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ON TWO TESTS BASED ON DISJOINT m-SPACINGS

Abstract . This paper is concerned with the properties of two statistics
based on the logarithms of disjoint m-spacings. The asymptotic normality
is established in an elementary way and exact and asymptotic means and
variances are computed in the case of uniform distribution on the interval
[0, 1]. This result is generalized to the case when the sample is drawn from
a distribution with positive step density on [0, 1]. Bahadur approximate
efficiency of tests based on those statistics is found for such alternatives.

1. Introduction. Let X1, . . . ,Xn be a sample from the uniform distri-
bution on the interval [0, 1]. Denote by X(1), . . . ,X(n) the order statistics
derived from this sample and define X(0) = 0, X(n+1) = 1. Let m ≥ 1
be fixed. We define the m-spacings from the sample X1, . . . ,Xn as the
differences

(1) D
(m)
i,n = X(i+m) − X(i), 0 ≤ i ≤ n + 1 − m.

Denote by kn the number of disjoint m-spacings that can be built from a
sample of size n:

(2) kn =

[

n + 1

m

]

,

where [x] denotes the integral part of x. Now let Y1, . . . , Yn+1 be i.i.d.
exponential random variables with unit mean. It is known that

(3) X(i)
d
=

Y1 + . . . + Yi

Y1 + . . . + Yn+1
,
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and the equality also holds for the whole vector of order statistics. Set also

(4) Si,m = Y(i−1)m+1 + . . . + Yim, i = 1, . . . , kn.

We are interested in two statistics based on disjoint, normalized m-spacings:

(5) Gi,n =

kn−1
∑

j=0

gi((n + 1)D
(m)
jm,n), i = 1, 2,

where g1(x) = log x and g2(x) = x log x. The statistic G1,n for m = 1 was
suggested by Darling (1953). The statistic G2,n (also for m = 1) was first
considered by Gebert & Kale (1969) and both statistics were derived in a
general way by Kale (1969).

2. The exact moments of G1,n and G2,n. In this section we compute
the exact means and variances of the statistics G1,n and G2,n.

Lemma 1. Let Y1, . . . , Yn be i.i.d. exponential random variables with unit

mean. Let Sk denote the sum of the first k of these variables. Then

E{log Sn} =
n−1
∑

i=1

1

i
− γ,(6)

E{Sn log Sn} = n

( n
∑

i=1

1

i
− γ

)

,(7)

Cov {Sn, log Sn} = 1,(8)

σ2{log Sn} =
∞
∑

i=n

1

i2
,(9)

Cov {log Sk, log Sn} = σ2{log Sn}, 1 ≤ k ≤ n,(10)

where γ is Euler’s constant.

P r o o f. The random variable Sn has Erlang’s distribution with density

gn(x) =
1

(n − 1)!
xn−1e−x.

Hence

E{log Sn} =
1

(n − 1)!

∞\
0

xn−1e−x log x dx.

Denote the integral above by I(n − 1). Integrating by parts we obtain
I(n − 1) = −n−1 + I(n). Therefore

(11) I(n) = 1 +
1

2
+ . . . +

1

n
+ I(0).
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From the theory of the gamma function we know that

I(0) =

∞\
0

e−x log x dx = −γ,

which together with (11) proves (6). Now (7) results from the fact that

E{Sn log Sn} =
1

(n − 1)!

∞\
0

xn−1e−xx log x dx = nI(n).

Next we have E{Sn} = n and thus (8) is a consequence of (6) and (7).
To prove (9) we need to calculate

E{log2 Sn} =
1

(n − 1)!

∞\
0

xn−1e−x log2 x dx.

Denote the above integral by K(n − 1). Integrating by parts we find that
K(n − 1) = −2n−1I(n − 1) + K(n), which leads to

K(n) = K(0) +

( n
∑

i=1

1

i

)2

−
n

∑

i=1

1

i2
− 2γ

n
∑

i=1

1

i
.

