

This completes the proof.

Neither the sufficient condition nor the necessary condition are valid in the real case, as the following one-dimensional examples show, respectively.

EXAMPLE 1.
$$f(x) = 4x^3(1-x^2), |x| < 1.$$

EXAMPLE 2.
$$f(x) = x - x^3$$
, $|x| < 1$.

Let us remark that the analogue of Theorem 2 for differential equations was earlier proved by Yu. I. Lyubich [11] and the same method of proof is applicable to iterations. The proof given in Theorem 2 is somewhat different and, formally, Theorem 2 is an infinite-dimensional version.

References

- G. R. Belitskii and Yu. I. Lyubich, Matrix Norms and Their Applications, translated from the Russian by A. Iacob, Birkhäuser, 1988.
- [2] M. S. Berger, Nonlinearity and Functional Analysis, Academic Press, 1977.
- [3] J. Dugundji, Topology, Allyn and Bacon, 1969.
- [4] H. Federer, Geometric Measure Theory, Springer, Berlin, 1969.
- [5] T. Franzoni and E. Vesentini, Holomorphic Maps and Invariant Distances, North-Holland, 1980.
- [6] L. A. Harris, Schwarz's lemma in normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 1014-1017.
- [7] R. B. Holmes, A formula for the spectral radius of an operator, Amer. Math. Monthly 75 (1968), 163-166.
- [8] R. B. Kellogg, Uniqueness in the Schauder fixed point theorem, Proc. Amer. Math. Soc. 60 (1976), 207-210.
- [9] V. Khatskevich and D. Shoiykhet, Differentiable Operators and Nonlinear Equations, Oper. Theory Adv. Appl. 66, Birkhäuser, 1994.
- [10] J. Kitchen, Concerning the convergence of iterates to fixed points, Studia Math. 27 (1966), 247-249.
- [11] Yu. I. Lyubich, A remark on the stability of complex dynamical systems, Izv. Vyssh. Uchebn. Zaved. Mat. 10 (1983), 49-50 (in Russian); English transl.: Soviet Math. (Iz. VUZ) 10 (1983), 62-64.
- [12] W. Rudin, Function Theory in the Unit Ball of \mathbb{C}^n , Springer, 1980.
- [13] J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math. 2 (1930), 171-180.
- [14] J. T. Schwartz, Nonlinear Functional Analysis, Courant Inst. Math. Sci., New York Univ., 1964.

Department of Mathematics Chung Yuan University Chung-Li, Taiwan 320 E-mail: mhshih@poincare.cycu.edu.tw

-mail: mnsnin@poincare.cycu.edu.tw

Received April 16, 1997 Revised version April 4, 1998 (3902)

STUDIA MATHEMATICA 131 (2) (1998)

The uniform zero-two law for positive operators in Banach lattices

by

MICHAEL LIN (Beer-Sheva)

Dedicated to Shaul Foguel upon his retirement

Abstract. Let T be a positive power-bounded operator on a Banach lattice. We prove: (i) If $\inf_n \|T^n(I-T)\| < 2$, then there is a $k \ge 1$ such that $\lim_{n \to \infty} \|T^n(I-T^k)\| = 0$. (ii) $\lim_{n \to \infty} \|T^n(I-T)\| = 0$ if (and only if) $\inf_n \|T^n(I-T)\| < \sqrt{3}$.

In their ground breaking paper [OSu], Ornstein and Sucheston proved that if T is a positive contraction of L_1 , then $\sup_{\|f\|_1 \le 1} \lim_n \|T^n(I-T)f\|$ is 0 or 2, and coined the term zero-two law. Using their method, Foguel [F] proved that if T is a positive contraction of L_1 , then $\lim_n \|T^n(I-T)\|$ is 0 or 2 (the uniform zero-two law). This easily implies that if T is a positive contraction of C(K) with K compact Hausdorff, then $\lim_n \|T^n(I-T)\|$ is 0 or 2.

