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Multiplier transformations on H? spaces

by
DANING CIHEN aud DASHAN FPAN (Milwaukee, Wisc.)

Abstract. The authors obtain some multiplier theorems on H® spaces analogous to
the classical LV muitiplier theorems of de Leeuw. The main result is that a multiplier

operator (TF)" (@) = Mz () (A € C(R™)) is bounded on HP(R™) if and only if the
restriction {A(em) }mea 18 an HP(T") bounded multiplier uniformly for & > 0, where A is
the Integer lattice in B™.

1. Introduction. Congider the n-dimensional Euclidean space RB™; let
S(R™) be the space of all Schwartz test functions on R” and A be any
function on IR™. fh.r: multiplier operator T associated with A is defined by
(T'HINE) = AE)f(€) for all f € S(R™). Let X, Y be two function spaces on
R with normns || || x and || |y, respectively. If S(R"} is dense in both X
and Y, and if there exists a constant C such that

1Tflly < Clfllx

uniformly for f € S(R™), then we say that 7' is a bounded operator from X
to Y with finite norm
Tl = sap [Tflly <C.
17l %=1
We denote this by writing 7" € (X, Y).
The n-torus T can be identified with K™ /A, where A is the unit lattice
which is the additive group of points in R* having integral coordinates. The
multiplier operator Te on T associated with a function A on R” is defined by

Tefla) ~ 37 Metn)ape?mim

meA

1991 Mathematics Subject Classificotion: 42B15, 42B30.

Bditoriel note: The first version of this paper, signed only by the second author, was
submitted on December 17, 1991, Ii already contained the preof of Theorem 5.3 which
covars a result pablishod in Studia Math. 108 (1994}, 201-299. The editors deeply regret
for the unusually long publication process.
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for all f € S(T™), where

Z ameEW'Lm-m

meEA

is the Fourier series of f

Suppose that (X, | |x) and (Y.} {y) are two function spaces on T"
such that the Schwartz space S(T™) is dense in both X and ¥'. We write
T. € (X,Y) if T. is a bounded operator from X to ¥

IT2Fily < CIFllx

for all fe S(T") with a constant C independent of f.

In [8], de Leeuw proved that if p > 1 and if A is continuous on R™, then
T is bounded in LP(R"?) if and only if T. is uniformly bounded in L?(T") for
£ > 0. Kenig and Thomas [6] extended this result to the related maximal
operators. Auscher and Carro [1] studied a discrete version of de Leeuw’s
theorem on relations hetween multipliers on R™, T%, and Z". But all their
considerations are in I? spaces for p > 1. However, in the last twenty years,
HP spaces have played an important role in harmonic analysis. Therefore an
interesting and natural question is whether de Leeuw’s theorem is still true
in Hardy space HP, particularly when 0 < p < 1. This paper will give an
affirmative answer to this question. Our proofs will be based on the theory
of S-functions, and the atomic decomposition of H? spaces.

2. Basic notation. Tn this section we introduce some basic definitions
and notation, most of which can be found in Stein and Weiss’ book [9]. Let
A be the unit lattice. The Poisson kernel Py(z) on R™ is defined by

- L (PR e
Py(z) = Ch (2 + |z]2)(ntD)/2” Cr = F( ) )/77 : .
The Poisson kernel on T™ is defined by
Py(m) = Y e ?rimltgimimea,
meA
By the Poisson summation formula we easily get
Piz) =" Piz+m).
me&d

Using these two Poisson kernels, we can now give the definitions of the Hardy
spaces H? (p > 0) on both R* and T":

HPR™) ={f e S'®R™) : [ flar@n) = Hf;lioﬂpt * ||| rgrey < 00},

HP(T™) = {}_E ST : “ﬂ[Hp(qrn) = Higlu) |13t * ﬂ | Loy < 00}

icm
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A few remarks arc in order concerning these definitions. First of all, || || &» is
not a norm in general if p < 1. But || || » can be used to introduce a topology
in H?, and with this topology H? is a complete metric space. Secondly, since
the Hardy-Littlewood maximal function is a bounded operator from L? to
7 if 1 < p < oo, and since it majorizes the maximal functions

sup [P+ fI and  sup | B, # ﬂ,

>0 t3x4]
we can casily see that H? = I} if 1 < p < oc. For this reason in the sequel we
restrict our attention to 0 < p < 1. Thirdly, many different equivalent def-
initions of these HP spaces have been introduced and studied. Particularly,
in their colebrated 1972 paper [4], Fefferman and Stein gave an S-function
characterization of AP{R"™):