From the theory of the gamma function we know that

K(0) =

∞\
0

e−x log2 x dx =
π2

6
+ γ2,

and thus

K(n) =
π2

6
−

n
∑

i=1

1

i2
+

( n
∑

i=1

1

i
− γ

)2

=
∞
∑

i=n+1

1

i2
+ I2(n).

Hence

σ2{log Sn} = K(n − 1) − I2(n − 1) =

∞
∑

i=n

1

i2
.

Finally, to prove (10) we need to calculate E{log Sk log Sn}. We have

E{log Sk log Sn |Sn = s} = log sE{log Sk |Sn = s}.
It is known that Y1, . . . , Yn given Sn = s have the same distribution as
spacings from a sample of size n − 1 from the uniform distribution on the
interval [0, s] and correspondingly Sk given Sn = s is distributed as the kth
order statistic from this distribution. Now it follows from (3) that we can
write

E{log Sk |Sn = s} = E

{

log

(

s
Sk

Sn

)}

= log s + E{log Sk} − E{log Sn}



362 F. Czeka la

and we obtain

E{log Sk log Sn} = E{E{log Sk log Sn |Sn}}
= E{log2 Sn + log Sn(E{log Sk} − E{log Sn})}
= σ2{log2 Sn} + E{log Sk}E{log Sn}.

From the above equality (10) results immediately. This ends the proof of
Lemma 1.

Lemma 2. Let D
(m)
i,n be the m-spacings defined by (1). Then

E{log D
(m)
0,n } = −

n
∑

i=m

1

i
,(12)

σ2{log D
(m)
0,n } =

n
∑

i=m

1

i2
,(13)

Cov{log D
(m)
0,n , log D(m)

m,n} = −
∞
∑

i=n+1

1

i2
.(14)

P r o o f. According to (3) and (6) we have

E{log D
(m)
0,n } = E{log S1,m} − E{log Sn+1} = −

n
∑

i=m

1

i
.

In the same way, from (3), (10) and (9) we get

σ2{log D
(m)
0,n } = σ2{log S1,m} + σ2{log Sn+1} − 2 Cov {log S1,m, log Sn+1}

= σ2{log S1,m} − σ2{log Sn+1} =

n
∑

i=m

1

i2
.

Finally,

Cov {log D
(m)
0,n , log D(m)

m,n}
= Cov {log S1,m, log S2,m} − Cov {log S1,m, log Sn+1}

− Cov {log Sn+1, log S2,m} + σ2{log Sn+1}
and since S1,m and S2,m are independent, Cov {log S1,m, log S2,m} = 0 and
(14) follows from (9) and (10).

Lemma 3. The exact mean and variance of the statistic G1,n are given

by

E{G1,n} = kn

(

log (n + 1) −
n

∑

i=m

1

i

)

,(15)
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σ2{G1,n} = kn

( ∞
∑

i=m

1

i2
− kn

∞
∑

i=n+1

1

i2

)

.(16)

P r o o f. Formula (15) results from the definition of G1,n and Lemma 2.
To find the variance of G1,n note that

σ2{G1,n} = knσ2{log D
(m)
0,n } + kn(kn − 1) Cov {log D

(m)
0,n , log D(m)

m,n}
= knσ2{log S1,m} − k2

nσ2{log Sn+1},
and (13) applied to the last equality gives us (16).

Lemma 4. Let ln = knm. Then

E{G2,n} = ln

(

log (n + 1) −
n+1
∑

i=m+1

1

i

)

(17)

σ2{G2,n} =
ln

n + 2

{

(n + 1)

(

(m + 1)
∞
∑

i=m+1

1

i2
− (ln + 1)

∞
∑

i=n+2

1

i2

)

(18)

+ (n + 1 − ln)

(( n+2
∑

i=m+1

1

i

)2

− 2
n+2
∑

i=m+1

1

i
+

1

(n + 2)2

)}

.

