
APPLICATIONES MATHEMATICAE

25,1 (1998), pp. 1–18

R. MAGIERA (Wroc law)

ON MINIMAX SEQUENTIAL PROCEDURES FOR

EXPONENTIAL FAMILIES OF STOCHASTIC PROCESSES

Abstract. The problem of finding minimax sequential estimation proce-
dures for stochastic processes is considered. It is assumed that in addition
to the loss associated with the error of estimation a cost of observing the
process is incurred. A class of minimax sequential procedures is derived ex-
plicitly for a one-parameter exponential family of stochastic processes. The
minimax sequential procedures are presented in some special models, in par-
ticular, for estimating a parameter of exponential families of diffusions, for
estimating the mean or drift coefficients of the class of Ornstein–Uhlenbeck
processes, for estimating the drift of a geometric Brownian motion and for
estimating a parameter of a family of counting processes. A class of minimax
sequential rules for a compound Poisson process with multinomial jumps is
also found.

1. Introduction. The paper is devoted to the problem of determin-
ing minimax stopping rules and corresponding estimators in estimating un-
known parameters of stochastic processes. The study of sequential estima-
tion for continuous time stochastic processes was initiated by Dvoretzky,
Kiefer and Wolfowitz (1953). They proved that for the Poisson, negative-
binomial, gamma and Wiener processes the minimax sequential procedure
for estimating the mean value parameter reduces to a fixed-time procedure
if a weighted quadratic loss function is used. Their results were general-
ized by Magiera (1977) to a one-dimensional parameter exponential family
of processes with stationary independent increments, and next by Trybu la
(1985) and Franz (1985), using different loss functions, to the multidimen-
sional exponential family. Trybu la (1985) also showed that for the Poisson
process an inverse procedure is minimax. Wilczyński (1985) obtained an
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analogous result for the multinomial process. A minimax procedure for es-
timating the mean value of the Ornstein–Uhlenbeck process was found by
Różański (1982). For a class of continuous Gaussian processes with a special
form of covariance matrix minimax sequential procedures for estimating the
vector parameter of the mean value function were obtained by Rhiel (1985).
The optimal procedures he derived are fixed-time ones. The minimaxity
of a sequential procedure for estimating the one-dimensional coefficient of
the drift matrix of hypoelliptic homogeneous Gaussian diffusions was shown
by Le Breton and Musiela (1985). Considering an exponential family of
processes which includes the binomial process and some models for count-
ing processes, it was proved by Magiera (1990) that an inverse procedure is
minimax under a suitably weighted quadratic loss function.

In this paper a class of minimax sequential procedures is derived explic-
itly for a one-parameter exponential model for stochastic processes. The
minimax procedures obtained are not in general fixed-time ones, in con-
trast to most of those in the special models mentioned above. The model
considered covers several important classes of stochastic processes, such as
an exponential family of processes with stationary independent increments,
and many counting, diffusion-type etc. processes. Some special models, fre-
quently occurring in theory and practice, are considered in Sections 6 and 7.
Most of them have not been treated in the literature in the problem of find-
ing minimax sequential procedures. The minimax sequential procedures are
presented in estimating a parameter of a family of exponential-type diffu-
sions, in estimating a drift parameter of hypoelliptic homogeneous Gaus-
sian diffusions, in estimating the mean or drift coefficients of the class of
Ornstein–Uhlenbeck processes, in estimating the drift of a geometric Brow-
nian motion and in estimating a parameter of a family of counting processes.

In Section 8 a special model of a multiparameter exponential family of
processes is considered. A class of sequential minimax rules is presented for
a compound Poisson process with multinomial jumps.

2. Preliminaries. Let X(t), t ∈ T , be a stochastic process defined on a
probability space (Ω,F , Pϑ) with values in (Rk,BRk), where T = [0,∞) or
T = {0, 1, 2, . . .} and ϑ is a parameter with values in an open set Θ ⊆ R

n.
Let Pϑ,t denote the restriction of Pϑ to Ft = σ {X(s) : s ≤ t}. Suppose that
the family Pϑ,t, ϑ ∈ Θ, is dominated by a measure µt which is the restriction
of a probability measure µ to Ft and that the density functions (likelihood
functions) have the form

dPϑ,t

dµt
= L(Y (t), t, ϑ),

where Y (t), t ∈ T , is a process with values in (Rl,BRl) and adapted to the
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filtration Ft, t ∈ T , and L(·, ·, ϑ) is a continuous function. Clearly, Y (t) is a
sufficient statistic for ϑ relative to Ft, t ∈ T . In the case of continuous time
it is supposed that the process Y (t), t ∈ T , has Skorokhod paths, i.e., paths
which are right-continuous and have limits from the left.

Let τ be a stopping time relative to Ft, t ∈ T , such that Pϑ(τ < ∞) = 1
for each ϑ ∈ Θ. Suppose that the process can be observed during the random
time interval [0, τ ]. The σ-algebra Fτ of events happening before τ is given
by

A ∈ Fτ ⇔ A ∩ {τ ≤ t} ∈ Ft for all t ∈ T.

