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INDEFINITE INTEGRATION OF

OSCILLATORY FUNCTIONS

Abstract. A simple and fast algorithm is presented for evaluating the
indefinite integral of an oscillatory function

Ty
x
f(t)eiωt dt, −1 ≤ x < y ≤ 1,

ω 6= 0, where the Chebyshev series expansion of the function f is known.
The final solution, expressed as a finite Chebyshev series, is obtained by
solving a second-order linear difference equation. Because of the nature
of the equation special algorithms have to be used to find a satisfactory
approximation to the integral.

1. Introduction. We present an algorithm for computing the indefinite
integral of the form

(1.1) I(ω, x, y) =

y\
x

f(t)eiωt dt, −1 ≤ x < y ≤ 1, ω 6= 0,

where f is a smooth function given in terms of Chebyshev polynomials of
the first kind,

(1.2) f =

∞∑

k=0

′

akTk,

(the prime denotes a sum where the first term is halved). In practice, the
function f is approximated by a finite series,

(1.3) f ≈ fN =

N∑

k=0

′

akTk,
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where the polynomial fN satisfies

(1.4) max
−1≤x<y≤1

∣∣∣
y\
x

[f(t)− fN(t)]eiωt dt
∣∣∣ ≤ δ

for a given error tolerance δ > 0 (cf. [2], [4], [6]).

In [3] (see also [4]), it was shown that the integral (1.1) may be ex-
pressed as

(1.5) I(ω, x, y) =
eiωyF (y)− eiωxF (x)

iω
,

where the function F is also expanded in the Chebyshev series,

(1.6) F =

∞∑

k=0

′

dkTk,

and the coefficients dk satisfy the difference equation

(1.7) dk−1 +
2k

iω
dk − dk+1 = ak−1 − ak+1, k = 1, 2, . . .

If f is of the form (1.3) then ak = 0 for all k > N . Consequently, the
solution dk of (1.7) may be obtained recursively as follows:

(1.8)
dN+2 = dN+1 = 0,

dk−1 = ak−1 − ak+1 −
2k

iω
dk + dk+1, k = N + 1, N, . . . , 1.

Unfortunately, if N > |ω| the above algorithm is unstable [1], so that other
techniques have to be used.

In Section 2, we present a fast and accurate method for solving the
difference equation (1.7) in the case N > |ω|, when neither forward nor
backward recursion can be used. The algorithm is based on the idea of
Olver [7], namely a tridiagonal system of linear equations is solved to obtain
the desired solution.

In Section 3, we discuss two algorithms developed by Hasegawa and
Torii ([3], [5]) for solving the difference equation (1.7). We also present a
simplified proof of one of those methods.

Numerical experiments that test the efficiency of the present algorithm
and of the two algorithms of Hasegawa and Torii are reported in Section 4.

2. The algorithm. Before we present the algorithm for evaluating
the indefinite integral (1.1) we observe [3] that equality (1.5) holds for any
solution F of the differential equation

(2.1)
F ′

iω
+ F = f.
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If we use the known identity 2kdk = d′k−1
−d′k+1

(see, e.g., [8], p. 124) where
d′k’s are the Chebyshev coefficients of F ′, we easily verify that the differential
equation (2.1) is equivalent to the difference equation (1.7). Therefore, any
solution of (1.7) satisfying

∑∞

k=0
|dk| < ∞ may be used in (1.6) to obtain

the expansion (1.5) for the indefinite integral (1.1).

We now assume that f in (1.1) is replaced by the polynomial fN de-
fined in (1.3), and that |ω|<N . In that case the backward recursion al-
gorithm (1.8) cannot be used to compute the exact solution of (1.7). We
will show, however, that the sequence {dk}Mk=1

(M > N) obtained using
our method is an exact solution of the difference equation (1.7) with ak’s
replaced by slightly different values âk. Moreover, if we define

f̂M =
M∑

k=0

′

âkTk,

then max−1≤t≤1 |fN (t)− f̂M (t)| < ε, where ε is a given positive number.

As we have noticed, we are looking for any solution of (1.7) satisfying∑∞

k=0
|dk|<∞. Define m :=⌊|ω|⌋, and set dm=0. If we find the value dm+1

then the values dk, k = m−1,m−2, . . . , 0, may be computed in a stable way
directly from (1.7) using the backward recursion algorithm, because k< |ω|
for all k<m. Thus the only problem is to find dk for k>m.