In the case when ln = n + 1, i.e. when the disjoint m-spacings span the

whole interval [0, 1], (18) simplifies to

(19) σ2{G2,n} =
(n + 1)2

n + 2

(

(m + 1)
∞
∑

i=m+1

1

i2
− (n + 2)

∞
∑

i=n+2

1

i2

)

.

P r o o f. Formulae (17) and (18) written in a slightly different form were
proved in Czeka la (1996) as Lemma 5.

3. The asymptotic normality of G1,n and G2,n. The asymptotic
normality of a wide class of statistics based on disjoint m-spacings was
proved by Del Pino (1979) via weak convergence in the space D[0,∞] of
the empirical process of the m-spacings to a Gaussian process. However,
the asymptotic normality of statistics based on disjoint m-spacings can be
proved quite elementarily using a modified version of a theorem of Proschan
& Pyke (1964). This method was also used by Cressie (1976) to prove
the asymptotic normality of an equivalent to the statistic G1,n based on
overlapping m-spacings. We present the theorem of Proschan & Pyke in a
form suitable for dealing with disjoint m-spacings.

Lemma 5. Let X1, . . . ,Xn+1 be i.i.d. random variables and let kn be

defined by (2). Assume that E{|X1|} < ∞ and set E{X1} = µ. Let h(x, y)
be any real function of two variables satisfying the following conditions:
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(i) h(x, y) is continuously differentiable in y. For convenience we denote

this derivative by h′(x, y).

(ii) E{|h′(S1,m, µ)|} < ∞, where Si,m are sums of Xi’s defined as in (4).
Set E{h′(S1,m, µ)} = C.

(iii) For all double sequences {θni : 1 ≤ i ≤ kn, n ≥ 1} of random

variables for which

(20) max
1≤i≤kn

|θni − µ| P.1−→ 0

we have

(21)
1

kn

kn
∑

i=1

(h′(Si,m, θni) − h′(Si,m, µ))
P.1−→ 0.

Assume also that X1 and h(S1,m, µ) have finite variances σ2
x , σ2

h and

covariance σxh. If we denote by Xn the sample mean of Xi’s then the

random variable

(22) Zn =
1√
kn

kn
∑

i=1

(h(Si,m,Xn) − E{h(S1,m, µ)})

converges in distribution to a normal random variable with zero mean and

finite variance σ2
z given by

(23) σ2
z = σ2

h + (C2/m)σ2
x + (2C/m)σxh.

P r o o f. We have Taylor’s expansion

h(Si,m,Xn) = h(Si,m, µ) + (Xn − µ)h′(Si,m, θni).

Applying this to (22) we can show as in the proof of Theorem 1 of Proschan
& Pyke (1964) that

Zn =
1√
kn

kn
∑

i=1

(

h(Si,m, µ) − E{h(S1,m, µ)} +
C

m
(Si,m − mµ)

)

+ εn,

where εn → 0 in probability. Since Si,m are independent random variables
the result follows from the ordinary central limit theorem.

The next lemma was stated and proved in Proschan & Pyke (1964).
We only recall it here so that it can be used in verifying condition (iii) of
Lemma 5 for our statistics G1,n and G2,n.

Lemma 6. Let k(x, y) be any real function of two variables. If k satisfies

(24) lim
ε→0

E{ sup
|θ−µ|<ε

|k(S1,m, θ) − k(S1,m, µ)|} = 0,

then k also satisfies condition (iii) of Lemma 5.



Tests based on disjoint m-spacings 365

Theorem 1. The random variable G1,n is asymptotically normal and its

asymptotic mean e1,n and variance σ2
1,n are given by

e1,n =
n + 1

m

(m−1
∑

i=1

1

i
− γ

)

(25)

and

σ2
1,n =

n + 1

m

( ∞
∑

i=m

1

i2
− 1

m

)

.(26)

P r o o f. According to (3) we have

G1,n
d
=

kn
∑

i=1

log

(

Y(i−1)m+1 + . . . + Yim

Yn+1

)

.

