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Riesz means of Fourier transforms and
Fourier series on Hardy spaces

by
FERENC WEISZ (Budapest)

Abstract. Elementary estimates for the Riesz kernel and for its derivative are given.
Using these we show that the maximal operator of the Riesz means of a tempered dis-
tribution is bounded from Hp(R) to Lp(B) (1/(a+ 1) < p < o) and is of weak type
(1,1}, where Hp(R) is the classical Hardy space. As a consequence we deduce that the
Riesz means of a function f € L, (IR) converge a.e. to f. Moreover, we prove that the
Riesz means are uniformly bounded on Hp(R) whenever 1/(e+1) < p < co. Thus, in case
f € Hp(R), the Riesz means converge to f in Hp(R) norm (1/(a+1) < p < oo0). The same
results are proved for the conjugate Riesz means and for Fourier series of distributions.

1. Introduction. The Hardy—Lorentz spaces H, 4(R) of tempered dis-
tributions on the real line are endowed with the L ,(R) Lorentz norms of
the non-tangential maximal function. Of course, H,(R} = Hy ,(R) are the
usual Hardy spaces (0 < p < co).

In this paper the Riesz means o7 f of tempered distributions are consid-
ered. Usually the cases v = 1,2 are investigated. It can be found in Stein—
Weiss [12] and Butzer—Nessel {4] that the Riesz means o377 f (v = 1,2)
of a function f € Li(R) converge a.e. to f as T — oo. In the special
case & = ¥ = 1 the Riesz means are called Fejér means. The author [15}
proved that the maximal Fejér operator o+ := supp.g|oy’| is bounded
from Hp(R) to L,(R) provided that 1/2 < p < oo (for p = 1 see also Méricz
[9]) and is of weak type (1,1}, ie.

sup oAt f > o) < ClIfll (f € Li(R))
e
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(this last result can also be found in Zygmund [L7] and Méricz [9]). Similar
theorems for the (C, &) summability of Fourier series are given in Weisz [13].

In this paper we sharpen and generalize these results. First we prove
two estimates for the Riesz kernel and for its derivative with elementary
methods. Next we show that the maximal operator 027 is bounded from
Hy o(R) to Lpg(R) whenever 0 <ar <1<+, ifla+l)<p<ocand0<yq
< oo, and is of weak type (1,1). We introduce the conjugate distribu-
tion f, the conjugate Riesz means 557 f and the conjugate maximal operator
5% We deduce that the operator 557 is also of type {Hpq(R), Lp,q(R))
(1I/(a+1)<p<oo, 0<g<oo 0<axs 1< ) and of weak type (1,1).
We extend these results alse for a > 1.

A usual density argument then implies that, besides the convergence
results mentioned above, the conjugate Riesz means 77" f converge a.e. to
f as T — oo, provided that f € Li(R). Note that f is not necessarily
integrable whenever f is.

We also prove that the operators o3” and 57”7 (7' > 0) are uniformly
bounded in T from Hy4(R) to Hpo(R) if 1/{a+1) <p <oe, 0 <g=co.
From this it follows that o7 f — f and 537 f — f in H, ,(R) norm as
T —s 0o, whenever f € Hyo(R) and 1/(a+1) <p <00, 0 < g < o0

We also consider the Riesz means of Fourier series of distributions on
the unit circle and prove all the results above in this context.

T would like to thank the referees for reading the paper carefully.

2. Hardy spaces on the real line and Hilbert transforms. Let R
denote the real line and A be the Lebesgue measure. We also use the notation
|I| for the Lebesgue measure of the set I. We briefly write Lp(R) for the
real Ly(R, A) space with norm (or quasinorm) | filp := (g lfiPdY? (0<p
< o).

The distribution function of a Lebesgue-measurable function f is defined
by

MIfl > @) =Mz [F@)] > 2)) (22 0).
The weak L,(R) space L3(R) (0 < p < o) consists of all measurable func-
tions f for which
IFllzy = sup oA{if| > o)*/F < oo
¢>0

and we set L%, (R) = Lo (R).