As we defined dm = 0, the equations (1.7) for k = m+ 1,m+ 2, . . . take
the form of an infinite system of linear equations

(2.2)

−iµm+1dm+1 − dm+2 = αm+1,

dm+1 − iµm+2dm+2 − dm+3 = αm+2,

dm+2 − iµm+3dm+3 − dm+4 = αm+3,

. . .
...

where we have set µj = 2j/ω, αj = aj−1−aj+1 for j = m+1,m+2, . . . The
matrix of this system is diagonally dominant. Therefore, if we set dM+1 = 0
for some M > N , then Gaussian elimination without pivoting may be used
to compute dk for k = m+ 1,m+ 2, . . . ,M .

We now show how to determine the integer M > N in order to obtain
a satisfactory approximation to the indefinite integral (1.1). We need the
following lemmas.

Lemma 2.1. Let fN =
∑′N

k=0
akTk and let the sequence d0, d1, . . . be a

solution of the difference equation

(2.3) dk−1 − iµkdk − dk+1 = αk,

where αk = ak−1−ak+1, and where we assume that ak = 0 for k > N . Then

for any integer M ≥ N +1 the sequence d0, d1, . . . , dM , 0, 0, . . . is a solution
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of the difference equation

(2.4) dk−1 − iµkdk − dk+1 =





αk for 1 ≤ k ≤ N,
αM + dM+1 for k = M,
dM for k = M + 1,
0 for k > N, k 6= M,M + 1.

In this case, the function eiωtFM (t)/iω, where FM (t) =
∑′M

k=0
dkTk(t), is

the exact indefinite integral for the function f̂M (t)eiωt, where

(2.5) f̂M (t) = fN(t) +

M∑

k=0

ξkTk(t)

with

ξk =

{
dM for k = M,M − 2, . . . ,
dM+1 for k = M − 1,M − 3, . . .

Moreover ,

(2.6) max
−1≤t≤1

|fN(t)− f̂M (t)| < |dM |+ |dM+1|
2

(M + 2).

P r o o f. Equation (2.4) follows immediately from (2.3). Equality (2.5)
is obtained if we recall that αk = ak−1 − ak+1. Inequality (2.6) is a simple
consequence of the fact that max−1≤t≤1 |Tk(t)| = 1 for all k ≥ 0.

Lemma 2.2. Let µj = 2j/ω for j = m+ 1,m+ 2, . . . , m = ⌊|ω|⌋, ω 6= 0
and

(2.7) µ̃m+1 = µm+1, µ̃j = µj − 1/µ̃j−1 for j > m+ 1.

Then for all j ≥ m+ 1 we have

(2.8) |µ̃j | > 1 + |2(j −m− 1)/ω|.

P r o o f. Inequality (2.8) holds for j = m+ 1. Suppose (2.8) is true for
some j ≥ m+ 1. Then

|µ̃j+1| ≥ |2(j + 1)/ω| − |1/µ̃j | > |2(j + 1)/ω| − 1

= 2(j + 1−m− 1)/|ω|+ 2(m+ 1)/|ω| − 1

> |2(j + 1−m− 1)/ω|+ 1.

Lemma 2.3. Suppose that for M ≥ N+1, m = ⌊|ω|⌋, ω 6= 0 we are given

a system of linear equations

(2.9)

−iµm+1d
M
m+1 − dMm+2 = αm+1,

dMj−1 − iµjd
M
j − dMj+1 = αj for j = m+ 2, . . . , N + 1,

dMj−1 − iµjd
M
j − dMj+1 = 0 for j = N + 2, . . . ,M,

dMM − iµMdMM+1 = 0,
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where µj = 2j/ω, j ≥ m+ 1, and αm+1, . . . , αN+1 are given real numbers.

Then

(2.10)

dMM+1 =
α̃M+1

−iµ̃M+1

,

dMj =
1

−iµ̃j

(α̃j + dMj+1) for j = M,M − 1, . . . ,m+ 1,

where µ̃j are defined in (2.7), and

(2.11) α̃j+1 =





αm+1 for j = m,

αj+1 +
α̃j

iµ̃j

for j = m+ 1, . . . , N,

α̃j

iµ̃j

for j ≥ N + 1.