Define U = R
l × T , BU = BRl ⊗BT , and let mϑ be the measure induced by

the mapping (Y (τ), τ) on the measurable space (U,BU ) given Pϑ, i.e.,

mϑ(B) = Pϑ((Y (τ), τ)−1(B)), B ∈ BU ,

and let mτ be the measure induced by (Y (τ), τ) given µ. The measure
m is well defined, because for every finite stopping time τ the mapping
(Y (τ), τ) : Ω → BU is Fτ -measurable. The random variable (Y (τ), τ) is a
sufficient statistic for ϑ relative to Fτ (Döhler (1981)).

By Döhler (1981), the following modification of a well-known lemma of
Sudakov holds.

Lemma. Let τ be any finite stopping time relative to Ft, t ∈ T . Then,
for every ϑ ∈ Θ, mϑ ≪ mτ and the Radon–Nikodym derivative of mϑ with

respect to mτ is

dmϑ

dmτ
(y, t) = L(y, t, ϑ), y ∈ R

l, t ∈ T.

Let Pϑ,τ and µτ denote the restrictions of Pϑ and µ to Fτ . By the
Lemma, Pϑ,τ ≪ µτ and

dPϑ,τ

dµτ
= L(Y (τ), τ, ϑ).

This formula is the fundamental identity of sequential analysis. It means
that the form of the likelihood function is independent of the sampling
rule τ . By virtue of the fundamental identity the expectations (risks) are
well defined for randomly stopped processes. In the sequel the function
L(Y (τ), τ, ϑ) will be denoted simply by L(τ, ϑ).

3. A minimax theorem. Suppose that, in addition to the loss associ-
ated with the error of estimation, the statistician incurs a cost of observation
of the process. Let L(ϑ, d(Y (t), t), Y (t), t) be the loss function determining
the loss incurred by the statistician if ϑ is the true value of the parameter
and d is the estimator chosen by him having observed Y (t) at the moment
of stopping t. Denote by c(Y (t), t) the cost function which represents the
cost of observing the process up to time t.
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Sequential procedures of the form δ = (τ, d) for estimating ϑ will be
considered, where τ is a finite stopping time with respect to Ft, t ∈ T , and
d = d(Y (τ), τ) is an Fτ -measurable random variable. The risk function of
the sequential procedure δ = (τ, d) is defined by

R(ϑ, δ) = Eϑ[L(ϑ, d(Y (τ), τ), Y (τ), τ) + c(Y (τ), τ)].

In the sequel we only consider sequential procedures δ = (τ, d) for which
R(ϑ, δ) < ∞ for each ϑ ∈ Θ. The class of all sequential procedures satisfying
this condition will be denoted by D. The problem is to find optimal stopping
rules τ and the corresponding estimators d(τ) = d(Y (τ), τ) subject to the
minimax criterion: a sequential procedure δ0 = (τ0, d0) is said to be minimax

if

sup
ϑ∈Θ

R(ϑ, δ0) = inf
δ∈D

sup
ϑ∈Θ

R(ϑ, δ).

Let π be the prior distribution of the parameter on the space (Θ,BΘ) and
suppose that R(ϑ, δ) is a BΘ-measurable function of ϑ. Then the Bayes risk

is defined by

r(π, δ) =
\
Θ

R(ϑ, δ)π(dϑ),

provided the integral exists. A sequential procedure δ̂ = (τ̂ , d̂) is called
Bayes for π if

r(π, δ̂) = inf
δ∈D

r(π, δ).

Let π(· | Y (τ) = y, τ = t) denote the posterior distribution of the parameter
ϑ given Y (τ) = y, τ = t. The posterior risk corresponding to π and an
estimator d is defined by

̺(π(· | Y (τ) = y, τ = t), d) =
\
Θ

L(ϑ, d(y, t), y, t)π(dϑ | Y (τ) = y, τ = t).

An estimator d∗ = d∗(y, t) is called (y, t)-Bayes for π if

̺(π(· | Y (τ) = y, τ = t), d∗) = inf
d
̺(π(· | Y (τ) = y, τ = t), d)

for all (y, t) ∈ U .

A minimax theorem will be presented which is a version of the theorem
of Wilczyński (1985) formulated here for the general form L(ϑ, d(Y (t), t),
Y (t), t) of loss function.

Denote by W (y, t) a measurable mapping from (U,BU ) into (R,BR).