To prove the asymptotic normality of G1,n we can now use Lemma 5. If
we take h(x, y) = log (x/y) then h′(x, y) = −1/y and we only need to check
condition (iii). To that end we will use Lemma 6. Because µ = 1 we have

|h′(S1,m, θ) − h′(S1,m, µ)| = |1 − 1/θ|,
and it is clear that condition (24) is satisfied. To find the asymptotic variance
of G1,N we have to calculate σ2

z as defined in Lemma 5. We have

σ2
z = σ2

h +
C2

m
σ2

x +
2C

m
σxh

= σ2{log S1,m} +
1

m2
σ2{S1,m} − 2

m
Cov {S1,m log S1,m},

=
∞
∑

i=m

1

i2
+

1

m2
m − 2

m
.

Since (n + 1)m−1k−1
n → 1 it follows that the asymptotic variance of G1,n is

equivalent to σ2
1,n given by (26). We obtain formula (25) in a similar way

computing E{h(S1,m, µ)} by means of Lemma 1.

Theorem 2. The random variable G2,n is asymptotically normal and its

asymptotic mean e2,n and variance σ2
2,n are given by

(27) e2,n = (n + 1)

( m
∑

i=1

1

i
− γ

)

and

(28) σ2
2,n = (n + 1)

(

(m + 1)

∞
∑

i=m+1

1

i2
− 1

)

.

P r o o f. We prove this theorem in the same way as Theorem 1. Let
h(x, y) = (x/y) log (x/y). We only need to check condition (24) of Lemma 6
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to prove the asymptotic normality of G2,n. We have

h′(x, y) = −(x/y2) log (x/y) − x/y2

and it follows that

|h′(S1,m, θ) − h′(S1,m, µ)|

≤ (|S1,m log S1,m| + |S1,m|)
∣

∣

∣

∣

1

θ2
− 1

∣

∣

∣

∣

+ |S1,m|
∣

∣

∣

∣

log θ

θ2

∣

∣

∣

∣

.

The functions of θ above are continuous and equal to 0 at θ = 1 and using
this it is easy to see that condition (24) holds. To prove (27) note that
according to (22) the asymptotic mean of G2,n is equal to knE{h(S1,m, µ)},
which is asymptotically equivalent to (n + 1)m−1E{h(S1,mµ)}. Thus we
have

e2,n =
n + 1

m
E{S1,m log S1,m} =

n + 1

m
I(m),

which proves (27). To prove (28) we need to calculate σ2
z given by (23). To

that end we first have to find σ2
h, σxh and C as defined in Lemma 5. We

have

σ2
h = E{S2

1,m log2 S1,m} − E2{S1,m log S1,m}(29)

= m(m + 1)K(m + 1) − (mI(m))2,

where K(m + 1) and I(m) are as in the proof of Lemma 1. We get similarly

σxh = E{S1,m log S1,m} − E{S1,m}E{S1,m log S1,m}(30)

= m(m + 1)I(m + 1) − m2I(m),

and

(31) C = E{h′(S1,m, µ)} = E{−S1,m log S1,m − S1,m} = −m(I(m) + 1).

Putting (29)–(31) together we obtain the following expression for σ2
z :

σ2
z = m(m + 1)

∞
∑

i=m+1

1

i2
− m,

which proves (28) as the asymptotic variance of G2,n is equal to knσ2
z which

is asymptotically equivalent to (n + 1)m−1σ2
z .

The asymptotic normalizing constants for G2,n were also found by Jam-
malamadaka & Tiwari (1986) using the results of Del Pino (1979).

4. The asymptotic normality of G1,n and G2,n for some al-

ternatives. In this section we find the asymptotic distribution of G1,n

and G2,n for fixed alternatives with positive step densities on [0, 1]. Let
X = (X1,X2, . . . ,Xn, . . .) be a sequence of random variables which are used
to form Gi,n. We can write Gi,n = φi(n,X). To simplify the notation
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we assume that φi(0,X) = 0. Now let k ≥ 1 be a fixed integer and fix
0 = x0 < x1 < . . . < xk = 1. Define

I1 = [x0, x1), . . . , Ik−1 = [xk−2, xk−1), Ik = [xk−1, xk].