The spaces L;(]R) are special cases of the more general Lorentz spaces
Lp,q(R). In their definition another concept is used. For a measurable func-
tion f the non-increasing rearrangement is defined by

f@t):=mf{o: A(f| > o) <t}
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The Lorentz space L, (R} is defined as follows: for 0 < p < ocand 0 < ¢

< oo,
00 1/
£l = (§ Feeesr 2)

Q
while for 0 < p £ o0,

| filp,o0 = sUP tl/pf(t)-
>0
Let
Lpg(R) 1= Ly o (R, X) i= {f : | fllp,q < o0}
One can show the following equalities:
Lyp(R) = Ly(R), Lpoo(R) = Lp(R) (0 <p < oo)

(see e.g. Bennett—Sharpley [1] or Bergh—Lofstrom [2]).

Let f be a tempered distribution on S(R) (briefly f € &'(R)). The
Fourier transform of f is denoted by f. If f is an integrable function then

= oo (0
R

where 2 = /—1.
For f € §'(R) and ¢ > 0 let

u(z, t) = (f * P)(z)
where * denotes convolution and
ct
is the Poisson kernel.
The non-tangential mazimal function is defined by
u(z) = sup |u{z'.%)]
! —m| <t

For 0 < p,q < oo the Hardy-Lorentz space Hp o (R) consists of all tem-
pered distributions f for which u* € L, 4(R) and we set

1f e, , @ = g

Note that in case p = ¢ the usual definition of the Hardy spaces Hp p(IR)
= Ho(R) is obtained. It is known that if f € Hp(R) (0 < p < o0) then
f(z) = lim;_,o u{z,t) in the sense of distributions (see Fefferman-Stein [6]).
Recall that L1 (R) C Hi (R), more exactly,

(1) 11l 22 e () = sggg)\(U* >0) <Cllflly  (f € Ly(R)).
[
Moreover,

(2) Hypo(B) ~Lyg(R) (1<p<oo, 0<q< o)
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where ~ denotes equivalence of norms and spaces (see Fefferman—Stein [6],
Stein [11], Fefferman-Riviere-Sagher [5]).

The following interpolation result concerning Hardy-Lorentz spaces will
be used several times in this paper (see Fefferman—Riviere-Sagher [5] and
also Weisz [14]).

THEOREM A. If a sublinear (resp. linear) operator V is bounded from
Hpo(R) to Lp,(R) (resp. to Hpy(R)) and from Ly, (R) to Ly, (R) (po <1<
p1 < 00) then it 15 also bounded from Hp g(R) to Ly o(R) (resp. to Hpo(R))
if po<p<p1 end 0<g=<oo.

For a tempered distribution f € H,(R) (0 < p < oo) the Hilbert trans-
form or the congugate distribution f is defined by

1

fi=f+® where ®(u)= —tsignu, QS(m) =

One can prove {see e.g. Fefferman—Stein [6]) that f is a well defined distri-
bution, f € H,(R) and (f) = —f. Furthermore, Fefferman and Stein [6]
showed that

(3) 1 le, @ ~ e +1flle (0 <p< ).

As is well known, if f is an integrable fuﬁction then

f(m)zp-v‘%gwdt:lml S f(w—t)dt_
R

g0 T t
e<|t|

Moreover, the conjugate function f does exxst almost everywhere, but it is
not integrable in general.

3. Riesz means. Suppose first that f € L,(R) for some 1 <p < 2.1t is
known that if f € Iy then

f(z) =

1 ry wxu g
—ng(u)e du (zeR).