Using the regular norm (the norm of the modulus), Zaharopol $[Z_1]$ restated [F] as

(*)
$$\inf_{n} ||T^{n+1} - T^{n}||_{r} < 2 \Rightarrow \lim_{n} ||T^{n+1} - T^{n}|| = 0.$$

He proved (*) for positive contractions of L_p spaces $(1 , <math>p \neq 2$. Katznelson and Tzafriri [KT] removed the restriction $p \neq 2$ of [Z₁], and proved (*) for a larger class of Banach lattices. Finally, Schaefer [S₂] proved (*) for a positive contraction T in any Banach lattice.

The reverse implication in (*) is false: a positive contraction in L_p can satisfy $\lim_n \|T^{n+1} - T^n\| = 0$ and $\inf_n \|T^{n+1} - T^n\|_r = 2$ (see $[W_2]$). For certain Banach lattices, a stronger version of (*), in which the conclusion is $\lim_n \|T^{n+1} - T^n\|_r = 0$, was later proved in $[W_2]$, $[Z_2]$, [Sc].

In this note we prove that for a power-bounded positive operator T in a Banach lattice, $\inf_n ||T^n(I-T)|| < \sqrt{3}$ implies $\lim_{n\to\infty} ||T^n(I-T)|| = 0$. For contractions in L_p this follows from $[W_1]$ (see also [M]).

¹⁹⁹¹ Mathematics Subject Classification: Primary 47A35.

Recall that for T power-bounded, the spectral radius r(T) is at most 1. It was known $[S_1]$ that the asymptotic behaviour of the powers of a positive operator with r(T)=1 depends upon the study of $\sigma(T)\cap \Gamma$, where $\Gamma=\{\lambda\in\mathbb{C}:|\lambda|=1\}$. For their result, Katznelson and Tzafriri proved the following general theorem, which is a major contribution to operator ergodic theory. (See [AR] for its equivalence to an old result of Gelfand. The survey [Ze] contains several generalizations of Gelfand's result, and has a comprehensive bibliography.)

Theorem A. Let T be a power-bounded operator on a complex Banach space. Then

$$\lim_{n\to\infty}\|T^n(I-T)\|=0\Leftrightarrow\sigma(T)\cap\{\lambda\in\mathbb{C}:|\lambda|=1\}\subset\{1\}.$$

PROPOSITION 1. Let T be a positive power-bounded operator on a Banach lattice. If $\sigma(T) \cap \Gamma \neq \Gamma$, then it is a finite set, and there is $k \geq 1$ such that $\sigma(T^k) \cap \Gamma \subset \{1\}$.

Proof. If r(T) < 1, the result is obvious, with k = 1. Assume r(T) = 1. Since T is positive, the peripheral spectrum $\sigma(T) \cap \Gamma$ is cyclic $[S_1, p. 327]$ (i.e., if $\alpha \in \sigma(T)$ with $|\alpha| = 1$, then all powers α^j are in $\sigma(T)$). Since the peripheral spectrum is not Γ , it does not contain any irrational rotation, so any spectral point on the unit circle is a root of unity. Let $1 \neq \alpha \in \sigma(T) \cap \Gamma$, and let d be the smallest positive integer with $\alpha^d = 1$. Since $\sigma(T) \cap \Gamma$ is cyclic, it contains the group of all dth roots of unity. Since the peripheral spectrum is closed, and is not all of Γ , it consists of only finitely many such groups, of orders d_1, \ldots, d_m . We now take $k = \prod_{j=1}^m d_j$, and use the spectral mapping theorem. \blacksquare

PROPOSITION 2. Let T be a positive power-bounded operator on a Banach lattice. Then $\sigma(T) \cap \Gamma \neq \Gamma$ if and only if there is $k \geq 1$ such that

$$\lim_{n\to\infty} ||T^n(I-T^k)|| = 0.$$

Proof. (i) If $\sigma(T) \cap \Gamma \neq \Gamma$, then by Proposition 1 there is $k \geq 1$ such that $\sigma(T^k) \cap \Gamma \subset \{1\}$. By Theorem A, $\lim_{n\to\infty} ||T^{kn}(I-T^k)|| = 0$, which proves the claim.