The length of the interval Ii will be denoted by di and its indicator function
by 1Ii

(x). Let fi > 0, i = 1, . . . , k, be fixed numbers such that
∑k

i=1 fidi =
1. These numbers together with the intervals Ii define a step density f :

(32) f(x) =

k
∑

i=1

fi 1Ii
(x).

Define pi = fidi. We have
∑

pi = 1 and hence there exist numbers 0 = x′
0 <

x′
1 < . . . < x′

k = 1 such that the intervals I ′i, defined similarly to Ii, have
lengths pi. There also exists a vector (U, Y 1, . . . , Y k) of random elements
such that:

(a) the coordinates of this vector are stochastically independent,

(b) U = (U1, U2, . . .) is a sequence of independent random variables
uniformly distributed on [0, 1],

(c) Y i = (Y i
1 , Y i

2 , . . .), for i = 1, . . . , k, are sequences of independent
random variables with uniform distribution on Ii.

We can now define a sequence Z = (Z1, Z2, . . .) of independent random
variables with density f :

(33) Zn =

k
∑

i=1

1I′

i
(Un)Y i

n, n ≥ 1.

Denote by Ni,n the number of random variables Z1, . . . , Zn taking values in
the interval Ii, i.e.

(34) Ni,n =

n
∑

j=1

1Ii
(Zj).

It is easy to see that Ni,n =
∑n

j=1 1I′

i
(Uj) and thus the sequence of vectors

(N1,n, . . . , Nk,n) is independent of (Y 1, . . . , Y k). In the sequel we will write
Ni instead of Ni,n for brevity.

The asymptotic normality of G2,n in the case of fixed alternative dis-
tributions with step densities was proved in Czeka la (1996). This result is
presented in Theorem 3. The asymptotic distribution of G2,n under a se-
quence of alternatives converging to the uniform distribution was found by
Jammalamadaka & Tiwari (1986).

Theorem 3. If X1,X2, . . . ,Xn, . . . are i.i.d. random variables with den-

sity f > 0 given by (32) then
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(35)
G2,n − e2,n(f)

σ2,n(f)

d→ N(0, 1),

where

e2,n(f) = (n + 1)

( m
∑

i=1

1

i
− γ + E{f(X1)−1 log (f(X1)−1)}

)

,(36)

σ2
2,n(f) = (n + 1)

(

E{f(X1)−2}(m + 1)
∞
∑

i=m+1

1

i2
− 1

)

.(37)

As the proof of asymptotic normality for the statistic G1,n is very similar
we will omit most details and state only basic lemmas that are required.
Similar lemmas with complete proofs can be found in Czeka la (1996).

Lemma 7. The statistic φ1(n,Z) has asymptotically the same distribution

as

(38)

k
∑

i=1

φ1(Ni, Y
i) +

1

m

(

n log n −
k

∑

i=1

Ni log Ni

)

.

Lemma 8. Let Vi,n, i = 1, . . . , k, n ≥ 0, be random variables defined as

follows:

Vi,n = σ−1
1,n

(

φ1(n, Y i) − n + 1

m
log di − e1,n

)

,

where e1,n and σ1,n are defined by (25) and (26). Then

(39)

(

V1,N1
, . . . , Vk,Nk

,
N1 − np1√

n
, . . . ,

Nk − npk√
n

)

d→ (V1, . . . , Vk,W1, . . . ,Wk),

where the Vi are independent and normally N(0, 1) distributed random vari-

ables, the vector (W1, . . . ,Wk) is independent of (V1, . . . , Vk) and has the

multivariate normal distribution N(0, Σ), where Σ = [σi,j] and

σi,j =

{

−pipj for i 6= j,
pi − p2

i for i = j,
i, j = 1, . . . , k.

Lemma 9. For Ni defined by (34),

(40)
1√
n

( k
∑

i=1

Ni log
di

Ni

−
k

∑

i=1

npi log
ndi

pi

)

d→
k

∑

i=1

Wi log
di

pi

,

where Wi’s are defined in Lemma 8.

