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POINCARÉ–MELNIKOV THEORY

FOR n-DIMENSIONAL DIFFEOMORPHISMS

Abstract. We consider perturbations of n-dimensional maps having
homo-heteroclinic connections of compact normally hyperbolic invariant
manifolds. We justify the applicability of the Poincaré–Melnikov method
by following a geometric approach. Several examples are included.

1. Introduction. The Poincaré–Melnikov method is a well known tool
for evaluating the distance between splitted invariant manifolds of fixed ob-
jects (such as fixed points, periodic orbits, invariant tori, . . . ) when one
perturbs a system of differential equations having homo-heteroclinic con-
nections between such objects ([15], [14], [2], [4], [11], [17]). Furthermore,
it is also an important tool for determining the transversality at intersec-
tion points of invariant manifolds. The method has been developed for
two-dimensional maps ([7], [9]) and applied to several examples ([10], [13]).
Recently Delshams and Ramı́rez-Ros [5] have given a systematic approach
for evaluating the Melnikov function (an infinite sum, in this context) under
some conditions of meromorphy of the functions involved.

A generalization to invariant manifolds associated with fixed points of
n-dimensional maps is given in [16] and [3]. The case of exact symplectic
maps is considered in [6].

Here we consider the case of perturbations of n-dimensional maps hav-
ing homo-heteroclinic connections of compact normally hyperbolic invariant
manifolds. We justify the applicability of the method by following a geo-
metric approach.
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Since we do not put restrictions on the dimensions of the invariant man-
ifolds we have to consider families of maps with several parameters. We
discuss the locus of homo-heteroclinic intersections in the space of parame-
ters.

In Section 2 we describe the setup, in Section 3 we prove the main
result (Theorem 3.5). Two particular cases, of unperturbed maps which are
interpolated by hamiltonian flows, are considered in Section 4. In Section
5 we present some examples for which we prove or disprove the existence
of “clinic” intersections. Some technical details concerning the analytical
computation of the Melnikov function are deferred to the Appendix.

2. Description of the setting. We consider families of maps

Fε,µ : Rn ⊃ U → R
n

of class Cr, r ≥ 3, depending Cr on two parameters ε and µ with ε ∈ I ⊂ R,
0 ∈ I, and µ ∈ V ⊂ R

m. Also we shall use the notation

Fε,µ(x) = F (x, ε, µ).

We assume that F has the form

F (x, ε, µ) = F0(x) + εG(x, ε, µ)

with F0 satisfying the following hypotheses:

H1. F0 has two Cr normally hyperbolic invariant manifolds P 1, P 2 not
necessarily different, which are compact and connected. In particu-
lar, P 1, P 2 may be hyperbolic fixed points.

H2. The stable invariant manifold of P 1, say W s
0 , and the unstable in-

variant manifold of P 2, say W u
0 , are d-dimensional.

H3. There exists a d-dimensional heteroclinic manifold joining P 1 to P 2.
(homoclinic if P 1 = P 2; in this case n must be even and d = n/2).

We are going to define the Melnikov function in this setting. First we
recall a result on existence and persistence of normally hyperbolic invariant
manifolds ([8], [12]).

Theorem 2.1. Let F : Rn ⊃ U → U be a Cr diffeomorphism onto its

image, r ≥ 1. Let M be a Cr compact , connected , invariant manifold of F .
Let M be r-normally hyperbolic, that is,

1. There exists a continuous decomposition TRn
|M = TM ⊕N s ⊕Nu.

2. TM ⊕N s,u are F-invariant.

3. Let Πs,u be the projections on N s,u respectively. There exists a con-

stant λ, 0 < λ < 1, such that for all m ∈M , and 0 ≤ k ≤ r,

‖DF−1(m)|TM‖k‖ΠsDF (F−1(m))‖ < λ
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and

‖DF (m)|TM‖k‖ΠuDF−1(F (m))‖ < λ.

Then M has Cr stable and unstable manifolds. Furthermore, there ex-

ists a C1 neighbourhood of F , say U , such that all F ′ ∈ U have an invariant

manifold M ′, Cr-diffeomorphic to M , and M ′ has stable and unstable in-

variant manifolds. Furthermore, these objects depend in a differentiable way

on parameters.

3. Construction of the Melnikov vector function. Let I0 ⊂ I and
V0 ⊂ V be open sets such that 0 ∈ I0 and, if (ε, µ) ∈ I0 × V0, then Fε,µ

has normally hyperbolic invariant manifolds P 1
ε,µ, P

2
ε,µ depending Cr on ε, µ

and such that P 1
0,µ = P 1, P 2

0,µ = P 2. Let W s
ε,µ and W u

ε,µ be the stable and

unstable manifolds of P 1
ε,µ and P 2

ε,µ respectively.
We consider a point z ∈ (W s

0 − P 1) ∩ (W u
0 − P 2) and a neighbourhood

D of it in (W s
0 − P 1) ∩ (W u

0 − P 2) such that D ∩ P 1,2 = ∅.
We decompose

(3.1) TRn
|D = TD ⊕Q,

with Qx orthogonal to TxD for all x ∈ D. Because of the results on the
dependence of the invariant manifolds on parameters we can assume that
W s,u

ε,µ and x+Qx are transversal at their intersection point (taking smaller
I0 and V0 if necessary). Then there exist

xs,u : D × I0 × V0 → U

defined by

xs,u(x, ε, µ) =W s,u
ε,µ ∩ (x+Qx) ∩ U.

We write xs,uε,µ(x) = xs,u(x, ε, µ). Let v1(x), . . . , vn−d(x) be a basis of Qx

depending Cr−1 on x ∈ D.
Taking (x, ε, µ) ∈ D× I0×V0, we want to measure the distance between

xuε,µ(x) and x
s
ε,µ(x). We define

∆i(x, ε, µ) = 〈xuε,µ(x)− xsε,µ(x), vi(x)〉, i = 1, . . . , n− d,

∆(x, ε, µ) = (∆1(x, ε, µ), . . . ,∆n−d(x, ε, µ)),

M(x, µ) = Dε∆(x, ε, µ)|ε=0.

The vector M is called the Melnikov function associated with the basis
v1, . . . , vn−d. It is of class C

r−2. For x ∈ D we define

xk = F k
0 (x),

xs,u k
ε,µ (x) = xs,u k(x, ε, µ) = F k

ε,µ(x
s,u(x, ε, µ)),

ξs,u k
µ (x) =

∂

∂ε
xs,u k(x, ε, µ)

∣∣∣∣
ε=0

,
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for k ∈ Z, and

ξs,uµ (x) = ξs,u 0
µ (x).

Notice that

(3.2) Mi(x, µ) = 〈ξuµ(x)− ξsµ(x), vi(x)〉.

Lemma 3.1. For any i ∈ {1, . . . , n− d} and l1 > 0, l2 > 0 we have

Mi(x, µ) =

l1−1∑

k=−l2

〈DF k
0 (x

−k)G(x−k−1, 0, µ), vi(x)〉(3.3)

+ 〈DF l1
0 (x−l1)ξu −l1

µ (x), vi(x)〉

− 〈DF−l2
0 (xl2)ξs l2

µ (x), vi(x)〉.