(ii) If $\lim_{n\to\infty} ||T^n(I-T^k)|| = 0$, then $\sigma(T^k) \cap \Gamma \subset \{1\}$, so by the spectral mapping theorem $\sigma(T) \cap \Gamma \neq \Gamma$.

THEOREM 3. Let T be a positive power-bounded operator on a Banach lattice. If $\inf_n ||T^n(I-T)|| < 2$, then there is $k \ge 1$ such that

$$\lim_{n\to\infty} \|T^n(I-T^k)\| = 0.$$

Proof. By the spectral mapping theorem, for some n we have

$$\sup\{|\lambda^{n}| \cdot |1 - \lambda| : \lambda \in \sigma(T)\} = r(T^{n}(I - T)) \le ||T^{n}(I - T)|| < 2.$$

Hence -1 is not in $\sigma(T)$. We can now apply Proposition 2.

REMARKS. 1. If T is a contraction, then we have $\inf_n ||T^n(I-T)|| = \lim_n ||T^n(I-T)||$.

- 2. The simple example of the contraction T(a,b)=(b,a) on \mathbb{R}^2 with the Euclidean norm shows that the condition $\inf_n \|T^n(I-T)\| < 2$ is not necessary.
- 3. The example in $[W_1]$ of a positive contraction on L_2 satisfying $\lim_n ||T^n(I-T)|| = \sqrt{3}$ shows that k in the theorem may be different from 1.

COROLLARY 4. Let T be a positive power-bounded operator on a Banach lattice. Then the following are equivalent:

- (i) $\Gamma \subset \sigma(T)$.
- (ii) $||T^n(I-T^k)|| \ge 2$ for every $n, k \ge 1$.

Proof. (i) \Rightarrow (ii). Assume (ii) fails for k' and some n. By the proof of the theorem, -1 is not in $\sigma(T^{k'})$. By the spectral mapping theorem, (i) fails—a contradiction.

 $(ii) \Rightarrow (i)$ by Proposition 2.

REMARKS. 1. If T is a contraction, then (ii) becomes $||T^n(I-T^k)||=2$ for every $n,k\geq 1$.

2. See [Sc, Corollary 5] for a similar relation between the order spectrum and the regular norm.

THEOREM 5. Let T be a positive power-bounded operator on a Banach lattice. Then the following are equivalent:

- (i) $\inf_n ||T^n(I-T)|| < \sqrt{3}$.
- (ii) $\lim_{n\to\infty} ||T^n(I-T)|| = 0.$
- (iii) $\sigma(T) \cap \Gamma \subset \{1\}.$

Proof. The equivalence of (ii) and (iii) is Theorem A [KT], and obviously (ii) \Rightarrow (i).

(i) \Rightarrow (ii). We have to prove the implication only for r(T)=1. The proof of the previous corollary shows $\sigma(T) \cap \Gamma \neq \Gamma$. The proof of Proposition 1 shows that the peripheral spectrum is the union of finitely many groups of roots of unity. Let $\alpha \in \sigma(T) \cap \Gamma$ be a primitive root of unity, of order d, so $\alpha^j \in \sigma(T)$ for $0 \leq j < d$. Since for any $\lambda \in \sigma(T) \cap \Gamma$ we have

$$|1 - \lambda| = |\lambda^n| \cdot |1 - \lambda| \le r(T^n(I - T)) \le ||T^n(I - T)||,$$

condition (i) implies that $|1-\alpha^j|<\sqrt{3}$ for $0\leq j< d$, so the arc $\{z\in\Gamma:2\pi/3\leq\arg z\leq 4\pi/3\}$ does not contain any α^j . Hence d=1, and (iii) holds. \blacksquare

REMARKS. 1. For any Banach lattice E, Theorem 5 yields $c_E \geq \sqrt{3}$, where

$$c_E = \sup\{c : \lim ||T^n(I-T)|| < c \text{ for a positive contraction } T$$

$$\Rightarrow \lim ||T^n(I-T)|| = 0\}.$$

In fact, c_E is a maximum, and $c_E \leq 2$. Since $c_{L_2} = \sqrt{3}$ (see [W₁]), $\sqrt{3}$ is the best bound.