Moreover , for any ε > 0 there exists an integer M such that

(2.12) |dMM |+ |dMM+1| <
ε

M + 2
.

P r o o f. The formulas (2.10) and (2.11) follow immediately if we apply
Gaussian elimination without pivoting to the system (2.9). Using (2.11), we
have

|α̃M+1| = |α̃N+1|
∣∣∣∣

1

µ̃N+2

∣∣∣∣
∣∣∣∣

1

µ̃N+3

∣∣∣∣ . . .
∣∣∣∣

1

µ̃M+1

∣∣∣∣,

which together with (2.8) and

(2.13) |dMM |+ |dMM+1| < 3|α̃M+1|
gives (2.12).

We may now formulate the algorithm for computing the Chebyshev ex-
pansion

(2.14) FM =
M∑

k=0

′

dkTk

for the indefinite integral eiωtFM (t)/(iω) in the case N > |ω|.
Algorithm 2.4. Let ε > 0 be the error tolerance for the integralTy

x
fN (t)eiωt dt. Set µj = 2j/ω and αj = aj−1 − aj+1 for j = 1, . . . , N + 1.

Step 1. Set m := ⌊|ω|⌋ and dm := 0.
Step 2. Perform Gaussian elimination according to the formulas (2.7)

and (2.11) until |α̃j+1| ≤ ε/(3(j + 2)) for some j > N + 1, and
set M := j.

Step 3. Compute dj for j = M,M − 1, . . . ,m+ 1 using (2.10).
Step 4. Compute dk for k = m − 1,m − 2, . . . , 0 using the recurrence

relation (1.7) with initial values dm+1 and dm.
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Indeed, for any −1 ≤ x < y ≤ 1, we have from Lemma 2.1 and (2.13),

eiωyFM (y)− eiωxFM (x)

iω
=

y\
x

f̂M (t)eiωt dt,

where max−1≤t≤1 |fN(t)− f̂M (t)| < ε/2. Having in mind that |eiωt| = 1, we
obtain ∣∣∣∣

y\
x

fN(t)eiωt dt− eiωyFM (y)− eiωxFM (x)

iω

∣∣∣∣ < ε

for all −1 ≤ x < y ≤ 1.
If the function f is of the form (1.2), i.e., there exists no N such that

ak = 0 for all k > N , then we cannot use the error estimate (2.6) which we
have employed in the second step of our algorithm. However, in that case
we may use the idea of Hasegawa and Torii [5] to select the value of M so
as to achieve the desired accuracy of the computed integral.

If we assume that the exact solution {dk} decreases rapidly as k increases
and that the computed values dM−1

i are very close to di, then we may expect
the following:

max
−1≤t≤1

∣∣∣
∞∑

k=0

′

dkTk(t)−
M∑

k=0

′

dM−1

k Tk(t)
∣∣∣ ≈ max

−1≤t≤1

∣∣∣
∞∑

k=M+1

dkTk(t)
∣∣∣

≤
∞∑

k=M+1

|dk| ≤ c|dM−1

M |

for some positive constant c. As in [5], we set c = 10. If the value of M in
the second step of our algorithm is selected to satisfy

(2.15) |dM−1

M | ≤ |ω| ε
2c

for a given ε > 0, then from (1.5) we obtain
∣∣∣∣
y\
x

f(t)eiωt dt− eiωyFM (y)− eiωxFM (x)

iω

∣∣∣∣ ≤ ε

for all −1 ≤ x < y ≤ 1, where FM =
∑′M

k=0
dM−1

k Tk.

3. Remarks on the algorithms of Hasegawa and Torii. We now
discuss two algorithms developed by Hasegawa and Torii [3], [4] for evalu-
ating the indefinite integral (1.1) in the case N > |ω|. We consider more
carefully the first method because it gives an exact theoretical solution of
the difference equation (1.7) for f of the form (1.3). The method was origi-
nally developed for the fixed value x = −1, but as we show, this limitation
is not necessary.
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The first algorithm [3] expresses the coefficients dk in (1.7) in the form

dk = sk + λIk, k = 0, 1, . . . ,

where Ik = Ik(−iω), the modified Bessel function of the first kind, is
the minimal solution of the homogeneous difference equation (1.7) and sk,
k = 0, 1, . . . , N , is a given particular solution of (1.7). The sequence dk is
truncated at k = M , where the integer M is selected to achieve the desired
truncation error tolerance.