P r o o f. We have

xs,u k+1
ε,µ = F (xs,u k

ε,µ , ε, µ) = F0(x
s,u k
ε,µ ) + εG(xs,u k

ε,µ , ε, µ).

Taking the derivative with respect to ε we get

d

dε
xs,u k+1
ε,µ = DF0(x

s,u k
ε,µ )

d

dε
xs,u k
ε,µ +G(xs,u k

ε,µ , ε, µ)

+ εDxG(x
s,u k
ε,µ , ε, µ)

d

dε
xs,u k
ε,µ + ε

∂G

∂ε
(xs,u k

ε,µ , ε, µ),

and evaluating it at ε = 0 gives

(3.4) ξs,u k+1
µ (x) = DF0(x

k)ξs,u k
µ (x) +G(xk, 0, µ).

Now we shall prove that for all l > 0,

(3.5) ξu 0
µ (x) = DF l

0(x
−l)ξu −l

µ (x) +

l−1∑

k=0

DF k
0 (x

−k)G(x−k−1, 0, µ).

Indeed, for l = 1 it is (3.4) evaluated at k = −1. If it is true for l, using
(3.4) evaluated at k = −l − 1,

ξu 0(x, µ) = DF l
0(x

−l)(DF0(x
−l−1)ξu −l−1

µ (x) +G(x−l−1, 0, µ))

+

l−1∑

k=0

DF k
0 (x

−k)G(x−k−1, 0, µ)

= DF l+1
0 (x−l−1)ξu −l−1

µ (x) +

l∑

k=0

DF k
0 (x

−k)G(x−k−1, 0, µ)

which proves (3.5).

From (3.4) we have

ξs,u k
µ (x) = (DF0(x

k))−1(ξs,u k+1
µ (x)−G(xk, 0, µ))
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and equivalently

(3.6) ξs,u k
µ (x) = DF−1

0 (xk+1)
(
ξs,u k+1
µ (x)−G(xk, 0, µ)

)
.

In the same way as before we check that for all l > 0,

(3.7) ξs 0
µ (x) = DF−l

0 (xl)ξs l
µ (x)−

−l∑

k=−1

DF k
0 (x

−k)G(x−k−1, 0, µ).

Subtracting (3.7) with l = l2 from (3.5) with l = l1 and taking the scalar
product with vi(x), we obtain (3.3).

The next two lemmas will give us sufficient control on the last two terms
of formula (3.3).

Lemma 3.2. Let µ be fixed , and γ : I → R
n be a C1 curve such that

γ(ε) ∈W s
ε,µ for all ε ∈ I. Let γm(ε) = Fm

ε,µ(γ(ε)). Suppose that there exists

an open subset U of W s
0 , containing P

1, such that γm(0) ∈ U for all m ≥ 0,
and there exists a continuous decomposition TRn

|U = TU ⊕ N . Let Π be

the projection on N . Then Πγ′m(0) is bounded by a constant independent of

m ≥ 0.

P r o o f. We enlarge all objects by adding the parameter ε. Precisely, we
introduce

P̃ s(ε) = (P s(ε), ε), F̃ (x, ε, µ) = (F (x, ε, µ), ε), γ̃m(ε) = (γm(ε), ε),

W̃ s
ε,µ =W s

ε,µ × {ε}, W̃ s
0 = W̃ s

0,µ =W s
0 × {0},

Ũ = U × {0}, W̃ s
µ =

⋃

ε

W̃ s
ε,µ.

From the definitions we have the decomposition

TRn+1

|Ũ
= T Ũ ⊕ Ñ

with Ñx = Nx ⊕ 〈(0, . . . , 0, 1)〉. Let q̃0 = (q0, 0) ∈ Ũ with q0 being an

arbitrary point in U . We define L̃q̃0 = q̃0 + Ñq̃0 . Since L̃q̃0 and W̃ s
0 intersect

transversally at q̃0, if ε is small enough there exists a Cr−1 curve q̃(ε) =

(q(ε), ε) such that q̃(0) = q̃0, and W̃ s
ε,µ and L̃q̃0 intersect transversally at

q̃(ε).
The tangent vector (q′(0), 1) to the curve q̃(ε) at ε = 0 depends contin-

uously on q0 ∈ U , and hence it has bounded norm in any compact subset of
U ⊂W s

0 .

On the other hand, the vectors of Tq̃0W̃
s
0 have the form (w, 0) ∈ R

n×{0}.
Let m ≥ 0. We take γm(0) as q0. The tangent vector of the curve γ̃m at

q̃0 is (γ′m(0), 1).
Since

Tq̃0W̃
s
µ = Tq̃0W̃

s
0 ⊕ 〈(q′(0), 1)〉
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there exist a unique (wm, 0) ∈ Tq̃0W̃
s
0 and a unique a ∈ R such that

(γ′m(0), 1) = a(q′(0), 1) + (wm, 0). Then we have a = 1 and hence γ′m(0) =
q′(0) + wm. From wm ∈ TqW

s
0 we have Πγ′m(0) = Πq′(0).

Since q0 = γm(0) tends to P 1 as m → ∞ and P 1 is compact it fol-
lows that q0 belongs to a compact subset of W s

0 and Πγ′m(0) is bounded
independently of m ≥ 0.

Lemma 3.3. Let (gk)k≥0 be a bounded sequence of vectors of Rn. Then,
given ν such that 0 < λ < ν < 1, there exists c ≥ 0 such that for all x ∈ D
and k ≥ 0,

|〈DF−k
0 (xk)gk, vi(x)〉| ≤ cνk.

P r o o f. Let

NηP 1 = {(x, v) : x ∈ P 1, v ∈ NxP
1, ‖v‖ < η}

be a tubular neighbourhood of P 1 with η > 0 small enough so that the map

ψ : NηP 1 → R
n, (x, v) 7→ x+ v,

is a diffeomorphism onto its image. This is possible because P 1 is compact.
Let π1 : NηP 1 → P 1 be its first projection. Let Ω0 = NηP 1 ∩W s

0 .

Furthermore, we can assume that D and Ω0 are small enough so that
there exists k0 such that F j

0 (D) ∩ Ω0 = ∅ for 0 ≤ j ≤ k0 and F k
0 (D) ⊂ Ω0

for k > k0.

We can assume that D is small enough so that F0(D) ∩D = ∅. Let

D̂ = Ω0 ∪
( ⋃

0≤k≤k0

F k
0 (D)

)
.

We consider the decomposition

TRn
|D̂

= TD̂ ⊕N

defined by

NFk
0
(x) = DF k

0 (x)Qx, 0 ≤ k ≤ k0, x ∈ D,

Nx = Tx′W u
0 (P

1), x ∈ Ω0,

where Q is defined in (3.1), W u
0 (P

1) is the unstable manifold of P 1 and x′ =
π1ψ

−1x. The decomposition is continuous because x′ depends continuously
on x. Let Π be the projection on N .