2
(1) [y & § { |1 =vRm)Pe dydt}p/ d
B foe-y| <E
where V = (8/8t,8/0xy,0/8%y,...,0/0y,) is the gradient.
In [3], we proved an analogue of Fefferman and Stein’s result on semi-
simple comupact Lie groups. By analogous arguments, for the Abelian com-
pact Lic group T, we have

7 - L p/2
@ e~ §{ T VR@PE ) de,

o Ve
jo—pj <l
. ~ ~ p/2
(3) m_\{ | FxVP()e T dydt) da
Q@ ice]

| —y| <t <o

Here, Q = {z € R* : —~1/2 < x; < 1/2, j = 1,...,n} is the fundamental
cube on which

i~

‘ Fl) d = ‘ () die
. b

for all functions f on T%.

Finally, throughout this paper, the letter “C™ will denote (possibly dif-
ferent) constants that are independent of the esgential variables in the ar-
gument; this independence will be elear from the context.

3. The “if part” of the main theorem. In this section, using the
S-function characterization (1) (3) of HP spaces, we prove T' € (H?(R™),
HP(R™ ) provided T, & (HP(T™), H7(T")) uniformly for & > 0. Moreover,
some weak type theorcms related to this theorem will be mentioned.

The main result in this section is the following theorem:
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THEOREM 3.1. Suppose that 0 < p < 1, and that A is a continuous
funetion on R™ such that for every e > 0, there exists an operator

€ (HP(T™), B7(T"))
given by
f J’[f Z A(Em 21rim-:u_
mEA

Furthermore, suppose that the norms ||T.| are uniformly bounded. Then X is
o maultiplier of type (HP(R™), HP{R™)) and the associated mulliplier operator
T satisfies

|7l < C sup | T2
e>0
Proof We first show that
(4) |A(em)| < sup || Tz
g0
In fact, consider the functions fm(r) = g2 ;e A, Then ﬁfm(w) =
Mem)e? ™2 and
”T fm”Hp =) P‘(Em)l “fm”Hp ") < ”T i HmeHp o)
But it is easy to check that Hfmnmmn) =1 for all m € A. Thus
Mem)| < T < S‘;Igilill
foralle > 0 and m € A.
Since the set {em : € > 0, m € A} is dense in R™ it follows that

X is bounded. Therefore, when f &€ L2(R™), Af also belongs to L*(R™);

hence, /\f is the Fourier transform of a square integrable function. In par-
ticular, this allows us to define T'f, for f € D(R®) = {f € S(R") :

J has compact support}, to be the function whose Fourier transform is Af.
Now it is enough to show that

(5} ITfllzr@ny < Clf e e

In order to do so, define fs for e > 0 to be the dilation and periodized

version of f, that is,
f@y=em 3 1220,

meEA

for all f € D(R™).

Then by the Poisson summation formula, we obtain

ﬁ(m) — E f(em)EZWim.m.

meA
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From [9], we know that these T, and f; satisfy

(6) lim E"Tgfg(sm) Tf(x).

E“—}

Also by [9] there exists a nonnegative continuous function n having compact
support in R? and satisfying

(7) 7{0) =1,
(8) Son@+m)=1.

mEA
Thus, using Fatou’s lemma, we have
-
1/e

< lim S n(ew){ S S | S e"T fo(ey — £2)V Py (2) dz|2t1—”dydt}3’/2d$
=0 g 0 |z—y|<t B

= lim IP.
I 1
Now we only have to show that

(@) 12 < CHl Il mey

uniformly for e — 0.
In fact, using the equality

VP(xz/e) = eV Py(z),

we easily see that I? is equal to

1/e e 2 /2
S n(em){ S S eI, fe(ey — ez) VP {#) dz} tl"”dydt} dx
Tgm 0 |em—ey|<et
1/.=: e 9
= e ] e+t | Tefaly - 9) V(e 2|
U |lx—y|<te e

w £

»f
x 1=y dt} de.

The above identity is obtained by changing the variables ex — z, ey — ¥y,
and ez — 2.