Theorem 1. Assume that the cost function is of the form c(y, t) =
c(W (y, t)). Suppose that there exists a sequence of priors πn, n = 1, 2, . . . ,
of the parameter ϑ for which there are corresponding (y, t)-Bayes estimators
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d∗n such that

lim inf
n→∞

̺(πn(· | Y (τ) = y, τ = t), d∗n) = K(W (y, t))

for each (y, t) ∈ U , where K is a real-valued measurable function defined

on R. Moreover , assume that K(·) + c(·) attains its minimum over Z at a

point z∗, where Z is the set of values of the process W (Y (t), t), t ∈ T . If

τz∗ = inf{t ∈ T : W (Y (t), t) = z∗}

is a finite stopping time for each ϑ ∈ Θ, and if there exists an estimator

dz∗(τz∗) = dz∗(Y (τz∗), τz∗) such that

sup
ϑ∈Θ

R(ϑ, δz∗) ≤ K(z∗) + c(z∗),

where δz∗ = (τz∗ , dz∗(τz∗)), then the sequential procedure δz∗ is minimax

under the loss function L(ϑ, d(Y (t), t), Y (t), t) in the class of all sequential

procedures δ = (τ, d(τ)) ∈ D.

4. The exponential model of processes and conjugate priors.

Suppose that the likelihood function of the process X(t), t ∈ T , has the
following exponential form:

(1) L(t, ϑ) =
dPϑ,t

dµt
= exp[ϑZ(t) − Φ(ϑ)S(t)],

where ϑ ∈ Θ ⊆ R
n; Φ(ϑ) and S(t) are one-dimensional, while Z(t) is an

n-dimensional vector process; (Z(t), S(t)), t ∈ T , is a stochastic process
adapted to the filtration Ft, t ∈ T . Of course, (Z(t), S(t)) is a sufficient
statistic for ϑ relative to Ft, t ∈ T .

The process (Z(t), S(t)), t ∈ T , is assumed to satisfy the following con-
ditions: Z(t) is right continuous as a function of t, Pϑ-a.s., and S(t), t ∈ T ,
are nonnegative random variables (S(t) may be nonrandom as well) such
that S(t) is nondecreasing and continuous as a function of t and S(t) → ∞
as t → ∞, Pϑ-a.s.

The family of (1) covers many counting, branching, diffusion-type etc.
processes.

Some results concerning characterization of the family of prior distribu-
tions on Θ which should be conjugate to the family of (1) are needed in the
method of finding optimal procedures.

Denote by Y the interior of the convex hull of the set of all possible values
of the process (Z(t), S(t)), t ∈ T . Define a family π(ϑ; r, α), (r, α) ∈ R

n+1,
of measures on Θ with the density (with respect to the Lebesgue measure)
given by

(2)
dπ(ϑ; r, α)

dϑ
= f(ϑ; r, α) = C(r, α) exp[rϑ− αΦ(ϑ)].
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The following theorem due to Magiera and Wilczyński (1991) shows that
if the hyperparameters r, α are chosen from the set Y, then there exists a
norming constant C(r, α) such that π(ϑ; r, α) is a proper conjugate prior,
and the expectation of the gradient ∇Φ(ϑ) equals r/α.

Theorem 2. If (r, α) ∈ Y, then

(a)
T
Θ
f(ϑ; r, α) dϑ < ∞,

(b) E∇Φ(ϑ) =
T
Θ

(∇Φ(ϑ))f(ϑ; r, α) dϑ = r/α.

In the next section a class of minimax sequential estimation procedures
will be determined explicitly for the one-parameter case of the statistical
model considered. For this case define

A0 =
{

(r, α) ∈ R
2 :
\
Θ

Φ′′(ϑ) exp[rϑ− αΦ(ϑ)] dϑ < ∞
}

and let π̃(ϑ; r, α), (r, α) ∈ A0, be a family of prior distributions of the pa-
rameter ϑ according to the following form of densities (with respect to the
Lebesgue measure dϑ):

(3) dπ̃(ϑ; r, α) = C̃(r, α)Φ′′(ϑ) exp[rϑ− αΦ(ϑ)] dϑ.

To ensure finite posterior expected loss under the weighted square error
considered in the next section, certain restrictions on the hyperparameters
r, α will be needed. Define

A1 =
{

(r, α) ∈ R
2 :
\
Θ

exp[rϑ− αΦ(ϑ)] dϑ < ∞
}
,

A2 =
{

(r, α) ∈ R
2 :
\
Θ

[Φ′(ϑ)]2 exp[rϑ− αΦ(ϑ)] dϑ < ∞
}

and A = A0 ∩ A1 ∩ A2 ∩ Y. Since, by Theorem 2, Y ⊂ A1, it follows that
A = A0 ∩ A2 ∩ Y. To derive the Bayes estimator of ϑ and the posterior
expected loss, one has to consider the following conditions:\

Θ

d

dϑ
{exp[rϑ− αΦ(ϑ)]} dϑ = 0,(4) \

Θ

d

dϑ
{[r − αΦ′(ϑ)] exp[rϑ− αΦ(ϑ)]} dϑ = 0.(5)

Suppose that the set A has the following representation:

(6) A = {(r, α) ∈ R
2 : (r, α) ∈ Y, α > α0},

where α0 is nonnegative. It then follows from Theorem 2 that the condition
(4) is always satisfied and the following formula holds:

(7) α
\
Θ

Φ′(ϑ) exp[rϑ− αΦ(ϑ)] dϑ = r
\
Θ

exp[rϑ− αΦ(ϑ)] dϑ.
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If (5) is also satisfied almost everywhere for (r, α) ∈ A, then the following
relation is valid:

(8)
\
Θ

[r − αΦ′(ϑ)]2 exp[rϑ− αΦ(ϑ)] dϑ = α
\
Θ

Φ′′(ϑ) exp[rϑ− αΦ(ϑ)] dϑ,

which will be used to derive posterior expected loss.