This motivates the definition of the Dirichlet integral s f:

1 e
s:f(2) := —= u)e®* d t > 0).
The eonjugate Dirichlet integral is defined by
¢

8t f(z) = \/——lé_—; jt(——z sign u)f(u)e““‘ du (t>0).
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It is easy to see that .
1 2 sintu
8 xr = — LT—U)l—/— du
ff( ) o Eszf( )m w 3
~ 1 2 sintu
S f{w) = —== du.
e = 1w =,

For o, > 0 the Riesz and conjugoie Riesz means are defined by

o7 f(2) = %f (1 _ (T)ﬂ')a_l (%)Mstf(m) @ (T>0),

P1(0-(3))70) e oo

respectively. Integrating by parts we get

o+,

&7 f(z) =

7710 = <= | o — WP ) du
R
where
T ¢ AN ]
4 K3 u) = 1—{= cos tu dit
@) #w=7=10-(7))

AN
T ) costu dt

is the Riesz kernel. Similarly,

1 e~
5T f(x) = — \ flz — ) K37 (u) du
The Riesz means are called fypical means if v = 1, Bochner-Riesz means if
v =2 and Fejér means if @ = v = 1. One can prove (cf. Butzer-Nessel [4])

that

o 1 T AN Ex
UT,Tf(w):E S (1—’? ) (t)e tdt,

527 (z) = :§ ( -|%

We extend the definition of the Riesz means to tempered distributions
as follows:

7) (—vsignt) F(£)e dt.

oV fi=fxK37 (T >0}
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One can show that o727 f is well defined for all tempered distributions f €
H,(R) (0 < p < 00) and for all functions f € Ly(R) (1 < p < o0) (cf,
Fefferman-Stein [6]). The extension of the conjugate Riesz means is
e f = FREST (T >0).
The mazimal and mazimal conjugate Riesz operators are defined by
o 7f =sup oz f| and FOUf = sup |57 S,
T>0 T>0

respectively.

4. Estimates of Riesz kernels. In this section we prove some estimates
for the Riesz kernels K77 and for their derivatives with elementary methods.

LEMMA L If 0<a< 1<y then

C
o,y
IKT (U)| < T°‘|u]°‘+1 (‘LL % 0)
where C' depends only on a and v.

Proof. Since K7 is even, we can suppose that u > 0. Changing
variables we get

oy 9 1T z \"\*
K7 (u):\/T_WES 1- T cos z dz.

0
The lemma will be proved if we show that
Tu
’ S ({(Tw)Y —z")* cosz dm‘ < C(Tu)>tr—1),
0
In other words, denoting Tu by A, we have to show that

A
| S(A'f —z")™ cos:cd:c} < A=t
0
Choose n € N such that 2nm < A < 2(n + 1)7. Then

A
, S (A7 — z7)™ cosmdm‘ < QA1)
2na

because
AT a7 = (A-nE S (A-ay AT (w<E<A)
by the Lagrange theorem. So, it is enough to prove that
2nm
(5) l S (A7 — 2" * cosx dz| < CAT—H),
[¢]
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Let us change variables: & = y+2km, z = —y+(2k+1)7, 2 = y+(2k+1)7
and z = —y + (2k + 2)7 on the intervals [2kn, (4k + 1)x/2], [(4k + 1)7w/2,
(2k+1)x], [(2k + D)7, (4k + 3)7 /2] and [(4k + 3)7 /2, (2k + 2)7], respectively.
Then we obtain

(2k+2) w2
(6) S (AT - x")*coszdz = S grlz)cosz dz
2k 0

where
gx(z) == (A7 — (2 + 2km)")* — (AY — (—z + (2k + 1)y
— (A7 — (z+ 2k + 1)m)")* + (A7 — (=2 + (2k + 2)m)M)°.