Now we can state and prove the following theorem.
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Theorem 4. If X1,X2, . . . ,Xn, . . . are i.i.d. random variables with den-

sity f > 0 given by (32) then

(41)
G1,n − e1,n(f)

σ1,n(f)

d→ N(0, 1),

where

e1,n(f) =
n + 1

m

(m−1
∑

i=1

1

i
− γ + E{log (f(X1)−1)}

)

,(42)

σ2
1,n(f) =

n + 1

m2

(

m
∞
∑

i=m

1

i2
− 1 + σ2{log (f(X1)−1)}

)

.(43)

P r o o f. For brevity, denote m
∑∞

i=m i−2 − 1 by C2
m. Using Theorem 1

and Lemmas 7–9 it can be shown that

(44)
1√

n + 1

(

φ1(n,Z) − n + 1

m

( m−1
∑

i=1

1

i
− γ + log n +

k
∑

i=1

pi log
ndi

pi

))

d→ Cm

m

k
∑

i=1

√
pi Vi +

1

m

k
∑

i=1

Wi log
di

pi

.

The right-hand side of (44) is normally distributed with mean zero and
variance

C2
m

m2
+

1

m2
σ2{log(f(X1)−1)}.

If we divide both sides of (44) by the square root of this value and note that

E{log(f(X1)−1)} =

1\
0

f(x) log(f(x)−1) dx =

k
∑

i=1

fidi log f−1
i

=
k

∑

i=1

pi log
di

pi

we get the assertion.

5.Bahadur approximate efficiencies. In this section we use the pre-
vious results to examine the Bahadur approximate ARE of tests based on
Gi,n for various m ≥ 1. For m = 1 the Bahadur approximate efficiency of
some tests based on spacings, including G1,n and G2,n, was computed by
Bartoszewicz (1995). This type of asymptotic efficiency of two sequences of
tests was introduced by Bahadur (1960). It is defined as the quotient of the
approximate slopes of these tests. The approximate slope can be defined
for a sequence of tests that satisfies some regularity conditions. Such a se-
quence is called by Bahadur (1960) a standard sequence. If we are given a



370 F. Czeka la

family of probability measures {Pθ : θ ∈ Θ} and test the hypothesis H that
θ ∈ Θ0 ⊂ Θ then a sequence {Tn} of real-valued statistics is called a standard

sequence (for testing H) if the following three conditions are satisfied:

I. There exists a continuous probability distribution function F such
that, for each θ ∈ Θ0,

lim
n→∞

Pθ(Tn ≤ x) = F (x) for every x.

II. There exists a constant a, 0 < a < ∞, such that

log (1 − F (x)) = −ax2

2
(1 + o(1)) as x → ∞.

III. There exists a function b on Θ −Θ0, with 0 < b < ∞, such that, for
each θ ∈ Θ − Θ0,

lim
n→∞

Pθ

(∣

∣

∣

∣

Tn√
n
− b(θ)

∣

∣

∣

∣

> x

)

= 0 for every x > 0.

The approximate slope c(θ) is defined for a standard sequence {Tn} as

c(θ) =

{

0 for θ ∈ Θ0,
a(b(θ))2 for θ ∈ Θ − Θ0.

If θ ∈ Θ − Θ0 and {T1,n} and {T2,n} are two standard sequences we de-
note Bahadur’s approximate efficiency of {T1,n} with respect to {T2,n} as
eB

(

{T1,n}, {T2,n}, θ
)

. In our case we set

(45) T
(m)
i,n = (Gi,n − ei,n)/σi,n, i = 1, 2.

According to Theorems 1 and 2 condition I is satisfied with F being the
distribution function of the standard normal distribution. Bahadur (1960)
showed that for such F condition II is satisfied with a = 1. It remains to
check condition III. We have

T
(m)
i,n =

Gi,n − ei,n(f)

σi,n(f)
· σi,n(f)

σi,n

+
ei,n(f) − ei,n

σi,n

.