5. Minimax sequential procedures for the one-parameter expo-

nential families of processes. It is assumed that the condition (5) is
satisfied for all (r, α) ∈ A, and, additionally, in the case when α0 > 0, that

(9) sup
ϑ∈Θ

[Φ′(ϑ)]2

Φ′′(ϑ)
=

1

α0
.

Conditions (5) and (9) are practically not restrictive. They are satisfied for
all known processes of the exponential family.

Note that if for a finite stopping time τ the usual regularity conditions
are satisfied which allow differentiating twice under the integral sign with
respect to ϑ in the identity

T
exp[ϑZ(τ)−Φ(ϑ)S(τ)] dµτ = 1, then the Wald

identities hold:

EϑZ(τ) = Φ′(ϑ)EϑS(τ),(10)

Eϑ[Z(τ) − Φ′(ϑ)S(τ)]2 = Φ′′(ϑ)EϑS(τ).(11)

Let the loss function be defined by

L(ϑ, d(z, s)) =
1

Φ′′(ϑ)
[d(z, s) − Φ′(ϑ)]2,

and let the cost function be of the form c(z, s) = c(s), where z, s are the
values of Z(τ) and S(τ), respectively.

Theorem 3. If there exists s∗ > 0 such that

1

α0 + s∗
+ c(s∗) = min

s>0

[
1

α0 + s
+ c(s)

]
,

then the sequential procedure δs∗ = (τs∗ , d
0(τs∗)) with

τs∗ = inf{t : S(t) = s∗} and d0(τs∗) =
Z(τs∗)

α0 + S(τs∗)
=

Z(τs∗)

α0 + s∗

is minimax in D.

P r o o f. Let π̃(ϑ; r, α), (r, α) ∈ A, be the family of priors on Θ defined
by (3). The posterior probability distribution of the parameter ϑ, given
Z(τ) = z, S(τ) = s is determined by π̃(ϑ; r̃, α̃), where r̃ = r + z and
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α̃ = α + s. The posterior risk is

̺α(π̃(· | Z(τ) = z, S(τ) = s), d(z, s))

= C̃(r̃, α̃)
\
Θ

[d(z, s) − Φ′(ϑ)]2 exp[r̃ϑ− α̃Φ(ϑ)] dϑ

and this risk attains its minimum for

d∗α(z, s) =

T
Θ
Φ′(ϑ) exp[r̃ϑ− α̃Φ(ϑ)] dϑT
Θ

exp[r̃ϑ− α̃Φ(ϑ)] dϑ
.

By (7) this estimator takes the form

d∗α(z, s) =
r̃

α̃
=

r + z

α + s
.

The posterior risk corresponding to this estimator is

̺α(π̃(· | Z(τ) = z, S(τ) = s), d∗α(z, s))

= C̃(r̃, α̃)α̃−2
\
Θ

[r̃ − α̃Φ′(ϑ)]2 exp[r̃ϑ− α̃Φ(ϑ)] dϑ.

Taking into account the identity\
Θ

[r̃ − α̃Φ′(ϑ)]2 exp[r̃ϑ− α̃Φ(ϑ)] dϑ = α̃
\
Θ

Φ′′(ϑ) exp[r̃ϑ− α̃Φ(ϑ)] dϑ

(see formula (8)) gives

̺α(π̃(· | Z(τ) = z, S(τ) = s), d∗α(z, s))

=
1

α̃
C̃(r̃, α̃)

\
Θ

Φ′′(ϑ) exp[r̃ϑ− α̃Φ(ϑ)] dϑ =
1

α + s
.

Consider now the sequential procedure δs = (τs, d
0(τs)) with

τs = inf{t : S(t) = s}, s > 0,

and

d0(τs) = d0(Z(τs), S(τs)) =
Z(τs)

α0 + S(τs)
=

Z(τs)

α0 + s
.

By the assumptions on the process S(t) the stopping time τs is finite for
each ϑ ∈ Θ. Moreover, note that the likelihood function at τs belongs to a
noncurved exponential family. It then follows from the well-known analytical
properties of noncurved exponential families (see Barndorff-Nielsen (1978)
or Brown (1986)) that the regularity conditions are satisfied. Thus, for the
stopping time τs the Wald identities (10) and (11) take the form

EϑZ(τs) = sΦ′(ϑ),(12)

Eϑ[Z(τs) − sΦ′(ϑ)]2 = sΦ′′(ϑ).(13)
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The risk corresponding to the estimator d0 = d0(τs) is

R0(ϑ, d0) =
Eϑ[Z(τs) − (α0 + s)Φ′(ϑ)]2

(α0 + s)2Φ′′(ϑ)
.