Let ν be such that 0 < λ < ν < 1. By continuity, taking a smaller Ω0 if
necessary, we have ‖ΠDF−1

0 (x)‖ < ν for all x ∈ Ω0.

Here we have ΠDF−1
0 Π = ΠDF−1

0 . Indeed, let u = ut + un with
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ut ∈ TxD̂ and un ∈ Nx. Then

ΠDF−1
0 (x)u = ΠDF−1

0 (x)(ut + un)

= Π
(
DF−1

0 (x)ut +DF−1
0 (x)un

)

= ΠDF−1
0 (x)un = ΠDF−1

0 (x)Πu,

because DF−1
0 (x) : TxD → TF−1(x)D.

Now let al = supx∈D ‖ΠDF−l
0 (xl)‖ and bl = alν

−l. For k > k0,

‖ΠDF−k
0 (xk)‖

= ‖ΠDF−k0−1
0 (xk0+1)DF−1

0 (xk0+2) . . . DF−1
0 (xk)‖

= ‖ΠDF−k0−1
0 (xk0+1)ΠDF−1

0 (xk0+2) . . . ΠDF−1
0 (xk)‖

≤ ‖ΠDF−k0−1
0 (xk0+1)‖ ‖ΠDF−1

0 (xk0+2)‖ . . . ‖ΠDF−1
0 (xk)‖

≤ ak0
νk−k0 = bk0

νk.

Hence ‖ΠDF−k
0 (xk)‖ ≤ bνk, for all k ≥ 0, where b = max{bj : 0 ≤ j

≤ k0}.

Theorem 3.4. We have the following expression for the Melnikov vector :

Mi(x, µ) =
∞∑

k=−∞

〈DF k
0 (x

−k)G(x−k−1, 0, µ), vi(x)〉, ∀µ ∈ V0, ∀x ∈ D.

Furthermore, the sum is absolutely convergent. (It is geometrically conver-

gent with rate ν, 0 < λ < ν < 1.)

P r o o f. In view of (3.3) we only have to prove that

〈DF−l2
0 (xl2)ξs l2

µ (x), vi(x)〉 → 0 as l2 → ∞.

and

〈DF l1
0 (x−l1)ξu −l1

µ (x), vi(x)〉 → 0 as l1 → ∞.

Consider the decomposition and the projection Π defined in the proof of
Lemma 3.3. Since

〈DF−l2
0 (xl2)ξs l2

µ (x), vi(x)〉 = 〈DF−l2
0 (xl2)Πξs l2

µ (x), vi(x)〉

and, by Lemma 3.2, Πξs l2 has bounded norm for each µ and each x inde-
pendently of l2 ≥ 0, Lemma 3.3 shows that

〈DF−l2
0 (xl2)ξs l2

µ (x), vi(x)〉 → 0

as l2 → ∞. The other limit is considered in the same way, using F−1
0 instead

of F0.

Theorem 3.5. Let F0 be a map satisfying hypotheses H1–H3. Let m +
2d − n ≥ 0. Assume there exists (x0, µ0) ∈ D × V1 such that M(x0, µ0) =
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0 and rkDM(x0, µ0) is maximum. (Here we consider the derivative with

respect to x and µ.)

1. Then there exists a neighbourhood Ω ⊂ D × I0 × V0 of (x0, 0, µ0) and
a manifold S ⊂ Ω, (x0, 0, µ0) ∈ S, S 6⊂ {(x, 0, µ) ∈ Ω}, of class Cr−2 such

that

(a) S ∪ {(x, 0, µ) ∈ Ω} = {(x, ε, µ) ∈ Ω : ∆(x, ε, µ) = 0}.
(b) dimS = 1 +m+ 2d− n ≥ 1.

2. If we further assume that rk DMµ0
(x0) is maximum, where Mµ(x) =

M(µ, x) (here we consider the derivative with respect to x) then there exists

Ω0 ⊂ Ω such that for all (x, ε, µ) ∈ S0 = S ∩Ω0 with ε 6= 0 we have

dim(TzW
s
ε,µ + TzW

u
ε,µ) = min(n, 2d)

where z = xsε,µ(x) = xuε,µ(x). Notice that z ∈W s
ε,µ∩W

u
ε,µ and that if n ≤ 2d

then W s
ε,µ and W u

ε,µ are transversal at z , and if n > 2d then

dim(TzW
s
ε,µ + TzW

u
ε,µ) = dimTzW

s
ε,µ + dimTzW

u
ε,µ.

P r o o f. 1. The function

∆ : D × I0 × V0 → R
n−d, (x, ε, µ) 7→ ∆(x, ε, µ),

is of class Cr−1, r ≥ 3. We define

∆ : D × I0 × V0 → R
n−d

by ∆(x, ε, µ) = ∆(x, ε, µ)/ε if ε 6= 0, and ∆(x, 0, µ) =M(x, µ). It is of class
Cr−2.

We have

∆(x, ε, µ) =M(x, µ) +O(ε).

Clearly ∆(x, ε, µ) = 0 if and only if either ε = 0 or ∆(x, ε, µ) = 0. Since
rkDM(x0, µ0) is maximum and equal to n− d,

rkD∆(x0, 0, µ0) = rkDM(x0, µ0) = n− d

is also maximum. Then

S = {(ε, µ, x) : ∆(x, ε, µ) = 0}

is a manifold of class Cr−2 and dimension 1+m+d−(n−d) = 1+m+2d−n
≥ 1 which can be parametrized by ε and m + 2d − n variables of the set
(x1, . . . , xn, µ1, . . . , µm).

2. Let ∆ε,µ(x) = ∆(x, ε, µ). Let Ω0 be a neighbourhood of (x0, 0, µ0) in
Ω such that

(3.8) rkD∆ε,µ(x) = rkDMµ(x) = rkDMµ0
(x0)

for all (x, ε, µ) ∈ Ω0.
Let ε 6= 0 and z ∈W s

ε,µ ∩W u
ε,µ, so that

(3.9) z = xsε,µ(x) = xuε,µ(x).
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We claim that

(3.10) dim(TzW
s
ε,µ ∩ TzW

u
ε,µ) ≤ dimKerD∆ε,µ(x).

Indeed, we may assume that there exists u ∈ TzW
s
ε,µ ∩ TzW

u
ε,µ, u 6= 0,

because otherwise the claim is obviously true. We first prove that there
exists v ∈ TxD such that

(3.11) u = Dxsε,µ(x)v = Dxuε,µ(x)v.

Indeed, let v = Dxsε,µ(x)
−1
u. By construction we can write

xs,uε,µ(x) = x+
n−d∑

i=1

αs,u
i,ε,µ(x)vi(x).

If we define us,u = Dxs,uε,µ(x)v we have

us,u = v +

n−d∑

i=1

(Dαs,u
i,ε,µ(x)v)vi(x) +

n−d∑

i=1

αs,u
i,ε,µ(x)Dvi(x)v.