Define m := ⌊|ω|⌋ and consider the system of linear equations

(3.1)

2(m+ 1)

iω
γm+1 − γm+2 = am − am+2,

γm+1 +
2(m+ 2)

iω
γm+2 − γm+3 = am+1 − am+3,

. . .
...

γN−1 +
2N

iω
γN − γN+1 = aN−1,

γN +

(
2(N + 1)

iω
− IN+2

IN+1

)
γN+1 = aN ,

with unknowns γk, k = m+ 1, . . . , N + 1.

Lemma 3.1. Suppose the values γk for k = m + 1, . . . , N + 1 form the

solution of the system (3.1), γm = 0, and γk for k = m−1, . . . , 0 are obtained

from the relation

(3.2) γk−1 +
2k

iω
γk − γk+1 = ak−1 − ak+1.

Then the values

(3.3) dk =





γk for k = 0, 1, . . . , N + 1,
γN+1

IN+1

Ik for k = N + 2, N + 3, . . . ,

satisfy the difference equation (1.7) for all k ≥ 0. In particular , the values

(3.4) sk = dk − γN+1

IN+1

Ik, k = 0, 1, . . . , N,

form the solution of the difference equation (1.7) with initial condition sN+2

= sN+1 = 0.

P r o o f. Substitute (3.3) in (1.7).

The solution sk cannot be computed effectively using equalities (3.4).
The values γN+1

IN+1
Ik are very large for small k while very close to dk for k

near N . This would either cause the floating-point overflow or at least very
large roundoff errors.
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Therefore, we have to use the solution dk and approximate the infinite
sum in (1.6) with

(3.5) FM =

M∑

k=0

′

dkTk,

where M is chosen so as to achieve the desired accuracy of approxima-
tion to the integral (1.1). Hasegawa and Torii suggest using the fact that
|Ik| decreases as |Ik| ∼ (|ω|/2)k/k! as k increases. This implies (see [3])
that

∞∑

k=M+1

|Ik| <
2

(M + 1)!

( |ω|
2

)M+1

,

and the truncation error in (3.5) satisfies

∣∣∣∣
γN+1

IN+1

∣∣∣∣
∞∑

k=M+1

|Ik| <
2

(M + 1)!

∣∣∣∣
γN+1

IN+1

∣∣∣∣
∣∣∣∣
ω

2

∣∣∣∣
M+1

.

From (1.5) we conclude that if ε > 0 is the desired error tolerance for
the integral (1.1) for all −1 ≤ x < y ≤ 1, then M must be selected such
that

(3.6)
2

(M + 1)!

∣∣∣∣
γN+1

IN+1

∣∣∣∣
∣∣∣∣
ω

2

∣∣∣∣
M

< ε.

Special care must be taken when computing the left-hand side of (3.6).
The problem is that the values |ω/2|k+1/(k + 1)! may increase very rapidly
causing the floating-point overflow. Also, if N is large compared to |ω|
then IN+1 may be zero for the computer arithmetic. In that case, M
is difficult to estimate. For example, if N = 500 and |ω| ≤ 80 then
|IN+1| < 10−330.

The second algorithm of Hasegawa and Torii [5] assumes that x = −1
and expresses the indefinite integral (1.1) as follows:

y\
−1

f(t)eiωt dt =
eiωyF (y)

iω
,

where F (y) is of the form (1.6). If we set y = −1 then we obtain an
additional normalizing condition for the values dk,

(3.7) F (−1) =

∞∑

i=0

′

(−1)idi = 0.
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This equality together with (1.7) form an infinite system of linear equations

(3.8)

d0 +
2

iω
d1 − d2 = a0 − a2,

d1 +
4

iω
d2 − d3 = a1 − a3,

. . .
...