Using the identities (12) and (13) yields

R0(ϑ, d0) =
sΦ′′(ϑ) + [α0Φ

′(ϑ)]2

(α0 + s)2Φ′′(ϑ)
.

Thus, under condition (9),

sup
ϑ∈Θ

R0(ϑ, d0) =
1

α0 + s
= lim

α→α0

̺α(π̃(· | Z(τ) = z, S(τ) = s), d∗α(z, s)).

Referring to Theorem 1 with W (z, s) = s for each (z, s) ∈ R × R+ and
K(s) = 1/(α0 + s) for each s > 0 yields the desired result.

6. Minimax sequential procedures for exponential families of

diffusions. In this section we consider some families of diffusion-type
processes X(t), t ≥ 0, for which the likelihood functions have the following
special form of the exponential model defined by (1):

(14) L(t, ϑ) = exp

[
ϑZ(t) −

1

2
ϑ2S(t)

]
,

where ϑ ∈ Θ = (−∞,∞) and the process Z(t), t ≥ 0, takes its values in R.
In this model\

Θ

Φ′′(ϑ) exp[rϑ− αΦ(ϑ)] dϑ =

∞\
−∞

exp

[
rϑ− α

ϑ2

2

]
dϑ

=

(
2π

α

)1/2

exp

(
r2

2α

)

and \
Θ

[Φ′(ϑ)]2 exp[rϑ− αΦ(ϑ)] dϑ =

∞\
−∞

ϑ2 exp

[
rϑ− α

ϑ2

2

]
dϑ

= (2π)1/2α−3/2

(
1 +

r2

α

)
exp

(
r2

2α

)

for −∞ < r < ∞ and α > 0. Thus, in this case, A0 = A1 = A2 =
(−∞,∞)× (0,∞). The set A has the representation of (6) with α0 = 0, i.e.,
A = (−∞,∞) × (0,∞) = Y. Moreover, it is easy to check that condition
(5) is satisfied for all (r, α) ∈ A.

The following corollary determines minimax sequential procedures δ =
(τ, d(τ)) for estimating ϑ under the loss function
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L(ϑ, d(τ)) = [d(τ) − ϑ]2

and the cost function having the form c(τ) = c(S(τ)).

Corollary 1. If there exists s∗ > 0 such that

1

s∗
+ c(s∗) = min

s>0

[
1

s
+ c(s)

]
,

then the procedure δs∗ = (τs∗ , d
0(τs∗)) with

τs∗ = inf{t : S(t) = s∗} and d0(τs∗) =
Z(τs∗)

s∗

is minimax in D.

6.1. A family of exponential-type diffusions. Let X(t), t ≥ 0, be a
stochastic process satisfying the following stochastic differential equation:

(15)
dX(t) = [a1(t,X(t)) + ϑa2(t,X(t))]dt + b(t,X(t))dW (t),

X(0) = x0,

with b(t,X(t)) > 0, where W (t), t ≥ 0, denotes the standard Wiener process
and all processes and functions take their values in R. The class of solutions
of (15) induces a family of probability measures Pϑ, ϑ ∈ Θ, on the space of
continuous functions from [0,∞) into R with the filtration generated by the
cylinder sets. If the process

S(t) =

t\
0

[a2(s,X(s))]2[b(s,X(s))]−2 ds

satisfies Pϑ(S(t) < ∞) = 1 for all ϑ ∈ Θ and all t > 0, then for all t > 0 the
measures Pϑ,t, ϑ ∈ Θ, are equivalent, and the likelihood function L(t, ϑ) =
dPϑ,t/dP0,t is of the form (14), where

Z(t) =

t\
0

a2(s,X(s))[b(s,X(s))]−2 dX(s)

−
t\
0

a1(s,X(s))[b(s,X(s))]−2a2(s,X(s)) ds,

provided the last integral exists (see Küchler and Sørensen (1994)). Corol-
lary 1 determines a class of minimax sequential procedures in this model.

6.2. Hypoelliptic homogeneous Gaussian diffusions. Consider a multi-
dimensional process defined by an autonomous linear stochastic differential
equation of the following form:

dX(t) = ϑAX(t)dt + GdW (t), X(0) = x0,
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where W (t), t ≥ 0, is the standard k-dimensional Wiener process and A
and G are constant n × n and n × k matrices, respectively. Recall that
(see Liptser and Shiryaev (1978)) the process X(t), t ≥ 0, is a Gaussian
Markov process with mean function EϑX(t) = exp(ϑAt)x0, t ≥ 0, and the
covariance function

Bϑ(t, s) = Eϑ[(X(t) − EϑX(t))(X(s) − EϑX(s))∗]