Since us = u and αs
i,ε,µ(x) = αu

i,ε,µ(x) because xsε,µ(x) = xuε,µ(x) = z, we
have us − uu = u− uu ∈ TzW

u
ε,µ and also

us − uu =

n−d∑

i=1

((Dαs
i,ε,µ −Dαu

i,ε,µ)(x)v)vi(x).

Since vi(x) is transversal to TzW
u
ε,µ we have us − uu = 0, and hence (3.11)

follows.
If we write ∆i,ε,µ(x) = ∆i(x, ε, µ) then

D∆i,ε,µ(x)v = 〈xuε,µ(x)− xsε,µ(x),Dvi(x)v〉

+ 〈Dxuε,µ(x)v −Dxsε,µ(x)v, vi(x)〉,

so that, by (3.9) and (3.11), we have

D∆ε,µ(x)v = 0,

which proves (3.10) because Dxs,uε,µ(x) : TxW
s,u
0 → TzW

s,u
ε,µ is one-to-one.

Since ε 6= 0 and ∆ε,µ(x) = ε∆ε,µ(x), we have dimKerD∆ε,µ(x) =
dimKerD∆ε,µ(x). Now by (3.8),

dimKerD∆ε,µ(x) = dimKerDMµ(x),

and from (3.10) we deduce

(3.12) dim(TzW
s
ε,µ ∩ TzW

u
ε,µ) ≤ dimKerDMµ(x).

If 2d ≤ n, then rkDMµ(x) = min(d, n− d) = d. Therefore KerDMµ(x)
= {0} and hence by (3.12),

dim(TzW
s
ε,µ + TzW

u
ε,µ) = 2d.
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If 2d > n, we have dimKerDMµ(x) = d− (n − d) = 2d− n. Then

dim(TzW
s
ε,µ + TzW

u
ε,µ) ≥ d+ d− (2d− n) = n.

4. The case when the unperturbed map comes from a Hamil-

tonian. When the unperturbed map is the time τ map of a Hamiltonian
the expression of the Melnikov function is simpler and the method is easier
to apply.

Theorem 4.1. Consider F0 satisfying the hypotheses H1–H3, and S,
its homoclinic or heteroclinic d-dimensional manifold. Suppose that there

exists a Hamiltonian H : R2n ⊃ U → R such that F0 is the time τ map of

H. Let x ∈ S \ (P 1 ∪P 2). Assume that there exist first integrals H1, . . . ,Hr,
r = 2n− d, functionally independent at x , satisfying

1. {H,Hi} = 0, i = 1, . . . , r.
2. There are constants c1, . . . , cr with S ⊂ {H1 = c1} ∩ . . . ∩ {Hr = cr}.

Then

1. {gradH1(x), . . . , gradHr(x)} is a basis of the orthogonal space to

TxS.
2. Given a perturbed map

F (x, ε, µ) = F0(x) + εG(x, ε, µ),

the Melnikov function associated with this basis is M = (M1, . . . ,Mr) with

(4.1) Mi(x, µ) =
∞∑

k=−∞

〈G(xk−1, 0, µ), gradHi(x
k)〉

where xk = F k
0 (x).

P r o o f. We shall not write the parameter µ in order to simplify the no-
tation. The first part is an easy consequence of the fact that gradH1(x), . . . ,
gradHr(x) are independent and generate the orthogonal of TxS. To prove
the second part we begin by checking that

(4.2) DF k
0 (x)J gradHi(x) = J gradHi(F

k
0 (x)).

Indeed, let ϕs
i be the time s map of the vector field XHi

= J gradHi and
ϕt the time t map of XH = J gradH. The condition {H,Hi} = 0 implies
that [XH ,XHi

] = 0, and hence

ϕs
i ◦ ϕ

t(x) = ϕt ◦ ϕs
i (x).

Taking the derivative with respect to s and evaluating it at s = 0 we get

J gradHi(ϕ
t(x)) = Dϕt(x)J gradHi(x),

and putting t = nτ we have (4.2). Also we shall use the fact that
(DF k

0 (x
−k))T = JTDF−k

0 (x)J , because F0 is symplectic.
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Finally, from the general expression for the Melnikov function,

Mi(x) =

∞∑

k=−∞

〈DF k
0 (x

−k)G(x−k−1, 0), gradHi(x)〉(4.3)

=
∞∑

k=−∞

〈G(x−k−1, 0), (DF k
0 (x

−k))T gradHi(x)〉

=

∞∑

k=−∞

〈G(x−k−1, 0), JTDF−k
0 (x)J gradHi(x)〉

=
∞∑

k=−∞

〈G(xk−1, 0), JTDF k
0 (x)J gradHi(x)〉

=

∞∑

k=−∞

〈G(xk−1, 0), JT J gradHi(x
k)〉.

Remark 4.2. If r > n, although there exist r local first integrals, it may
be difficult to find explicit expressions for them in concrete examples.

Remark 4.3. If F0 coincides with the time τ map of H on S, {H,Hi}|S
= 0 and S is Hi-invariant with d > n the theorem is also true. Indeed, since
S is invariant, J gradHi(x) ∈ TxS and therefore (4.2) still holds. In this case
we need d > n, because we want H1, . . . ,Hr, r = 2n− d, to be functionally
independent at x, but r ≤ d because S is Hi-invariant, i = 1, . . . , r.

In some examples, it may happen that the unperturbed system is a
projection to the set of some variables of the time τ map associated with
a Hamiltonian flow. In this case the form of the Melnikov function can be
written in terms of the Hamiltonian.

Theorem 4.4. Consider F0 satisfying the hypothesis H1–H3 and S, its
homoclinic or heteroclinic manifold of dimension d. Suppose there exists a

map F ′
0 : Rn′

⊃ U ′ → R
n′

, U ′ = U × V , V open in R
n′−n, 0 ∈ V , such that

if Π is the projection on U, then ΠF ′
0(x, 0) = F0(x), x ∈ U , and such that

there exists a Hamiltonian H : U ′ → R with F ′
0 being its time τ map. Let

x ∈ S \ (P 1 ∪ P 2) and x′ = (x, 0). Assume that there exist first integrals

H1, . . . ,Hn−d functionally independent at x′, satisfying

1. {H,Hi} = 0, i = 1, . . . , n− d.
2. There exist constants c1, . . . , cn−d such that S′ ⊂ {H1 = c1} ∩ . . . ∩

{Hn−d = cn−d} where S′ = S × {0}.

Then

1. {Π gradH1(x, 0), . . . ,Π gradHn−d(x, 0)} is a basis of the orthogonal

space to TxS.
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2. Given a perturbed map

F (x, ε, µ) = F0(x) + εG(x, ε, µ),

the Melnikov function associated with this basis is M = (M1, . . . ,Mn−d)
with

(4.4) Mi(x, µ) =

∞∑

k=−∞

〈G(xk−1, 0, µ),Π gradHi(x
k, 0)〉

where xk = F k
0 (x).