∞∑

i=0

′

(−1)idi = 0,

. . .
...

dk−1 +
2k

iω
dk − dk+1 = ak−1 − ak+1,

...

where the condition (3.7) is the mth equation of the system for m = ⌊|ω|⌋.
The finite approximation dMi , i = 0, 1, . . . ,M (M > m), to the exact solution
of (3.8) is obtained using the LU decomposition algorithm with rank-one
updating technique (see [5] for details). The selection of M is based on the
computed value |dMM | under some additional assumptions on the solution
{dk} as described at the end of Section 2 of the present paper (cf. [5]).

Observe that the solution of the system (3.8) is also a solution of the
difference equation (1.7). Therefore it may be used to compute the values
of (1.1) for any −1 ≤ x < y ≤ 1 using the equality (1.5).

4. Numerical results. Here we present the numerical results obtained
for the following integrals:

(a)

y\
x

exp(−t)eiωt dt,

(b)

y\
x

exp(10 − (10t− 1)2)eiωt dt,

(c)

y\
x

(√
t+

1√
8

)−1

eiωt dt,

(d)

y\
x

tan

(
πt

2.01

)
eiωt dt.

For a given error tolerance δ > 0 the function f is approximated by a
polynomial fN of the form (1.3) that satisfies the inequality (1.4). Then
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the approximation 1

iω
(eiωyFM (y) − eiωxFM (x)), FM =

∑′M

k=0
dkTk, to the

indefinite integral
Ty
x
fN (t)eiωt dt is computed using the presented methods

for the error tolerance ε = 0.1δ.
We have implemented two versions of the present algorithm: K1 that uses

the error estimate (2.6) and K2 that uses the error estimate (2.15). These
methods were compared to the first (HT1) and second (HT2) algorithm of
Hasegawa and Torii described in Section 3.

TABLE 1. Comparison of efficiency of the algorithms

K1 K2 HT1 HT2 K1 K2 HT1 HT2

integral ω δ N M time

(a) 5 10−12 16 23 22 20 26 1.0 1.0 1.1 2.3
10 24 21 20 35 0.9 1.1 2.2
15 17 17 17 43 0.9 1.5 2.4

(b) 25 10−10 128 130 118 129 119 1.0 1.0 1.3 2.4
75 131 120 132 122 1.0 1.4 2.3
125 137 127 164 129 0.9 1.6 2.2

(c) 50 10−10 256 258 207 257 202 1.0 1.0 1.3 2.3
150 260 211 269 222 0.9 1.4 2.4
250 272 252 335 304 0.9 1.6 2.9

(d) 100 10−15 512 515 350 513 351 1.0 0.8 1.3 2.2
300 517 350 544 382 0.7 1.4 2.2
500 533 502 676 595 0.9 1.7 3.3

In Table 1 we compare the values of M obtained by each algorithm and
the time used to compute dk, k = 0, 1, . . . ,M . For all four test integrals and
all test values of ω, x and y the actual errors produced by each algorithm
were always less than the desired error tolerance. In general, the smallest
errors were produced by the algorithms K1 and HT1.

TABLE 2. Behaviour of the solutions {dk} for the integral (a), ω = 15

k |dk| from K1 |dk | from HT1 |dk| from HT2

0 1.26326174169·10+0 1.26326174169·10+0 1.23420763177·10+0

6 4.48777052839·10−5 4.48777052839·10−5 1.11822980215·10+0

12 1.03685038259·10−12 1.03685071786·10−12 1.28379920236·10+0

17 1.61506568016·10−17 1.74260978738·10−17 3.60887250171·10−1

18 1.87829420472·10−1

19 8.99033589614·10−2

25 2.74466911423·10−4

31 1.44859576475·10−7

37 2.07574744222·10−11

43 1.00805176249·10−15
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Table 2 compares the values |dk| obtained for the integral (a) with ω =
15. We can observe that the solutions {dk} obtained by K1 and HT1 are
nearly identical while the solution computed by HT2 may decrease much
slower. This is caused by the additional normalizing condition (3.7) that
has to be satisfied by the solution {dk} obtained with the HT2 method.

From the numerical experiments one may conclude that the algorithm
K2 is superior to the other three as it is very fast and the corresponding
value of M is relatively small. However, we have to remember that the
error estimation in K2 and HT2 assumes some additional properties of the
solution.
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