It is easy to check that gi(x) > 0, which means that gy, is increasing and

n—1 n—1
(7) FlA) =3 a(0) <Y grle) (ze0,m/2)
k=0 k=0

where 2nm < A < 2(n+ 1)w. Since gi(n/2) = 0, we conclude that gr(0) < 0
and f(A) < 0. We have

F(4) = LA — (2br)7)® — 2(A7 — ((2k 4+ 1)m)")" 4 (A7 — ((2k+2)m)7)°).
k=0
Moreover,

n-1
FA) = 3 er[(A47 — (2km)7)*LATE — 2(A7 — (2K + 1)m)7)et AT
k=0

+ (AT — ((2k +2)m) Tyt 471,

Since the function g(z) := (AY — 27)*71 (0 € = < A) is convex, the expres-
sions in square brackets are all positive. Hence f/(A4) > 0 and f is increasing.
Therefore

n—1
(8) F(A) = f(2nm) = Y [((2nm) — (2km)")™
k==0
—2((2nm)” = ((2k + 1)m)M)* + ((2nm)Y — ((2k + 2)m)7)°]
211
= % [2 3 (~1)*((2n)7 — k7Y — (2'.'1,)‘”}.

If

h(z) == ((2n)” —2")* (0 <z < 2n)
then we see imrnediately that i’ is negative and decreasing. By the Lagrange
theorem there exists 2k < £ < 2k + 1 such that

((2n)Y — (2B)M)* - ((2n)" — 2k + 1)M)® = ~R/(£) = —R/(2k).
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Consequently, by (8),

A S,
szé—h(zk)

2n-—2
—(@n)* > | —h dX—2K(0) — (2n)*
0
> —h{2n —2) + A(0) — (2n)%7 = —((2n)" — (2n — 2)7)",
Since
(2n)7 ~ (2n—2)7 = 29677 < 29y(2n)7Y (Zn—2 < £ < 2n),
we conclude that

(9) 14, —(27)*(2r) D> 2 AN,

ey T
Taking into account (6), (7) and (9), we proved (5), which completes the
proof of Lemma 1. m

LemMMA 2. If O0< a <1< v then

C

[(Ep") (w)] < Ta T[T (u # 0)

where C depends only on o and .

Proof. It is easy to see that
T o
2 t\7
— 1— [ — tsintu dt
\/27T§)( (T) )
Tu a
2 1 z 7 .
—Ea—i S (1-— (ﬁ) ) reinrdr.
0

Of course we can suppose again that u > 0. Similarly to the proof of
Lemma 1, it is enough to verify that

(Er™Y (u)

2nm
(10) | E (A7 — z7)*z sin da:| < CAXOr—1HL
0
where A = T'w and 2nm < A < 2(n + 1)n.
Let us change the variables © = y + 2kx and z = y + (2k + 1) on
[2km, (2k 4+ 1)7] and [(2k -+ L), (2k + 2)«], respectively. Then

{2k+2)m T
(11) S (AY — M) *zsinz dz = Sgk(m) sinz dx
Y 0
where
gr(®) :== (A7 — (z + 2km)")*(z + 2k7)

~ (A" —(z + (2k + L)m)")*(z +(2k + D)7).
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Again, g;{z) > 0 and gy is increasing. Then

n—1
(12) f(4 Z a(0) <Y gz
k=0

We have

n—1
) <D gulm)=: fa(A) (z € [0,7]).

k=0

Z[ — (2km)")*2hm — (AY — ((2k + V)m)")*(2k + 1)7].

One can show that f1 is decreasing and so
fi{4) = f{(2n + 2)7)

= govtl E[((2n +2)7 — (2k)7)*2k

k=0
—((2n+2)" — (2k+ 1)")*(2k + 1)].
If

hlz) == ((2n+2)* — 27)°x

then, by an easy computation,

W (2) = ((2n +2)7 — )2
x (22 tay(ay + 1) — 2771 (2n + 2)Y (ay? + o)) < 0.
Thus k' is decreasing and
h(2k) — R(2k+1)

Consequently,

0<z<2n+2)

=-—h'(¢) > -h'(2k) (k<& <2k+1).