P r o o f. (a) Since S′ = S ×{0} ⊂ {H1 = c1}∩ . . .∩ {Hn−d = cn−d}, the
vectors gradH1(x, 0), . . . , gradHn−d(x, 0) are orthogonal to TxS

′ = TxS ×
{0}, thereforeΠ gradH1(x, 0), . . . ,Π gradHn−d(x, 0) are orthogonal to TxS.

(b) Formula (4.4) is proved in an analogous way to (4.1). We only have
to take into account that from F ′

0 ◦ i = i ◦ F0 where i : Rn → R
n′

is defined
by i(x) = (x, 0), we have DF ′

0(i(x))i = iDF0(x).

Remark 4.5. As in Remark 4.3, for Theorem 4.4 to hold it is enough that
H interpolates F ′

0 just on S′, {H,Hi}|S′ = 0 and that S′ is Hi-invariant.

5. Examples

Example 1. As a first example we consider a very simple two-dimensio-
nal map which we shall generalize later. Let (x1, y1) = F (x, y) with

x1 = (βx+ α)/(β + αx), y1 = y(β + αx)2,

where α = sinh τ , β = cosh τ and τ > 0. It is easily checked that it has two
fixed points, (1, 0) and (−1, 0), which are hyperbolic, and the line {y = 0}
is a heteroclinic connection.

This map is the time τ map of the system given by the Hamiltonian
H(x, y) = y(1− x2). Consequently, the associated Hamiltonian system has
(−1, 0) and (1, 0) as hyperbolic saddle points and the unperturbed hetero-
clinic orbit is given by

x(t) = tanh(t+ t0), y(t) = 0.

Then, if x0 = tanh t0, y0 = 0, the iterates (xn, yn) = fn(x0, y0) are given by

(5.1) xn = x(τn) = tanh(τn+ t0), yn = 0.

Now we consider the perturbed map Fε defined by the relations

x1 = (βx+ α)/(β + αx) + εh1(x, y),

y1 = y(β + αx)2 + εh2(x, y).
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By Theorem 4.1 the Melnikov function in the basis given by gradH(x, y) =
(−2xy, 1− x2)T is

M(x) =
∞∑

n=−∞

h2(xn−1, 0)(1 − x2n)

with x = x0. By (5.1) we have

M(x) =
∞∑

n=−∞

h2(tanh((n − 1)τ + t0), 0)

cosh2(nτ + t0)
,

with x = tanh t0.
If we take the particular perturbation h2(x, y) = x the Melnikov function

becomes

M(x) =

∞∑

n=−∞

tanh(nτ + t0 − τ)

cosh2(nτ + t0)

and using formula (6.1) of the Appendix,

M(x) =
2

sinh2 τ
− coth τ

(
(1− λE)

2

τ
+ λ2dn2(λt0)

)

where λ = 2K(m)/τ and K ′(m)/K(m) = π/τ .
Since dn2(λt0) is τ -periodic, and takes its maximum at t0 = 0 which is

1 and its minimum at t0 = τ/2 which is 1−m, we have

M(x) ≤
2

sinh2 τ
− coth τ

(
(1− λE)

2

τ
+ λ2(1−m)

)

=

∞∑

n=−∞

tanh(nτ − τ/2)

cosh2(nτ + τ/2)
.

On the other hand,
∞∑

n=−∞

tanh(nτ − τ/2)

cosh2(nτ + τ/2)
=

∞∑

n=0

tanh(nτ − τ/2)

cosh2(nτ + τ/2)
+

∞∑

n=1

tanh(−nτ − τ/2)

cosh2(−nτ + τ/2)

=
∞∑

n=0

tanh(nτ − τ/2)

cosh2(nτ + τ/2)
−

∞∑

n=0

tanh(nτ + 3τ/2)

cosh2(nτ + τ/2)

=
∞∑

n=0

tanh(nτ − τ/2) − tanh(nτ + 3τ/2)

cosh2(nτ + τ/2)
< 0,

because all terms in the last sum are negative. Hence if ε is small the
perturbed map does not have heteroclinic points. Also we can have an
asymptotic expression of M(x) for τ small.

From the relation K ′(m)/K(m) = π/τ , τ can be expressed in terms of m
through q = exp(−πK ′(m)/K(m)) (see [1]) as τ = −π2/ ln q. If τ is small,
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m is small and since q = m/16 +O(m2) we have

m ∼ 16e−π2/τ .

Since K(m) = π
2
(1 +m/4 +O(m2)) and E(m) = π

2
(1−m/4 +O(m2)), for

τ small we have

M(x) =
2

τ2 sinh τ
(−2τ3/3 +O(τ4)) = −4/3 +O(τ)

uniformly with respect to t0.
If we take the particular perturbation h2(x, y) = x1 = (βx+α)/(β+αx)

the Melnikov function is

M(x) =

∞∑

n=−∞

tanh(nτ + t0)

cosh2(nτ + t0)
,

and using the calculations given in the Appendix gives

M(x) = mλ3 sn(λt0)cn(λt0)dn(λt0),

where as before λ = 2K(m)/τ , and m is such that K ′(m)/K(m) = π/τ .

We have M(x)|t0=0 = 0 and d(M◦x)
dt

∣∣
t0=0

= mλ4 6= 0, where we have to take

into account that x = tanh t0. Then if ε is small enough the perturbed map
has a transversal heteroclinic point near the point (0, 0).

Example 2. Here we consider the product of two maps of the previous
example. Let

(x1, u1, y1, v1) = F (x, u, y, v)

be defined by

(5.2)
x1 = (βx+ α)/(β + αx), y1 = y(β + αx)2,

u1 = (βu+ α)/(β + αu), v1 = v(β + αu)2,

where α = sinh τ and β = cosh τ with τ > 0.
The map F is the time τ map of the Hamiltonian H(x, u, y, v) = y(1 −

x2) + v(1 − u2). Both the Hamiltonian system and the map (5.2) have
four fixed points (±1,±1, 0, 0) which are hyperbolic. The solutions of the
Hamiltonian equations for (x, u) ∈ (−1, 1) × (−1, 1) are

x(t) = tanh(t+ t1), y(t) = k1 cosh
2(t+ t1),

u(t) = tanh(t+ t2), v(t) = k2 cosh
2(t+ t2),

with k1, k2, t1, t2 ∈ R. The set {y = 0, v = 0, |x| < 1, |u| < 1} is a two-
dimensional heteroclinic manifold for the points (−1,−1, 0, 0) and (1, 1, 0, 0).
If x = x0 = tanh t1, u = u0 = tanh t2, y0 = 0 and v0 = 0 then the iterates
(xn, un, yn, vn) = Fn(x0, u0, y0, v0) are

(5.3)
xn = x(τn) = tanh(τn+ t1), yn = 0,

un = u(τn) = tanh(τn+ t2), vn = 0.
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We first consider a general perturbation Fε of F given by

x1 = (βx+ α)/(β + αx) + εh1(x, u, y, v),

u1 = (βu+ α)/(β + αu) + εh2(x, u, y, v),

y1 = y(β + αx)2 + εh3(x, u, y, v),

v1 = v(β + αu)2 + εh4(x, u, y, v).