=

{
exp[ϑA(t− s)]Bϑ(s) if t ≥ s,
Bϑ(t) exp[ϑA∗(s− t)] if t ≤ s,

where the variance function Bϑ(t), t ≥ 0, is given by

Ḃϑ(t) = ϑABϑ(t) + ϑBϑ(t)A∗ + GG∗, t ≥ 0, Bϑ(0) = 0,

or equivalently

Bϑ(t) = exp(ϑAt)

t\
0

exp(−ϑAs)GG∗ exp(−ϑA∗s) ds exp(ϑA∗t), t ≥ 0

(here the star denotes transposition). It is assumed that the differential
generator corresponding to the homogeneous Gaussian diffusion X(t), t ≥ 0,
is hypoelliptic, or equivalently, that rank[G,AG, . . . , An−1G] = n. Then, for

every 0 ≤ s < t, the integral
Tt
s

exp(−ϑAu)GG∗ exp(−ϑA∗u) du is a positive
definite matrix and in particular, for every t > 0, the variance matrix Bϑ(t)
is regular.

Define H = GG∗ and let H+ be its pseudoinverse. Assume that HH+A
6= 0. The log likelihood function is equal to

ϑ

t\
0

X∗(s)A∗H+ dX(s) −
1

2
ϑ2

t\
0

X∗(s)A∗H+AX(s) ds

(see Liptser and Shiryaev (1978) or Le Breton and Musiela (1985)). By
Corollary 1, if there exists s∗ > 0 such that

1

s∗
+ c(s∗) = min

s>0

[
1

s
+ c(s)

]
,

then the procedure δs∗ = (τs∗ , d
0(τs∗)) with

τs∗ = inf
{
t :

t\
0

X∗(s)A∗H+AX(s) ds = s∗
}

and

d0(τs∗) =
1

s∗

τs∗\
0

X∗(s)A∗H+ dX(s)

is minimax in D.
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In the problem of sequential estimation of ϑ when the cost of observation
is not taken into account the minimaxity of the sequential procedure δs∗ =
(τs∗ , d

0(τs∗)) was shown by Le Breton and Musiela (1985) by using another
method.

6.3. Minimax sequential procedures for the class of

Ornstein–Uhlenbeck processes

6.3.1. Let X(t), t ≥ 0, be the Ornstein–Uhlenbeck process with the
mean coefficient ν, the drift coefficient β and the scale coefficient σ, defined
as a solution of the stochastic differential equation

(16) dX(t) = β[ν −X(t)]dt + σdW (t),

−∞ < ν < ∞, β > 0, σ > 0.

1. Assume that X(0) = x0, that ν is the parameter of interest, and that
β, σ are known. Then the model is a special case of (15) for a1(t,X(t)) =
−βX(t), a2(t,X(t)) = β, b(t,X(t)) = σ, ϑ = ν. The solution of equation
(16) has the mean EνX(t) = ν + (x0 − ν) exp(−βt) and the covariance
function B(s, t) = (σ2/(2β)){exp(−β|t−s|)−exp[−β(t+s)]}. The likelihood
function is

L(t, ν) =
dPν,t

dP0,t
= exp

{
β

σ2

[
ν
(
X(t) − x0 + β

t\
0

X(s) ds
)
−

1

2
ν2βt

]}
.

It follows from Corollary 1 that if there exists t∗ > 0 such that

σ2

β2t∗
+ c(t∗) = min

t>0

[
σ2

β2t
+ c(t)

]
,

then the fixed-time procedure δt∗ = (t∗, d0(t∗)) with

d0(t∗) =
X(t∗) − x0 + β

Tt∗
0
X(s) ds

βt∗

is minimax for estimating the mean value parameter ν.

2. Suppose that X(0) =D N (ν, σ2/(2β)) (X(0) being independent of
W (t), t ≥ 0). Assume that ν is the parameter of interest and β, σ are known.
The process X(t), t ≥ 0, is a stationary Gaussian Markov process with
EνX(t) = ν and the covariance function B(s, t) = (σ2/(2β)) exp(−β|t− s|).
Here the likelihood function is

L(t, ν) = exp

{
β

σ2

[
ν
(
X(t) + X(0) + β

t\
0

X(s) ds
)
−

1

2
ν2(2 + βt)

]}
.

Assuming c(t) = c(βσ−2(2 + βt)), Corollary 1 gives the following result: If
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there exists t∗ > 0 such that

σ2

β(2 + βt∗)
+ c(t∗) = min

t>0

[
σ2

β(2 + βt)
+ c(t)

]
,

then the fixed-time procedure δt∗ = (t∗, d0(t∗)) with

d0(t∗) =
X(t∗) + X(0) + β

Tt∗
0
X(s) ds

2 + βt∗

is minimax for estimating the mean value ν. This result was obtained by
Różański (1982).