— 2n—2
i 1 7
(13) MH > ;-: '(2k) > —R'(0) + 5 § —H dX

> —(2n+2)%7 - 1{(2n+ 2)7 — (2n — 2)7)%(2n — 2)
2 = (2n+2)%7 - J(4y(2n +2)7" 1) (20 - 2)
> — CA™ ~ CAXO= DL » o 4e-1+1
On the other hand,
n—1
F2(4) = S [(AT = (2h+1)m))* 2+ 1y — (A7 — (2K + 2)m)")* (2 + 2)r].
k=0

f2 is also decreasing and so f2(A) < f2(2nm). We can show with the same
method that

(14) folA) < cAcl—D+L

We can establish that (11)—(14) imply (10). The proof of Lemma 2 is com-
plete. m
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LEMMA 3. If 0<a < 1Ly then

{lkz7ax <0 (T>0)
B
where C depends only on o and 7.

Proof. It is easy to see that [Kz7| < %T. Thus

YT
S | K7 (u)] du < C.
0
By Lemma 1,
T o,y c T du < O
S |KT (U)ldﬂ;iﬁ S a-&"ﬁ U < .
YT YT

Since K77 is even, this proves the lemma. w

5. The boundedness of the maximal Riesz operator. A bounded
measurable function e is a p-atom if there exists an interval I C R such that
(i) §;a(z)a? dz = 0 where j € N and j < [1/p — 1], the integer part of
l/p - 15
(ii) llal o < 1I|71/7,
(i) {a #£ 0} C L.
An operator V which maps the set of distributions into the collection of

measurable functions will be called p-quasi-local if there exists a constant
Cp > 0 such that

{ VaPdr<g,
R\AT

for every p-atom o where I is the support of the atom and 47 is the interval
with the same center as I and with length 4|I|. The following result can be
found in Weisz [13]:

THEOREM B. Suppose that the operator V is sublinear and p-quasi-local

for some 0 < p < 1. If V is bounded from Ly, (R) to L, (R) for o fived
1 < py € oo then E

Vills < Goliflm,m  (F € Hy(R).
Now we can formulate our main result.
THEOREM 1. Assume that 0 < o < 1 < «. Then

(15) 1|03’7f||p,q = Op,qanHp,q(R) (f e Hp‘q(R))
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for every 1/(a+ 1) < p < 00 and 0 < ¢ < co. In particular, if f € Li(R)
then

(16) Moz >0 < S1flh (o> 0)

Proof It is easy to see that Lemma 3 implies

lod flloo < Clflle (f € Lo(R)).

First we verify (15) for p = g and for 1/(a -+ 1) < p < 1. To this end, by
Theorem B, we have to prove that the operator 027 is p-quasi-local.

Let o be an arbitrary p-atom with support I and 251 < |I| < 2¥
(K € Z). We can suppose that the center of I is zero. In this case

[__M2K~«2'2K—2] clc [-—ZK_]', 2K—1].
Obviously,

oo (i+1)27¢

| lotale)Pds< 30 | o a(@)Pde
R\4I li|=1 42%

oo {i+1)2%

Z S sup |og7a{xz)|P d
lij=1 2x T2m

oo (i+1)2%
+3° | swiopa(e)rds
=1 agx  T<™
(4)+(B)
where r; := [27%/]i|°] (4 € N) with § > 0 to be chosen later. We can suppose
that 7 > 1.
For

IA

1

Alx) = S alt)dt (zeR)

we have supp A C I, A is zero at the endpoints of I and [|4||e < |Ij~V/7+1.
Lemma 1 implies

c

o5 7ala)| = [{a(OKE" (o = ) dt| < U1 | gy dt
! ; Tl t|
By a simple calculation we get
oK —1 ) ) 02K Cz-_f{a
2§‘"1 |zttt d = (12K — 2K-1jo+1 = o+l
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if & € [i2%, (i 4+ 1)2%) (i > 1). Hence

log"a(z)| < cp2~K/P~K“T—“m.