The functions H1(x, u, y, v) = y(1 − x2) and H2(x, u, y, v) = v(1 − u2) are
linearly independent first integrals in involution so that by Theorem 4.1
the Melnikov vector in the basis given by gradH1(x, u, y, v) = (−2xy, 0, 1−
x2, 0)T , gradH2(x, u, y, v) = (0,−2uv, 0, 1−u2)T is M(z) = (M1(z),M2(z))
with

M1(z) =

∞∑

n=−∞

h3(xn−1, un−1, 0, 0)(1 − x2n),

M2(z) =

∞∑

n=−∞

h4(xn−1, un−1, 0, 0)(1 − u2n),

where z = (x0, u0, y0, v0) = (tanh t1, tanh t2, 0, 0), and substituting (5.3)
gives

M1(z) =

∞∑

n=−∞

h3(tanh((n − 1)τ + t1), tanh((n− 1)τ + t2), 0, 0)

cosh2(nτ + t1)
,

M2(z) =

∞∑

n=−∞

h4(tanh((n − 1)τ + t1), tanh((n− 1)τ + t2), 0, 0)

cosh2(nτ + t2)
.

In the particular case where h3(x, u, y, v) = u and h4(x, u, y, v) = x the
Melnikov vector becomes

M1(z) =

∞∑

n=−∞

tanh(nτ + t2 − τ)

cosh2(nτ + t1)
, M2(z) =

∞∑

n=−∞

tanh(nτ + t1 − τ)

cosh2(nτ + t2)
.

We claim that M1(z) and M2(z) cannot vanish simultaneously. Denote
them by M1(t1, t2) and M2(t1, t2). Notice that M1(t1, t2) = M2(t2, t1). If
we fix t1, then ϕ(t2) = M1(t1, t2) has only one zero t2 = t̃2(t1), and t̃2 is
continuous. Indeed, from (6.1) we have, writing λ = 2K/τ ,

ϕ(t2) =
−1

sinh2(t2 − t1 − τ)

×

(
(1− λE)

2

τ
(t2 − t1 − τ) + λ(E(λ(t2 − τ))− E(λt1))

)

+ coth(t2 − t1 − τ)

(
(1− λE)

2

τ
+ λ2dn2(λt1)

)
.
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The coefficient of coth(t2 − t1 − τ) can be bounded from below:

(
1−

2K

τ
E

)
2

τ
+

(
2K

τ

)2

dn2
(
2K

τ
t1

)

=
2

τ

(
1−

2K

τ
E +

2K2

τ
dn2

(
2K

τ
t1

))
≥

2

τ

(
1 +

2K ′

π
((1−m)K − E)

)

≥
2

τ

(
1 +

2(1 −m)

π
(K ′K −K ′E)

)
=

2

τ

(
1 +

2(1 −m)

π
(E′K − π/2)

)

=
2

τ

(
2(1−m)

π
E′K +m

)
> 0.

Then limt2→∞ ϕ(t2) = (1 − λE) 2
τ
+ λ2dn2(λt1) > 0 and limt2→−∞ ϕ(t2) =

−(1− λE) 2τ − λ2dn2(λt1) < 0. On the other hand,

ϕ′(t2) =
∞∑

n=−∞

1

cosh2(nτ + t1) cosh
2(nτ + t2 − τ)

> 0.

Furthermore, since M1 is of class C1, and (∂M1/∂t2)(t1, t2) = ϕ′(t2) > 0,
by the implicit function theorem t̃2 is of class C1.

Then if M1(t
0
1, t

0
2) = 0 and M2(t

0
1, t

0
2) = 0 we shall also have M1(t

0
2, t

0
1)

= 0. Then either t01 = t̃2(t
0
1), in which case M(t01, t

0
1) = 0, or t01 6= t̃2(t

0
1).

In the latter case we can suppose that t01 > t̃2(t
0
1) (the other case being

analogous). Also t01 = t̃2(t
0
2) > t02 and hence by Bolzano’s theorem applied

to t̃2(t)− t there exists t∗ such that t∗ = t̃2(t
∗) and therefore M(t∗, t∗) = 0.

But, as we have seen in the computations for Example 1, M(t1, t1) never
vanishes. This shows that the Melnikov vector cannot be zero. Hence Fε, if
ε is small, does not have heteroclinic intersections.

Now we consider another perturbation

h3(x, u, y, v) = u1 = (βu+ α)/(β + αu),

h4(x, u, y, v) = x1 = (βx+ α)/(β + αx).

For it we have

M1(x0, u0) =
∞∑

n=−∞

tanh(nτ + t2)

cosh2(nτ + t1)
,

M2(x0, u0) =
∞∑

n=−∞

tanh(nτ + t1)

cosh2(nτ + t2)
.

A closed form for M1 and M2 can be obtained from the results in the
Appendix, but here it is easier to work directly with the series. If x0 = u0
= 0, which corresponds to t1 = t2 = 0, it is easily seen that M(0, 0) = 0.
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Since dx0

dt1
(0, 0) = du0

dt2
(0, 0) = 1 and dx0

dt2
(0, 0) = du0

dt1
(0, 0) = 0 we have

detDM(0, 0) =

∣∣∣∣∣
−2

∑∞
n=−∞

tanh2(nτ)
cosh2(nτ)

∑∞
n=−∞

1
cosh4(nτ)∑∞

n=−∞
1

cosh4(nτ)
−2

∑∞
n=−∞

tanh2(nτ)
cosh2(nτ)

∣∣∣∣∣

=

∣∣∣∣
−2(A−B) B

B −2(A−B)

∣∣∣∣ = (2A− 3B)(2A−B),

where A =
∑∞

n=−∞ 1/cosh2(nτ) and B =
∑∞

n=−∞ 1/cosh4(nτ). Clearly
2A − B > 0. In the Appendix it is shown that 2A − 3B < 0. Then, if ε is
small enough, the perturbed invariant manifolds intersect transversally near
(0, 0, 0, 0).

Example 3. Now we consider the map (x1, y1, φ1) = F (x, y, φ) defined
by

(5.4)
x1 = (βx+ α)/(β + αx), y1 = y(β + αx)2,

φ1 = φ+ ν,

where α = sinh τ, β = cosh τ, τ > 0, x, y ∈ R and ν, φ ∈ T
k.

This map has two normally hyperbolic invariant manifolds

P± = {(±1, 0, φ) : φ ∈ T
k},

joined by a heteroclinic manifold

S = {(x, 0, φ) : −1 < x < 1, φ ∈ T
k}.

First we take k = 1. Let x = x0 = tanh t0, y0 = 0, φ = φ0 and (xn, yn, φn) =
Fn(x0, y0, φ0). Then

(5.5) xn = tanh(τn+ t0), φn = nν + φ0.