6.3.2. Suppose the observed process X(t), t ≥ 0, has the stochastic
differential

dX(t) = ϑX(t)dt + σdW (t), X(0) = x0,

where σ > 0 is known. The solution of this equation has the mean EϑX(t) =
x0 exp(ϑt) and the variance VarϑX(t) = (σ2/(2ϑ))[exp(2ϑt)−1]. This model
is obtained from (15) for a1(t,X(t)) = 0, a2(t,X(t)) = X(t), b(t,X(t)) = σ,
and it is a one-dimensional case of the model of Section 6.2. For this model
the statistics Z(t) and S(t) appearing in (14) are given by

Z(t) =
1

σ2

t\
0

X(s) dX(s) =
X2(t) − x2

0 − σ2t

2σ2

(by Ito’s formula) and

S(t) =
1

σ2

t\
0

X2(s) ds.

If there exists s∗ > 0 such that

1

s∗
+ c(s∗) = min

s>0

[
1

s
+ c(s)

]
,

then the sequential procedure δs∗ = (τs∗ , d
0(τs∗)) with

τs∗ = inf
{
t :

t\
0

X2(s) ds = s∗
}

and d0(τs∗) =
X2(τs∗) − x2

0 − σ2τs∗

2s∗

is minimax for estimating the drift coefficient ϑ.

6.4. Estimating the drift of a geometric Brownian motion. Let X(t),
t ≥ 0, be a diffusion process satisfying the stochastic differential equation

dX(t) = µX(t)dt + σX(t)dW (t).

The state space of X(t) is (0,∞) and its initial state is x0. By a straight-
forward application of Ito’s formula X(t) can be represented in the form

X(t) = x0 exp

[
σW (t) +

(
µ−

1

2
σ2

)
t

]
, t ≥ 0.
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The process X(t) is called a geometric Brownian motion with drift parame-
ter µ and volatility σ. The geometric Brownian motion serves as a model of
the stock price dynamics and forms the basis for the famous option pricing
theory of Black and Scholes (1973).

For every t > 0 the density of the random variable X(t) is equal to

1

X(t)σ(2πt)1/2
exp

{
−

[log(X(t)/x0) − (µ− σ2/2)t]2

2σ2t

}
,

i.e., X(t) is log normally distributed with parameters ((µ− σ2/2)t + log x0,
σ2t). Suppose we start observing the process X(t) at a fixed moment t0 ≥ 0.
The likelihood function based on the observation up to time t0 + t is

L(t, µ) = exp

{
1

σ2

[
µ

(
σ2

2
(t + t0) + log

X(t + t0)

x0

)
−

1

2
µ2(t + t0)

]}
.

Observe that, unlike X(t), the process log(X(t)/x0)+ 1
2
σ2t = σW (t)+µt

has independent increments.

Corollary 2. If there exists t∗ > 0 such that

σ2

t∗ + t0
+ c(t∗) = min

t>0

[
σ2

t + t0
+ c(t)

]
,

then the fixed-time procedure δt∗ = (t∗, d0(t∗)) with

d0(t∗) =
σ2

2
+

1

t∗ + t0
log

X(t∗ + t0)

x0

is minimax for estimating the drift parameter µ.

7. An exponential family of counting processes. Let X(t), t ≥ 0,
be a counting process and let X(t) = M(t) + Λ(t) denote its Doob–Meyer
decomposition, where M(t) is the martingale part and Λ(t) is the compen-
sator. Assume that Λ(t) = µS(t), where µ > 0 and S(t) is continuous. It is
well known (see Liptser and Shiryaev (1978)) that under certain conditions
the likelihood function is given by

L(t, µ) = exp[(X(t) − x0) log µ− µS(t)],

where X(0) = x0.

An example is obtained by taking S(t) =
Tt
0
H(s) ds, where H(t) is a

positive, predictable stochastic process. In particular, H(t) ≡ 1 for the
Poisson process, H(t) = btb−1 for the Weibull process (b being a known
value), H(t) = X(t−) for the pure birth process, and H(t) = X(t−)[M −
X(t−)]+ for the logistic birth process, where M is a known constant.

In this model the set A of prior parameters is A = (0,∞) × (0,∞), i.e.,
α0 = 0. Moreover, it is easy to check that condition (5) is satisfied for all
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(r, α) ∈ A. Suppose that the loss incurred at the moment of stopping τ in
estimating the parameter µ using an estimator d(τ) is defined by

L(µ, d(τ)) =
1

µ
[d(τ) − µ]2,

and that the cost function has the form c(τ) = c(S(τ)). It then follows from
Theorem 3 that if there exists s∗ > 0 such that

1

s∗
+ c(s∗) = min

s>0

[
1

s
+ c(s)

]
,

then the procedure δs∗ = (τs∗ , d
0(τs∗)) with

τs∗ = inf
{
t :

t\
0

H(s) ds = s∗
}

and d0(τs∗) =
X(τs∗) − x0

s∗

is minimax in D.

8. Minimax sequential procedures for a compound Poisson pro-

cess with multinomial jumps. In this section an example of a multipa-
rameter exponential model for stochastic processes will be considered. Take
into account the following process. Jumps occur according to a Poisson
process with intensity, say, λ(t). Denoting by X(i) the magnitude of the
ith jump (at time ti) we assume that X(i), i = 1, 2, . . . , are independent
identically distributed random variables which are also independent of the
Poisson process k(t), t ≥ 0, which produces these jumps.