Next, changing variables et — ¢ and y — z — ¥, we can further see that
I is equal to
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B IS LN
0

R~ |z—y| <t g

: Jo. 2
=g Z S nlzx + k){e"zg S gntl S Taff(y — z)VPt(z) dz|
0

b —y| <t R

/2
x 1" dy dt}p dx
o~ 2
| Tfaly—2) S VE(z +F) dz‘
Jz—y|<t Q ked

/2
x £ dy dt}p dz

1
_ ~n—ptp(nt1) S {S S T.F. Vﬁt(z)izfl——ndy dt}?ﬂda:
00

Je—yl<t

= e Ty < PR E R,

1
- Eﬁn_p+p(n+1) S { S S | S j":;:(z) Z VPt(y -— - k) dz’Z
Q Olz—yl<t @ kea
. p/2

For £ sufficiently small, the support of e =" f(z/e) lies entirely in @ and, in
this case,

e " f(z/e) = fulx)
Thus, for small ¢, the right side of the above inequality is bounded by

gmnHR(n D) { S { {ery (y — z) VP(z}dz

2

R lz/e—yle|<t/e ' R™ £
p/2
x i dydt} d
1/e . /2
— pf2
sT{L § e re-nvRe | e ayar)”
Re 0 |az—y|<tfe R"

1/e

= | { o |f*vpt(y)lztlwdydt}mdmgc[ﬁuﬁwmw

R u} immyi<t
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This proves the desired inequality (5), thus finishing the proof of Theo-
rem 3.1. From the argument in the proof of {5), we easily get the following:

COROLLARY 3.2. Suppose that T. is o multiplier operator in (HP(T™),
HP{T™)) for0 < p < 1. Then there ezists a bounded complez-valued function
A on the lattice A such that

Tof ~ Z AMem)emime,
meA

Thus, a necessary condition for a multiplier operator T. to be bounded from
HP(T™) to HP(T™) is that T, must be bounded in L2(T").

Also following the same argument as for Theorem 3.1, we easily get the
following weak type theorem:

THEOREM 3.3. Suppose that 0 < p < 1 and that X is a bounded contin-
uous function on B™®. If for each c > 0, there exists an operator T, such
that

(= € Q: [Tef(z)l > o} < CLI o amy }e®
for all & > 0, where C is independent of € > 0, then

Hz € R* ¢ |Tf(z)| > o}| < C{||f ln@ny }/ o7
for all o > 0.

THEOREM 3.4. Suppose X is a bounded continuous function on R*, If T
is of weak type (p,p) uniformly for e > 0, then T is of weak type (p,p) on
R” (p > 1).

Proof Here we only give the proof for Theorem 3.4, because the proof
of Theorem 3.3 easily follows by using the same ideas as in the proof of
Theorems 3.1 and 3.4. Let n(z) = xg(z) be the characteristic function of
Q. Then for any « > 0,

{z e R*: [Tf(z)] > o} < lim [{z € R s y(ex)le T fo(ez)] > o}
= lime™"|{z € R" : n(a)|e"Tefe (o) > o}
= Ime o € Q: " Tefelz)] > o}
= lime"|{z € Q: |Tefe()] > o/}

im e~ R F |12 /P
lime | fell5/ P

IA

But

172 = { e f(@/e)P dw =™ | |f (@) de.
Q Q/e
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Therefore,
{ze R : TH()| >0} < lima™ | [f(@)Fde= | |f(&)] du/e’.
QR/e R?

4. Some lemmas. To prove the converse theorems of Theorems 3.1, 3.3
and 3.4, we need several lemmas.

-~

LEMMA 4.1. If the operator T defined by (T F)"(€) = ME)FE) is bounded
in HP(R™), then the family of operators
To: (T)ME) = NeF (), >0,
is uniformly bounded in H?(R™). Moreover, ||T|| = |T:||.
Proof Let fé(z) = f(ez). By taking the Fourier transform we have

T.f(z) = Tf¢(z/c). So the lemma follows easily by the definition and a
simple computation.

LEMMA 4.2. Suppose that ¥ is a continuous function on R™ satisfying
| #(2)de= A+,
lz| < B

where A and B are constants. Then for any bounded periodic function f, we
have

(10) lim A™' |

g0

e"(ex) f(x)dx = S f(z)dez.
lz|<B/e Q@

Proof We can assume that f{z} is a trigonometric polynomial because
an arbitrary bounded periodic function can be approximated uniformly on
@ by such polynomials. Thus, we need to consider the functions

Fu(z) = 20T for ke A
If k =0, then e*™*® =1 and

lim 471 | ewien)de=4A"" | ¥(@)de=1=1dz
|uj<Bfe l2|<B ) Q
If &k # 0, then
;i_i% AT S " (ex)e?™ 2 g
lzi<B/e