Using the value of r; we conclude that

o0 Kok 2-—K —p& 1 1
(A) < C’p Zl 2K2— TpRe ( e ) ilat1lp 1'-' i—dpatp(at+l)’
=

This series is convergent if
1)-1
s et -1
po
Now we consider (B). Integrating by parts we can see that

0% 7a(z)| = ‘ JA®EEY (@ - t) dt|

(17)

Using Lemma 2 we obtain

c

H —1 1
o a()| < 1217 S—Wim Tl
1
~K/p+K—Kaml—o
< C 2 ¥ T aa—{—l

if x € [12%, (4 + 1)2%). Hence

Ko Ketpl K Kt g-k\Pll~e)
— (1
(B) < G 222 27w ( P ) HEEE

1
<G 2 Fimarintoriy”

which is a convergent series if
1—ple+1)
p(1—a)

whenever o < 1. f o = 1 then we get p > 1/2. (17) and (18) imply that

p>1/{a+1). ,
Thus we have proved (15) for p = ¢ > 1/(a + 1). Applying Theorem A

we obtain (15). Let us specify this result for p=.1 and ¢ = co. If f € L1(R)

then (1) implies

o3 Fllte0 = sup oMo > 0) < Cllfllmy camy < ClIFll1s
e

(18) 5>

which shows (18). The proof of the theorem is complete. m

‘We can state the same for the maximal conjugate Riesz aperator.
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THEOREM 2. Assume that 0 < a <1 <+«. Then

1557 fllp.a < Coollfliz, . (F € Hpo(R))

for every 1/(a+1) < p < co and 0 < g < oco. In particular, if § € L (R)
then

A2 > 0) < %nfnl (2> 0).

Proof. By (3), [fla,m = ||f|]Hp(m) (0 < p < o0). Using Theorem 1
for p = g and the fact that 537 f = o7 f we obtain
127l = o2 Fllp < Coll i, = Coll flmm  (f € Ha(R))
for every 1/{(a+ 1) < p < 0o. Now Theorem 2 follows from Theorern A. w

Since the set of those functions f ¢ L; (IR) whose Fourier transform has a
compact support is dense in L; (R) (see Wiener [16]), the weak type inequali-
ties of Theorems 1 and 2 and the usual density argument (see Marcinkiewicz—
Zygmund [8]) imply

CoROLLARY 1. If 0 <a <1<y and f € L1(R) then
o7 f [ ae as T — oo,
FEf S f  ae as T — .
Note that fis not necessarily integrable whenever f is.
Now we consider the norm convergence of ¢7/” f. It follows from (15)

that o7 f — f in Ly(R) norm as T — oo if f € L,(R) (1 < p < o0). We
are going to generalize this result.

THEOREM 3. If 0 < a<1<~v and T > 0 then

oz Fll .00 < Coallfllm, m  (f € Hyg(R))
and '

“E'?ﬂf”Hp,q(R) < Op,q”f”Hp,q(R) (f € Hp,q(R))

for every 1/(a+ 1) <p < oo and 0 < g < oo.
Proof. Since (o077 f)~ = &3 f, we see by Theorems 1 and 2 that
1027 flly < Collf iy (F € Hy(R)),
ez )"l < Collfllam  (f € Hp(R)),
for all T > 0. (3) implies that
o flle,m < Coll Fla,m  (f € Hp(R); T >0).
Hence

67" flla,m € Collfla,m  (f € Hp(R); T >0).
Now Theorem A proves Theorem 3. m
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We suspect that the conclusions of Theorems 1-3 are not true for p <
1/(c + 1) though we could not find any counterexample.

COROLLARY 2. Suppose that 1/(a+1) <p < co end 0 < ¢ < o0. If
f € Hy4(R) then '
o 'f = f  in Hyo(R) normas T — oo,
FLlf = [ in Hpg(R) norm as T — oo.