For brevity, set

R(m) = m

∞
∑

i=m

1

i2
, m ≥ 1.

Then from Theorems 1 and 4 we obtain

(46)
T

(m)
1,n√
n

Pf−→ E{log(f(X1)−1)}
√

R(m) − 1

and from Theorems 2 and 3,

(47)
T

(m)
2,n√
n

Pf−→ E{f(X1)−1 log(f(X1)−1)}
√

R(m + 1) − 1
.
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It is well known that if f is not identically 1 then

E{log(f(X1)−1)} = −
1\
0

log(F (X))F (X) DX < 0

and

E{f(X1)−1 log(f(X1)−1)} = −
1\
0

log(f(x)) dx > 0.

Thus we have shown that condition III is satisfied with b1(f) and b2(f) equal
to the right-hand side of (46) and (47) respectively, and therefore we have
proved the following theorem.

Theorem 5. Let f > 0 be a step density defined by (32) but not iden-

tically equal to 1 and let X = (X1,X2, . . . ,Xn, . . .) be a sequence of i.i.d.

random variables with density f . If {T (m)
i,n } = {T (m)

i,n (X)}, i = 1, 2, are

the sequences of tests defined by (45) then their Bahadur approximate slopes

c
(m)
i (f) are given by

c
(m)
1 (f) =

E2{log(f(X1)−1)}
R(m) − 1

,(48)

c
(m)
2 (f) =

E2{f(X1)−1 log(f(X1)−1)}
R(m + 1) − 1

.(49)

Both c
(m)
1 (f) and c

(m)
2 (f) depend on the same function R(m). The basic

properties of this function that are of interest to us are given in the next
lemma.

Lemma 10. The function R(m), m ≥ 1, is strictly decreasing and

(50) lim
m→∞

R(m) = 1.

P r o o f. Let Q(m) =
∑∞

i=m i−2. We have

R(m + 1) = R(m) + Q(m + 1) − m−1

and it suffices to show that Q(m + 1) < m−1 for all m ≥ 1. Set am =
m−1 +

∑m
i=1 i−2. We have

am − am+1 = m−1(m + 1)−1 − (m + 1)−2 > 0

and thus the sequence am is strictly decreasing. Since lim am =π2/6, we get

(51)
π2

6
< m−1 +

m
∑

i=1

i−2 for all m ≥ 1,

Since

Q(m + 1) =
π2

6
−

m
∑

i=1

i−2
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the above inequality is equivalent to Q(m + 1) < m−1, which proves the
monotonicity of R(m). The proof of (50) can be found in Cressie (1976).

From Theorem 5 we get the following formulae for Bahadur’s approxi-
mate efficiencies:

(52) eB({T (m1)
1,n }, {T (m2)

1,n }, f) =
R(m2) − 1

R(m1) − 1
,

(53) eB({T (m1)
2,n }, {T (m2)

2,n }, f) =
R(m2 + 1) − 1

R(m1 + 1) − 1
,

(54) eB({T (m1)
1,n }, {T (m2)

2,n }, f)

=
E2{log(f(X1)−1)}

E2{f(X1)−1 log(f(X1)−1)} · R(m2 + 1) − 1

R(m1) − 1
.

It is interesting to note that the efficiencies in (52) and (53) do not depend
on f . It follows from (52), (53) and Lemma 10 that when the size of the
spacings increases to infinity then the efficiency of tests based on G1,n or
G2,n increases to infinity independently of any particular alternative. Now
let f(x) be any step density and fα(x) = 1 + α(f(x)− 1), α > 0. Then it is
easy to show that

lim
α→0

eB({T (m1)
1,n }, {T (m2)

2,n }, fα) =
R(m2 + 1) − 1

R(m1) − 1
.

Therefore, for step alternatives “close” to 1 and m1 = m2 the test based on
G1,n is less efficient than that based on G2,n. Both tests become equally
efficient if we take m1 = m2 + 1.
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