— }:{E% A-L S Q;(a.;)eZTri(k/E)-a: dr =0 = S fk(m) dx
[z|<B Q

by the Riemann—Lebesgue lemma.
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LEMMA 4.3. Suppose that U{z) = [Tj., (1 — )%, o > 0, where
_ [ flz) i f(z) =0,
f+(““")_{o if f(z) < 0.
Write B(&) = $(£) and PN (€) = W({/N). Let X be a bounded continuous

function on R™ and let T; and T be the families of operators on R™ and T,
respectively, associated with the function A. Then for any g € S(T™), there
is o constant M > 0 such that for sufficiently large integer N,

Teg)| < M|T(g9 ™)) + In (v)

for any y € (N/2)Q, where Q is the fundomental cube and J ~(y) tends to
zero uniformly for y € R® as N - oo,

Proof. Since g(x) equals its Fourier series 3 are®™™*® with {ay } rapidly
decaying, it suffices to prove the lemma for g(«) being a trigonometric poly-
nomial 3 ape?™#*?, We write

(11) Tog)| < 1Telg®™) )] + Teg(y) — Te(g*/ V)W)
Then by the Plancherel theorem, we have

Tug(y) - Te(g@ ™))

= |3 an § Mex) NN (2 - k)™ dz - S arA(ek)er |
TR

= | Sap § NUG(N(z— R){Mex)e? Y - A(ek)e™ T} daf
B

< z . S N"G(N(z — k)){Aex) — Mek) ™Y dm’
R

-+ | Zak)\(ﬁk) S N”gp(N(:{: o k)){ezmw-y _ e2m‘k-'u} d:l}‘
e
In(y)+ In(y)-
We easily see that as N ~ 0o, the above J. ~{y) goes to zero uniformly for
ally e R™.
But In(y) is equal to

‘Zak/\(ek)ez’”k'y S N*@®(Nz)}{l — ezrim'y}dm’
'[Rﬂ

i

= (1 [T -BN2)5) Tl
j=1
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So from the inequality (11), we obtain
[1@ -~ 2N "5 Tg(y)| < 1T @ o)) + In ().
i=1

Therefore for y € (N/2)@Q,

[ Teg(y)| < 47T (TN ) ()| + I (w)-

The lemma is proved.

5. The “only if” part of the main theorems

THEOREM 5.1. Suppose that A is continuous on R™ and0 <p < 1. If Tis
bounded in HP(R™), then the operators Te ave bounded in HP(T™) uniformly
fore > 0.

Proof. By Lemma 4.1, without loss of generality, we can assume & =1
and write 1" == T}. To prove this theorem, we need the atomic decomposition
of the Hardy spaces HP(T™). An exceptional atom is an L=(T") function
bounded by 1. A regular (p, o0, s) atom is a function a supported in some
ball B(z, p) satisfying:

(1) l|alleo < o™,

(ii) SQ a(z)P(z) dz = 0 for all polynomials P of degres less than or equal
to s.

The space HP*(T™), 0 < p < 1, is the space of all distributions fe
&'(T™) having the form

(12) ]?: chak
and satisfying
(13) Z [C;c‘P < 00,

where each ay is either a regular (p,00,5) atom or an exceptional atom.
The “norm” ||f] gr.eqny is the infimum of the expressions (3 ]eg|?)/? for
all representations (12) of f. In [3], we proved that
(14) HPH(T)=HP(T*) and || |lgeer) 2 | - llape my
if s = [n(1/p—1)].
Clearly, to prove the theorem, by (12)—(14} we only need to show
(15) |1 T4l gorny < C
with a constant €' independent of the atom a.

Since T is bounded in HP(R"), it is bounded in L*(R"). Hence X is
a bounded function and T is a bounded operator in L2(T?). If a is an
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exceptional atom, then using Holder’s inequality, we easily see that
[Tl gnermy < CllTeliz2ny < Cllallzaeemy < C

with a constant C independent of a. So it remains to show (15) for any
regular atom.

