Co = Cp.) The curve
C = |Jo'Cy can be decomposed into irreducible components C4,...,C.
with the properties (i)-(iv). The sum of their degrees is the degree of C
and is equal to the number of intersection points of ¢ with the line at
infinity.

This number is > N:

If ag = (zo : 4o : 0) € Cp and c'ag = o'ag, i # 7, then either ap = (1 :
0:0)=Rorag=(0:1:0)=25. By 3.3 no invariant algebraic curve can
pass through R and S.

Our last assumption

(A.5) 2b+c+1) < N1

(equivalent to the inequality (5)) allows us to complete the proof of Theo-
rem 1.

REMARK. One can easily sec that the assumptions (A.1)-(A.5) are such
that there is an infinite series of systems different from {1) which obey them.

6. Concluding remarks. Following our proof more carefully one can
extend the list of systems without invariant algebraic curves.

In Section 3 (points 3.2 and 3.3) we assume that at most one irreducible
analytic separatrix can pass through any of the points @, R or 5. In fact,
we can allow two {but not more) invariant analytic curves passing through
them. Then we have (¢ +1,d 4+ 1) = 2, ete.

We only need to ensure that, if these curves are singular and/or intersect
non-transversally (i.e. some of the properties from Lemma 3.5 fail), then
their real parts go to some real foci Py and P; = ¢*Fy (i.e. cannot be
algebraic). For this an additional condition must be fulfilled: af least two
specific points from {P;} Lie in R2.

For example, if near @ we have H = 2% — 335 and Py = (1,1), P, =
{1, —1) are singular foci, then the two cusp curves z2/2%3°/v6+... end
in spirals around these foci.

‘We do not present the precise formulas.

Also we have not used the complex conjugation g. Note that in Section
5 the curves pctCy = o?Cp are also invariant. So, the curve C = | Jo*Cp U
| eo*Cp can have > 2N intersection points with the line at infinity.

However, this holds when N is odd and we know that C has no real
intersections with the line at infinity.

(We can represent ag = (2o : 1 : 0) as the complex number zy # 0.
We have o(ag) = {z; : 1: 0), z; = n'xp, where 5 is a root of unity. If
{Zo0,...,En—1} N {z0,...,zn-1} # @ and N is odd, then these two sets
coincide and contain a real point.)
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The absence of real points of C at infinity can be ensured when almost
the whole B2 is attracted to the real foci F;, i.e. when b and ¢ are even (we
use the formula (4) for divergence).
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Asymptotic stability in the Schauder fixed point theorem
by
MAU-HSIANG SHIH and JINN-WEN WU (Chung-Li)

Abstract. This note presents a theorem which gives an answer to a conjecture which
appears in the book Matriz Norms and Their Applications by Belitskil and Lyubich and
concerns the global asymptotic stability in the Schauder fixed point theorem. This is
followed by a theorem which states a necessary and sufficient condition for the iterates of
a holomorphic function with a fixed point to converge pointwise to this point.

The object of this note is to settle a conjecture raised by Belitskii and
Lyubich in 1984 concerning the global asymptotic stability in the Schauder
fixed point theorem.

1. Conjecture of Belitskii and Lyubich. Let E be a (real or com-
plex) Banach space with a non-empty bounded convex open subset D, and
let f: D — D (D stands for the closure of D) be a compact continuous
map. The celebrated Schauder fixed point theorem {13], which is one of the
fundamental theorems in nonlinear functional analysis, asserts that there
exists a point & € D such that f(&) = Z. For z € E, denote by f'(z) the
Fréchet derivative of f evaluated at x. For a bounded linear operator A on
E, r(A) stands for the spectral radius of A. Under the assumption that f
is continuously Fréchet differentiable, Belitskil and Lyubich ([1], p. 41) pro-
posed the following conjecture in 1984 concerning the asymptotic behaviour
of the fixed point in the Schauder fixed point theorem.

CONJECTURE OF BELITSKIT AND LyurIcH. Let F be a (real or complex)
Banach space with an open subset (2 and f : {2 — E be compact and continu-
ously Fréchet differentiable in 2. Suppose D is o non-empty bounded convez
open subset of E such that f(D) ¢ D C 2 and Supmeﬁr(ff(:r)) < 1. Then
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