We consider the perturbed map Fε defined by

x1 = (βx+ α)/(β + αx), y1 = y(β + αx)2 + ε sinφ,

φ1 = φ+ ν.

It is the projection onto the variables (x, y, φ) of the time τ map of the
Hamiltonian H(x, φ, y, I) = y(1 − x2) + ν

τ I, so that we can apply Theorem
4.4. The vector (0, 1 − x2, 0) generates a basis of the orthogonal space to
TxS. In this case the Melnikov function in the basis given by this vector is

M(x, φ) =

∞∑

n=−∞

sinφn−1(1− x2n)

so that substituting (5.5) we get

M(x, φ) =

∞∑

n=−∞

sin(nν + φ0 − ν)

cosh2(nτ + t0)
.
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We have M(0, ν) = 0. Using the fact that dx0/dt0(0) = 1 we obtain

DM(0, ν) =

(
− 2

∞∑

n=−∞

sin(nν) sinh(nτ)

cosh3(nτ)
,

∞∑

n=−∞

cos(nν)

cosh2(nτ)

)
,

whose rank is 1 if τ is large enough. Indeed,

ϕ(ν, τ) =
∞∑

n=−∞

cos(nν)

cosh2(nτ)
= 1 + 2

∞∑

n=1

cos(nν)

cosh2(nτ)

> 1− 2

∞∑

n=1

1

cosh2(nτ)
> 1− 8

∞∑

n=1

e−2nτ

= 1− 8e−2τ/(1− e−2τ ).

So, if τ ≥ (ln 9)/2 then ϕ(ν, τ) > 0.
The function ϕ is 2π-periodic with respect to ν. From numerical com-

putations we believe that for fixed τ 6= 0 it has a global minimum at ν = π,
where indeed (∂ϕ/∂ν)(π, τ) = 0. We can compute ϕ(π, ν) explicitly and
check that it is positive, which would guarantee the transversality in all
cases, if ε is small enough:

ϕ(π, τ) =

∞∑

n=−∞

(−1)n

cosh2(nτ)
=

∞∑

n=−∞

1

cosh2(n2τ)
−

∞∑

n=−∞

1

cosh2(n2τ + τ)
.

Using formulas (6.8) and (6.9) of the Appendix adapted to this case and
choosing m such as K ′(m)/K(m) = π/(2τ) we get

ϕ(π, τ) =

(
K

τ

)2(
dn2(0)− dn2

(
K

τ
τ

))

=

(
K

τ

)2

(1− (1−m)) =

(
K

τ

)2

m > 0.

More generally, we consider the map defined by

x1 = (βx+ α)/(β + αx),

y1 = y(β + αx)2 + ε(a1 sinφ
1 + . . .+ ak sinφ

k),

φ1 = φ+ ν,

with ν, φ = (φ1, . . . , φk) ∈ T
k, k ≥ 1. Now

M(x0, φ0) =

∞∑

n=−∞

a1 sin(nν1 + φ10 − ν1) + . . .+ ak sin(nνk + φk0 − νk)

cosh2(nτ + t0)
,

with φ0 = (φ10, . . . , φ
k
0) and t0 = arctanh x0.

As before, if t0 = 0 and φj0 = νj , then M(x0, φ0) = 0. If at least one
of the derivatives of M is different from zero then, if ε is small, we have
transversal intersection of the invariant manifolds associated with the tori.
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Example 4. Finally, we consider the map (x1, φ1, y1) = F (x, φ, y), (x, y)
∈ R

2, φ ∈ T
k, |µ| > 1, defined by

x1 = y, φ1 = φ+ ν + εh(x, φ, y),

y1 = −x+ 2y
µ

1 + y2
+ εg(x, φ, y).

For k = 0 it is called the McMillan map and has been studied in [10] and
[5]. For ε = 0 we consider the normally hyperbolic invariant manifold {x =
y = 0}. Its stable and unstable manifolds form two homoclinic manifolds

Γ± = {(x±(t− τ), φ, x±(t)) : φ ∈ T
k, t ∈ R}

where

x±(t) = ±

√
µ2 − 1

cosh t
= ±

sinh τ

cosh t
.

and τ = ln(µ +
√
µ2 − 1) or equivalently

√
µ2 − 1 = sinh τ . We consider

S = Γ+. F0 restricted to S coincides with the projection onto the variables
x, y, φ of the time τ map corresponding to the Hamiltonian

H(x, φ, y, I) =
1

2
√
µ2 − 1

(x2 − 2µxy + y2 + x2y2) +
ν

τ
I.

According to Remark 4.5 we can write the Melnikov function associated
with the basis Π gradH, with Π(x, φ, y, I) = (x, φ, y). The flow associated
with H on the homoclinic manifold is

w(t) =

(
x+(t− τ + t0), φ0 +

ν

τ
t, x+(t+ t0), I0

)
.

If z(t) = Πw(t) then Π gradH(z(t)) = (−ẋ+(t+ t0), 0, ẋ
+(t− τ + t0)). We

define zn = z(nτ). Then

M(z0) =

∞∑

n=−∞

〈(0, h(zn−1), g(zn−1)),Π gradH(zn)〉

= −
∞∑

n=−∞

g(zn−1)ẋ
+(nτ − τ + t0) = −

∞∑

n=−∞

g(zn)ẋ
+(nτ + t0).

In the case k = 1 and g(x, φ, y) = cosφ we have

M(z0) = sinh τ
∞∑

n=−∞

cos(nν + φ0)
sinh(nτ + t0)

cosh2(nτ + t0)
.

When t0 = 0 and φ0 = 0 we have M(z0) = 0, that is to say, the stable and
unstable manifolds intersect. To study the transversality we have to look at
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rk

(
d

dt0
(M(z0)),

d

dφ0
(M(z0))

)

= rk

( ∞∑

n=−∞

cos(nν)
2− cosh2(nτ)

cosh3(nτ)
,−

∞∑

n=−∞

sin(nν)
sinh(nτ)

cosh2(nτ)

)

(sinh τ 6= 0) at t0 = 0 and φ0 = 0. Proceeding as in the previous example we
find that if τ ≥ ln 5 the first component of the vector is different from zero
for all ν. This implies the transversal intersection of the invariant manifolds.

6. Appendix. We devote this Appendix to some technical computa-
tions which provide closed formulas for some series which we have obtained
as Melnikov functions or their derivatives. For that we shall use a method
developed in [5].

Lemma 6.1. The sum
∞∑

n=−∞

tanh(nτ + t1)

cosh2(nτ + t2)

takes the value

(6.1)
−1

sinh2(t1 − t2)

((
1−

2K

τ
E

)
2

τ
(t1−t2)+

2K

τ

(
E

(
2K

τ
t1

)
−E

(
2K

τ
t2

)))

+coth(t1 − t2)

((
1−

2K

τ
E

)
2

τ
+

(
2K

τ

)2

dn2
(
2K

τ
t2

))

if t1 6= t2, and

(6.2) m

(
2K

τ

)3

sn

(
2K

τ
t

)
cn

(
2K

τ
t

)
dn

(
2K

τ
t

)

if t1 = t2, with m satisfying K ′(m)/K(m) = π/τ .