Let a be a regular atom on T" with support in B(0, g). We can consider
it as an atom ' on R™ with support in the fundamental cube ¢). Then the
function b = T'a’ is in HP(R") and

(18)  libllarqe) <7\ e grgny = TN lallgrcon)-

It is easy to observe that if we view Ta as a periodic function on ", then
(17) Ta(z) =Y b(z+ k).

keA
The above sum is well-defined because b € LP(R"), 0 < p < 1, and it is
trivial to see that { |20 b(z +k)[Pdz < §o 2 bz + k)P dr = (g [B(2)|P dz.
S0 we let b(z) = S wea bz +k) and define, for y € @,

v(y) = sup’ | b(z)Pi(y — ) da;},
>0 15
where P, is the Poisson kernel on T" which is considered to be a periodic

function on R™.
Now all we have to show is that

~ /
(18) Fallmemy = {(§ @)Pdy) " < IT] Nalaaen.
Q
But
sup’ m)Pt(y - ) dm‘ = sup S —B(m)Pt(y — ) dm‘
1)-0 ]R"‘
= bup’ S Zb x + k)Py(y —ﬂ’)dﬂ"] --‘Supyz ‘ b(z) Py + k — x) dz
>0 Vg hga kEA R

< supZ|b*Pf Y-+ k) £ zsup\b*l’t(y—}-kﬂ
>0 hea kea 20

This means that
v zegemy < |l SUP“’*Pt(yN”LP(R“)'

Now (16) gives (18). [t is well known that l|la|igo(rny < C with a constant

C independent of a. So (1B) is proved for any atom centered at 0. But T
commutes with shift operators, hence (15) is valid for all atoms.
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Using a duality argument and a well-known fact (H1)* = BMO, we easily
obtain the following corollary:

COROLLARY 5.2. T 45 in (BMO(R™), BMO(R")) if and only if the T. are
in (BMO{T™}, BMO(T")) wnifermly for € > Q.

The following theorem is the converse version of Theorem 3.4.

THEOREM 5.3. Let A be o continuous bounded function on K" and 1 <
p < 0o. Suppose that T' and T, are the operators on R™ and T", respectively,
associated with X. If T is of weak type (p,p) on R™, then T; is of weak fype
(p,p) on T™ uniformly for e > 0.

Proof Because the space C°°(T") is dense in LP(T"), we only need to
prove that there exists a constant M such that for all @ > 0 and g € C*°(1T™),

(19) {z € Q:Teg(x)| > o} < M|gllf s pny /o

Notice that T- ¢ is a periodic function, which implies that for any positive
even number N,

{z € Q: [Teg(e)| > o}
2 Nz € (N/2)Q : [Teg(z)| > o}
SNz € (N/2)Q : |T.(# NV g)(z)| > o/ (2M)}
+2"N7"{z € (N/2)Q : |In(2)| > a/2}].
In the above formula, the function ¥ is as in Lemma 4.3.

Lemma 4.3 implies that limy..ce 2"N™"|{z € (N/2)Q : |In(z}] >
a/2}| = 0. Thus by the above formula we have

(200 |z € Q:|Teglz)| > o}
<P Jim N7z e R L. (0YVg)(@)] > of M),

Using a similar argument to the proof of Lemma 4.1, one can easily see that
T.(PV g)(z) = T(¥1/Ng)¢ (/). Therefore

(21) |z Q:|Teg(z) > o}
<2% lim N7{z € R : [T(#Vg)°(w/e)| > a/ (2M)}]

=2" lim N7"¢"|{z € R™: |T(#"/N g)*(a)| > o/ (2M)}]

+ + —
< QPP AP NlinooN n5n||(5p1/NQ)€H§p(mn)/ap
= Aa fim N7 § /o)
with a constant A > 0, so the formula (19) follows by using Lemma 4.1.
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Finally, we prove a slightly weaker converse version of Theorem 3.3.
We need to introduce the local Hardy space hP (™) which was studied by
Goldberg in [5]. Let f be a distribution on R™. We say that f is in the local
Hardy space hP{R™) provided that

fioe(@) = sup [Py f(y)|

fz~yj<t<l
satisfles fit, € LP(R™), 0 < p < 0o, Weset || fllne = || fis./lcr. Let & € S(R™)
satisfy (P dw # 0. Then Goldberg proved that f € AP if and only if

fislw) = sup |f*&y(a)]
0<t<1
satisfies || fllne & || i ]lzr < co. A well-known fact is that HF = L = h?

for 1 < p < co. More details on h? and its applications can be found in [5]
and [7].

TueOREM 5.4. Let A be o continuous and bounded function on R® and
0 < p < 1. Suppose that T and T, are operators on R™ and T™, respectively,
associated with the multiphier \. If for any o > 0 and f € hP(R"),

(22) [{z e R" : |Tf(2)] > o} < Be [ flfp ey

then for any o > 0 and g € H?(T"), we have

(23) {z € Q:|Teg(z)| > o} < Ao [lglFro(my

In (22) and (23), B and A ore constants independent of c, f and g.