- 2. For E an abstract L_p space $(1 \le p < \infty)$, $c_E \ge \sqrt{3}$ was proved by Martinez [M] as an application of a certain representation he obtained for such spaces. However, for $E = L_p$ with $1 , <math>c_E > \sqrt{3}$ for $p \ne 2$ is already proved in [W₁], with c_E computed in [B].
- 3. The proof in [M] uses part (ii) of the following corollary, which is proved there by an argument similar to ours in Theorem 5, and an application of Gelfand's theorem.

COROLLARY 6. Let T be a positive power-bounded operator on a Banach lattice.

- (i) If $r(I-T) < \sqrt{3}$, then all the equivalent conditions of Theorem 5 hold.
 - (ii) If T is an isometry, then $r(I-T) < \sqrt{3}$ if and only if T = I.

Proof. (i) implies that $-1 \notin \sigma(T)$, so the result follows from the proof of (i) \Rightarrow (iii).

(ii) If $r(I-T) < \sqrt{3}$, we have $||T^n(I-T)|| \to 0$ by (i), so when T is an isometry, T = I.

REMARKS. 1. The condition $r(I-T)<\sqrt{3}$ is not necessary for the conditions of Theorem 5 to hold: Let S be the operator induced on $L_p(\Gamma)$ (with Lebesgue measure) by an irrational rotation, and $T=\varepsilon I+(1-\varepsilon)S$ for $0<\varepsilon<1$. By [FWe], $\lim_n\|T^n(I-T)\|=0$. Since $\sigma(S)=\Gamma$, we have $r(I-T)=(1-\varepsilon)r(I-S)=2(1-\varepsilon)$.

2. The condition r(I-T) < 2, which implies the equivalent conditions of Proposition 2, is necessary, but not sufficient, for the conditions of Theorem 5 to hold.

PROBLEM. Is there a Banach lattice E, different from L_2 , with $c_E = \sqrt{3}$?

Acknowledgments. The author is grateful for the hospitality of Northwestern University, where part of this research was carried out.

References

[AR] G. R. Allan and T. J. Ransford, Power-dominated elements in Banach algebras, Studia Math. 94 (1989), 63-79.

- [B] D. Berend, A note on the L^p analogue of the "zero-two" law, Proc. Amer. Math. Soc. 114 (1992), 95-97.
- [F] S. R. Foguel, More on the "zero-two" law, ibid. 61 (1976), 262-264.
- [FWe] S. R. Foguel and B. Weiss, On convex power series of a conservative Markov operator, ibid. 38 (1973), 325-330.
- [KT] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 312-328.
- [M] J. Martinez, A representation lattice isomorphism for the peripheral spectrum, Proc. Amer. Math. Soc. 119 (1993), 489-492.
- [OSu] D. Ornstein and L. Sucheston, An operator theorem on L¹ convergence to zero with applications to Markov kernels, Ann. Math. Statist. 41 (1970), 1631-1639.
- [S1] H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin, 1974.
- [S₂] —, The zero-two law for positive contractions is valid in all Banach lattices, Israel J. Math. 59 (1987), 241-244.
- [Sc] A. Schep, A remark on the uniform zero-two law for positive contractions, Arch. Math. (Basel) 53 (1989), 493-496.
- [W1] R. Wittmann, Analogues of the zero-two law for positive contractions in L^p and C(X), Israel J. Math. 59 (1987), 8-28.
- [W₂] —, Ein starkes "Null-Zwei"-Gesetz in L^p, Math. Z. 197 (1988), 223-229.
 - [Z₁] R. Zaharopol, The modulus of a regular operator and the "zero-two" law in L^p -spaces (1 , J. Funct. Anal. 68 (1986), 300-312.
- [Z₂] —, Uniform monotonicity of norms and the strong "zero-two" law, J. Math. Anal. Appl. 139 (1989), 217-225.
- [Ze] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 369-385.

Department of Mathematics and Computer Science

Ben-Gurion University of the Negev

Beer-Sheva, Israel

E-mail: lin@math.bgu.ac.il

Received August 27, 1997 (3947)