The likelihood function based on the realization (k(t); t1, . . . , tk(t);
X(1), . . . ,X(k(t))) is given by

k(t)∏

j=1

λ(tj)
{

exp
[
−

t\
0

λ(s) ds
]} k(t)∏

j=1

p(X(j)),

k(t) ≥ 1, where p(X(j)) is the density of X(j), the jump size.
Suppose the jumps X(1),X(2), . . . have the multinomial distribution

with parameter p ∈ P = {(p1, . . . , pm) : pi > 0, i = 1, . . . ,m;
∑m

i=1 pi = 1},
i.e., X(i) = (X1(i), . . . ,Xm(i)) with P (X(i) = ej) = pj , j = 1, . . . ,m, i =
1, 2, . . . , where e1 = (1, 0, . . . , 0), . . . , em = (0, . . . , 0, 1). Define Yi(k(t)) =∑k(t)

j=1Xi(j), i = 1, . . . ,m. If the intensity λ(t) is known then the likelihood
function is defined by

p
Y1(k(t))
1 . . . pYm(k(t))

m ,

where
∑m

i=1 Yi(k(t)) = k(t). This formula can be rewritten in the following
exponential form:

exp
[m−1∑

i=1

ϑiYi(k(t)) − Φ(ϑ)k(t)
]
,
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where

ϑi = log

[
pi

1 −
∑m−1

i=1 pi

]
, i = 1, . . . ,m− 1,

Φ(ϑ) = log
[
1 +

m−1∑

i=1

expϑi

]
,

which is a special form of the general model defined by (1).
Now a class of minimax sequential procedures for estimating the param-

eter p = (p1, . . . , pm) will be determined. Let the loss function L(p, d) be
defined by

(17) L(p, d) =

m∑

i=1

(di − pi)
2

pi

and let the cost function be of the form c(Y1(k(t)), . . . , Ym−1(k(t)), k(t)) =
c(k(t)). Let

(18) τk = inf{t ≥ 0 : k(t) = k}, k ≥ 1.

Exploiting the method of Theorem 1, in an analogous way to Wilczyński
(1985) for the multinomial process one obtains the following result.

Theorem 4. If there exists k0 ∈ {1, 2, . . .} for which

m− 1

k0 + m− 1
+ c(k0) = min

k

{
m− 1

k + m− 1
+ c(k)

}
,

then the sequential procedure (τk0
, dk0

), dk0
= (d1,k0

, . . . , dm,k0
) with

di,k0
=

Yi(k0)

k0 + m− 1
,

i = 1, . . . ,m, is minimax in the class D under the loss function (17).

S k e t c h o f p r o o f. Assuming conjugate priors π for p with densities
according to

dπ(p;α) =
Γ (mα)

[Γ (α)]m
(p1 . . . pm)α−1dp, α > 0,

we note that for any stopping time τ the posterior risk is

̺(π(· | Y (k(τ)) = y, k(τ) = k), d)

=
Γ (k + mα)∏m
i=1 Γ (yi + α)

\
. . .
\

P

m∑

i=1

(di − pi)
2

pi
py1+α−1
1 . . . pym+α−1

m dp1 . . . dpm−1.

For each α > 1 this risk is minimized by

d∗α,i(y) =
yi + α− 1

k + mα− 1
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(i = 1, . . . ,m; k =
∑m

i=1 yi), and

̺(π(· | Y (k(τ)) = y, k(τ) = k), d∗α) =
m− 1

k + mα− 1
→

m− 1

k + m− 1

as α → 1. For the sequential procedure δk = (τk, dk), where τk is defined by
(18) and dk = (d1,k, . . . , dm,k) with

di,k =
Yi(k(τk))

k(τk) + m− 1
=

Yi(k)

k + m− 1
, i = 1, . . . ,m,

the risk function is

R(p, δk) = Ep

[ m∑

i=1

(di,k − pi)
2

pi
+ c(k(τk))

]
=

m− 1

k + m− 1
+ c(k).

Thus, upon putting W (Y1(k(t)), . . . , Ym−1(k(t)), k(t)) = k(t) and K(k) =
(m− 1)/(k + m− 1), the result follows from Theorem 1.

An analogous result holds for the loss function

(19) L(p, d) =
m∑

i=1

(di − pi)
2

1 − pi
.

Theorem 5. If there exists k0 ∈ {1, 2, . . .} for which

1

k0 + (m− 1)−1
+ c(k0) = min

k

{
1

k + (m− 1)−1
+ c(k)

}
,

then the sequential procedure (τk0
, dk0

), dk0
= (d1,k0

, . . . , dm,k0
) with

di,k0
=

Yi(k0) + (m− 1)−1

k0 + (m− 1)−1
, i = 1, . . . ,m,

is minimax in the class D under the loss function (19).
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