Proof Without loss of generality, we assume that g € Coo{Tm) N
H?(T™). By [3] and (14), we know that

g{z) = chek(m) + Zukak(m) = E(z) + A(x),

where ey's are exceptional atoms and ax’s are regular (p, 0o, [n(1/p — 1)] +
an2y) atoms with v = [1/p] + 1, 5 lexl’ + 2 [Val” = |1g)fnpn)- Thus if we
write

B.={z€Q: LB >a}, A={zecQ:|TAle)>a},
then we need only prove that
(24) Bl € Ma™P ) |aff,

(25) (o] € Moy |wel?.

Notice that our assumption on A implies that the 7. are uniformly bounded
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in L2(T"), so one easily sees that
|Ey| = { do < o | |T.E(2)IP dz
{2€Q:|T: B(=)|>a} Q
< a"pz lex|F S |Tgek(m)\1’dm.
Q

Now using Holder’s inequality, we have a constant M independent of ex such
that

— ~ pi2
[ Teerpdn < { | [Teen(e)Pda) < Mllew|Gagpny < M.
Q Q
Thus (24) is proved.
It remains to prove (25). Let v be the integer [1/p] + 1 and let

n

P(z) = H(l - g3) 37,

=1
By Lemma 4.3, the proof of (21) now implies that
Aol < 2 lim N""e"|{z € R : |T(ZN AP ()] > o/M},
-—00
where N runs over even integers. Thus we have
|4a] < BMPa™® lim N"e™[[(TVYAF|], gy
< BMPa Y Jenl? Jim N0V 0 [Fy -
So it suffices to show that
5 —1.n 1/N
(26) Jm N (N ) ey < O

with a constant C independent of ay.

In fact, choose a nonnegative function & € S(R™) with supp P# C B(0, 1)
and {@dz # 0. Then noticing that supp ay, C B(zg, p) C @, we have

N7 (P ) (17 geny

o NPt S sup S P(ex/Nag(ez)P(y — z) dm‘p dy
g 02511

=N"" S sup
e 0<tSe

S U (z/N)ay(z)P:(y — ) dm}p dy
B

icm
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(13
. n bzl
= S sup \ H(l — 2)ap(zN)P:(y — ) dm‘ dy
R 0<tLe/N ]mln =1

n

B
=N""{ sup \ { [Ie- mg)iwa(Nx)N”/P}@t(y - @)dal dy.
pn OIS/ D 1y =

We let o, (Nz) be the periodicity of a(Nz) whose support is totally con-
tained in 2Q = {x : oy} €1, = 1,...,n}. There are at most 2" N"™ such
o, (Nz)s. We let §;(Na) be the periodicity of a{Nz) whose support meets
the boundary of 2Q. There are at most 4"N™~* such Fi(Nz)’s. Therefore

T

N~" S gup i { H(l - w?)Ta,(Nm)N”/p}@t('y - m)dcclp dy
mn O<te/N Lt N i
N n o
< NTT Z S supl S H(l—m?)i”au(Nm)N“/”@t(y—w) dm1 dy
p=1 un >0 supp o, {Nz) j=1
gy n

+ Z S sup ‘ H(l—m?)i",@i(l\frﬂ)@t(yw:c)dm'pdy

=1 e 0<ESE/N T gy e

oM N 4“N’”"_:I‘

Iu‘l“‘ Z J‘i-
1 jm=1

Now according to the definition of o, (Nz), one easily sees that

— N'—’ll

[

™

Ay(z) = H(l - w?)”'*ay(Nm}N“/p is a (p, oo, [n(1/p — 1)]) atom on R™.

J=1
Thus
2”. N'" QTJ.N'IL
(27) NW"' Ir, E N“n Z HAV“ﬁIT"(]R") S M.
panl pexl

To estimate J;, we notice that when 0 < ¢ < g/N, supp® € B(0,1)
implies that for any © € 2@, supp Puly — ) S {jy| < g/N +2 = L} for some
constant L. Also because the support of f; is contained in a ball with radius
0/N and meets the boundary of the support of TTj= (1 - @37, it is clear
that

| L0 ahie| < Memrie/my ' 2 N7 as N = oo
=1
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Thus
gn -l »
Ji2 N7 &,(z) dz} dy= N1
; IyISSLiEIg{RSn' (@) m} i

Therefore, (27) is proved.

. Note. It would be interesting to be able to replace the local Hardy space
in Theorem 5.4 by, the usual Hardy space. Some extensions of this paper can
be found in [2].
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