We will extend the results to & > 1. In the next lemma we express the
oitM7 means by the op” means (h > 0).

LeMMA 4. For h > 0 we have
T o h—1 2y—1
h 1 § 5 ,
(19) ok™f(z) = _QL;:—)'YS (1 - (T) ) (f) o f(z) ds.
0

Proof The right hand side of (19) is equal to

h(h;l)fyig (1—- (%)7)}»—1(%)27—1
X \/%}S{f(m—u)m%g(la (%)1) cos tu dt du ds

9 T
- ) ——= | costu
fo-w =

LS
V2 g

] () () (2

Integrating by parts we obtain

R CINONCION

i
T
h(h + 1)y h=1 =1 o
=W~»§(TW--S”’) 7MY —t)ds

T
S(T" — sT) P71 ds
¢

B _1_(TT 3 trr)h.*_]_ _(1_ i N b4l
T TRty T ’

A+l
= T

which proves the lemma. =
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Lemma 4 implies 02°"f < Cot7f whenever & > 1. This shows that
Theorems 1 and 2 hold also for & > 1. The extension of Theorem 3 can be
proved in the same way.

CoROLLARY 3. If a > 1 then all inequalities of Theorems 1-3 and all
convergence resulis of Corollaries 1 and 2 hold for every 1/2 < p < oo and
0<g<oo.

In the next sections we verify the results above in the periodic case, i.e.
for the Riesz summability of Fourier series.

6. Hardy spaces on the unit circle and conjugate functions.
The Lorentz spaces on the measure space (T := [~7,7), A) are denoted by
Lpg(T). Let f be a distribution on C*(T) (briefly f € D'(T)). The nth
Fourier coeflicient of f is defined by f(n) = f(e7*®). If f is an integrable
function then
1

j?(n) =5 E f(x)e™™ds  (n eN).

T
For simplicity, we assume that for a distribution f € D'(T) we have f(O) =0,
For f € D'(T) and z:=re*™ (0 <r < 1) let
w(z) = u(re’®) = f * P.{x)

where * denotes again convolution and

o0
1—r2
P - § k| ik —
r(2) k=_0°T € 1+7r2 —2rcosz (eeT)

is the periodic Poisson kernel.
The nen-tangential mazimal function is defined by

u*(z) = s |u(2)|
z e

where £2(x) is the usual Stolz domain (see e.g. Kashin—Saakyan [7], or Weisz
[13]).

For 0 < p,q < oo the Hardy-Lorentz space Hy 4(T) consists of all distri-
butions f for which u* € L, ,(T) and we set

15, qmy = [0l -
Again, it is known that if f € Hy(T) then f(z) = lim,_; u(re®®) in the
sense of distributions (see Fefferman—Stein [6]).

We remark that the analogues of (1)-(3) and of Theorems A and B are
true in this case (cf. Weisz [13] and the references there).
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For a distribution
fro 3 FlRe*
=—00
the conjugate distribution is defined by
Fro ST (—usignk)flk)e™.

k=—o0

As is well known, if f is an integrable function then

o1 fle=t) 1 Hz—1)
Floy=pv. 2 s =y | S

Moreover, (f)h‘ = -f.

7. Riesz summability of Fourier series. The Riesz means of a dis-
tribution f are defined by

T ¥ aA
SHIOEDY (1— n_’“H ) Flk)e™ =: f * 527 ()
k=—n
where
n PN
ke¥(z) = Z (1_ — ) otk (€T

k=—mn
is the periodic Riesz kernel. Similarly, we introduce the congugate Riesz
means of a distribution f by

osi- 5 (-

k=—n

_k
41

-~

(k)e'™ = fx k27 (z).