P r o o f. First we recall some definitions concerning elliptic functions.
See [1]. Let m ∈ (0, 1). The complete elliptic integrals of first and second

kind are defined by

K(m) =

1\
0

((1− y2)(1−my2))−1/2 dy

and

E(m) =

1\
0

(
1−my2

1− y2

)1/2

dy.

Also one introduces the following quantities: m1 = 1 − m, K = K(m),
K ′ = K(m1), E = E(m) and E′ = E(m1). The incomplete elliptic integral



Poincaré–Melnikov theory 149

of second kind is defined by

E(u|m) =

u\
0

dn2(v|m) dv,

where dn is the Jacobian elliptic function.

Now we collect some properties of the above functions which will be used
in the computations. The function E satisfies E(−u) = −E(u), E(z+2K) =
E(z)+2E and E(z+2iK ′) = E(z)+2i(K ′ −E′). The Legendre equality is

(6.3) EK ′ + E′K −KK ′ = π/2.

The functions sn, cn and dn have two periods. The periods of dn(v) are 2K,
4K ′i. In a fundamental domain dn(v) has two poles at K ′i and 3K ′i with
residues −i and i respectively, and they are of order 1.

We shall also use the following properties of the elliptic functions: sn(−u)
= − sn(u), cn(−u) = cn(u), dn(−u) = dn(u), sn(u+ 2K ′i) = sn(u), cn(u+
2K ′i) = − cn(u), dn(u+ 2K ′i) = −dn(u), dn′ = −m sn cn (see [1]).

Following [5] we introduce

χ(z) = 2(τ − 2KE)z + 2KE(2Kz +K ′i|m).

where the parameter m satisfies

(6.4)
K ′(m)

K(m)
=
π

τ
.

The function χ has the following properties:

• χ is π
τ i-periodic,

• χ′ is 1-periodic,

• the singularities of χ on {|Im z| < π/τ} are poles located at z = n,
n ∈ Z, they are simple and their residues are 1.

Let

g(z) =
tanh(zτ + t1)

cosh2(zτ + t2)
.

Clearly g is π
τ i-periodic.

Now we consider the rectangle Rn with vertices ±(n+1/2)+(±π/(2τ)+
ε)i, 0 < ε < π/(2τ). If 0 < ε < π/(2τ) then for any t1, t2 ∈ R there exists
n0 such that if n ≥ n0 then χg does not have singularities on the border
of Rn. Let R = limn→∞Rn and P = {poles of χg on R}. By the residue
theorem we have

(6.5) lim
n→∞

1

2πi

\
∂Rn

χ(z) g(z) dz =
∑

z∈P

res(χg, z).
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On the other hand,

lim
n→∞

1

2πi

\
∂Rn

χ(z) g(z) dz = 0

because χg is π
τ
i-periodic, and the integrals on the vertical paths go to zero

as n → ∞ since g decreases exponentially and χ increases at most linearly
because χ′ is 1-periodic.

We have the following table:

Function Poles in the interior of R Laurent series

χ(z) Z
1
z−n
+ . . . , n ∈ Z

tanh(zτ + t1) z1 =
π

2τ i−
t1
τ

1
τ

1
z−z1

+ 13 τ (z − z1) + . . .

cosh−2(zτ + t2) z2 =
π

2τ i−
t2
τ

−
1
τ2

1
(z−z2)

2 +
1
3 + . . .

tanh(zτ + t) cosh−2(zτ + t) z0 =
π

2τ i−
t

τ
−
1
τ3

1
(z−z0)

3 +
1
15 τ (z − z0) + . . .

From (6.5) we deduce that if t1 6= t2 then
∑

n∈Z

res(χg, n) + res(χg, z1) + res(χg, z2) = 0,

which gives

(6.6)

∞∑

n=−∞

g(n) +
1

τ
χ(z1)/cosh

2(z1τ + t2)

−
1

τ2
χ′(z2) tanh(z2τ + t1)−

1

τ
χ(z2)/cosh

2(z2τ + t1) = 0,

and if t1 = t2 = t then
∑

n∈Z
res(χg, n) + res(χg, z0) = 0, which gives

(6.7)
∞∑

n=−∞

g(n)−
1

τ3
·
χ′′(z2)

2!
= 0.

We need the following computations:

(6.8)

χ(z1) = (2EK ′ − π)i− 2

(
1−

2K

τ
E

)
t1 − 2KE

(
2K

τ
t1

)
,

χ′(z2) = 2(τ − 2KE) + (2K)2dn2
(
2K

τ
t2

)
,

χ′′(z0) = 2m(2K)3sn

(
2K

τ
t

)
cn

(
2K

τ
t

)
dn

(
2K

τ
t

)
,

cosh2(z1τ + t2) = − sinh2(t1 − t2),

tanh(z2τ + t1) = coth(t1 − t2),

cosh2(z2τ + t1) = − sinh2(t1 − t2).
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Finally, substituting the previous calculations into formulas (6.6) and
(6.7) we get (6.1) and (6.2).

Lemma 6.2. If A =
∑∞

n=−∞ 1/cosh2(nτ) and B =
∑∞

n=−∞ 1/cosh4(nτ)
we have

2A− 3B = −m(2K/τ)4 < 0.

P r o o f. To compute A we consider the function g(z) = 1/cosh2(zτ + t).
It has a pole at

z0 =
π

2τ
i−

t

τ
with Laurent series

g(z) = −
1

τ2
·

1

(z − z0)2
+

1

3
+ . . .

As in the previous example we have
∑

n∈Z
res(χg, n) + res(χg, z0) = 0 and

therefore

(6.9) A =

∞∑

n=−∞

g(n)|t=0 =
1

τ2
χ′(z0)|t=0.

To compute B we consider g(z) = 1/cosh4(zτ + t). The function g has a
pole at

z0 =
π

2τ
i−

t

τ
with Laurent series

g(z) =
1

τ4
·

1

(z − z0)4
−

2

3τ2
·

1

(z − z0)2
+O(1).

Similarly, we obtain

∑

n∈Z

g(n) +
1

τ4
·
χ′′′(z0)

3!
−

2

3τ2
χ′(z0) = 0.

Using the fact that

χ′′(z0) = 2m(2K)3 sn

(
2K

τ
t

)
cn

(
2K

τ
t

)
dn

(
2K

τ
t

)

and that

χ′′′(z0)|t=0 =
d

dt
(χ′′(z0))

dt

dz0

∣∣∣∣
t=0

= 2m
(2K)4

τ
(−τ) = −2m(2K)4,

we obtain

B =
m

3

(
2K

τ

)4

+
2

3
A,

and hence 2A− 3B = −m(2K/τ)4 < 0.
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