"’)“(_z signk)

The marimal and mazimal conjugate Riesz operators are defined by

gV f = sgg]af,f’“’fl and #¥7f -—sup] o fl.
The sum

@
Ver Y KX (z o+ 2kw)
k=—00
is a periodic function, where K}% is the non-periodic Riesz kernel. It is
easy to see that the kth Fourier coeffic1ent of this sum is equal to

k

AN
. 1 if |kl <n+1,

(Eni) (k) = ( n+1 )
0 if k| > n+1.
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This means that

=2n Z KX (e -+2kn) (zeT).
k=—00
Hence, by Lemma 1,

¢ 9]

|27 (z)| € Z c < C

e (M L)%+ 2km|ot] = peafglati”
‘I'he corresponding estimate for the derivative of %7 can be proved in the
same way.
LeMMA 3. If 0 < <1< v then
o
na|$|a+l

(k™) ()] < Wﬁ“@ (xeT, z#0).

len 7 ()] < (zeT, z#0),

Using Lemma 5 we can prove the following results as in Section 5.
THEOREM 4. Assume that 0 < o <1< v. Then

o fllp,q < Cb, q”f“H;, (T) (f € Hp (),

152 flloa < Coallflayamy  (F € Hpg(T)),

for every 1/{a+ 1) <p < and 0 < g < co. In particular, if f € L1(T)
then

Ao > o) < %uful (> 0),

\Gzr >0 < Shfls (o> o)
COROLLARY 4. If 0 < <1< v and f € L1(T) then
odf = f  a.e asn— oo,
o f — F e asn— oo
THEOREM 5. If 0 < a <1 < then

low fllm, 0 € Cogllflla, 1) (F € Hp,g(T)),
155 iy 1) € Cogllfllzrgom  (f € Hp,o(T),

for every 1/{(oc+ 1} < p < 00 and 0 < g < oo.

COROLLARY 5. Suppose that 1/(a+1) <p < oc and 0 < ¢ < oco. If
f € Hyo(T) then

ol f — f in Hpo(T) norm as n — oo,

FOVf = in Hpo(T) norm as n — .
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On inessential and improjective operators

by
PIETRO AIENA (Palermo) and MANUEL GONZALEZ (Santander)

Abstract. We give several characterizations of the improjective operators, introduced
by Tarafdar, and we characterize the inessential operators among the improjective opera-
tors. It is an interesting problem whether both classes of operators coincide in general. A
positive answer would provide, for example, an intrinsic characterization of the inessen-
tial operators. We give several equivalent formulations of this problem and we show that
the inessential operators acting between certain pairs of Banach spaces coincide with the
improjective operators.

1. Introduction. An important class which oceurs in the perturbation
theory of Fredholm operators is that of inessential operators, introduced by
Kleinecke [7] as the inverse image in £(X) by the quotient map

7 L(X) — LX)/ K(X)
of the radical of the Calkin algebra £L{X)/K(X), where X is a Banach space,
L{X) is the set of all (continuous linear) operators on X and KC(X) is the
subset of all compact operators.

Other authors [9, 10] have defined and studied inessential operators act-
ing between different Banach spaces X,Y. Let £{X,Y) be the set of all (con-
tinuous linear) operators acting from X into Y. An operator T' € £(X,Y) is
Fredholm, in symbols T' € (X, Y), if its kernel ker(T") is finite-dimensional
and its range R(T) is finite-codimensional. The inessential operators can be
defined by

In(X,Y) = {T € L(X,Y): Ix — 5T € #(X) for every § € L(¥,X}},
where Ix is the identity operator in X and ¢(X) = (X, X). Equivalently
[2],

In(X,Y):={T e L{X,Y): Iy —-T85 € &(Y) for every § € L(Y, X)}.

1991 Mathematics Subject Classification: Primary 47TAB3.

Key words and phrases: inessential operator, improjective operator, Fredholm theory.

The first author supported by the International Cooperation Project in Mathematics

hetween CONICIT-Veniezuela and CNR-Italy.
The second author supported in part by DGICYT (Spain}, Grant PB 94-1052.

[271)



