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EXTREMES IN MULTIVARIATE STATIONARY
NORMAL SEQUENCES

Abstract. This paper deals with a weak convergence of maximum vectors
built on the base of stationary and normal sequences of relatively strongly
dependent random vectors. The discussion concentrates on the normality
of limits and extends some results of McCormick and Mittal [4] to the mul-
tivariate case.

1. Introduction and notation. The classical monographs on weak
convergence of maximum variables Mn in stationary normal sequences are
Galambos [2] and Leadbetter et al. [3]. The existence and type of the
limit distribution depend only on the asymptotic behaviour of the sequence
{r(n) ln n : n ∈ N}, where r(n) is the covariance between the first and nth
variable of the normal stationary sequence considered. We will focus our
attention on the normality of limits. McCormick and Mittal [4] have proved
the following result:

Theorem 1. Suppose that the stationary normal sequence has covari-
ances {r(n)} such that r(n) → 0 monotonically and r(n) ln n → ∞ mono-
tonically for large n. Then

P [r(n)−1/2(Mn − (1− r(n))1/2bn) ≤ x] → Φ(x) as n →∞ for all x ∈ R,

where Φ denotes a standard normal distribution function, and

bn = (2 lnn)1/2 − 1
2 (2 ln n)−1/2 ln(4π lnn).

In the paper [5] by Mittal and Ylvisaker, where the above result was first
proved under the extra assumption that {r(n)} is convex, it is also shown
that the normal limit distribution is by no means the only possible one; they
exhibit a further class of limit distributions which occur when the covariance
decreases irregularly. However, it is obvious from the Normal Comparison

1991 Mathematics Subject Classification: Primary 60G70.
Key words and phrases: extreme order statistics, stationary normal sequences.

[375]



376 M. Wiśniewski

Lemma (see Theorem 4.2.1 of Leadbetter et al. [3]) that the assumptions
of Theorem 1 can be replaced by a variety of somewhat weaker conditions
without affecting the conclusion.

The present work is devoted to the study of the multidimensional aspect
of Theorem 1. The result obtained below (Theorem 2) and its proof are
based on the concepts of Theorem 3.8.4 of Galambos [2] and the results of
Wísniewski [6].

Let N(p) denote the set {1, . . . , p} for p ∈ N. Fix d ∈ N. All the vectors
considered will be d-dimensional, for example, X = (Xi : i ∈ N(d)). We
emphasize that arithmetical operations and other relations will always be
meant componentwise. We denote the covariance coefficient of a stationary
sequence {Xn : n ∈ N} by rij(n) = cov(X1i, Xnj) for i, j ∈ N(d), n ∈ N. Set
r(n) = (rii(n) : i ∈ N(d)) and m(n) = max{rij(n) : i, j ∈ N(d)}. Let Mn =
max{X1, . . . ,Xn} denote the vector maximum and write bn = (bn, . . . , bn),
1 = (1, . . . , 1). All the limits in the sequel will be considered as n →∞.

2. Main result

Theorem 2. Suppose that the stationary standard normal sequence {Xn}
has covariances {rij(n)} such that for each i, j ∈ N(d),

rii(n) ln n →∞,(1)
rij(n) ln n increases,(2)
rij(n) decreases,(3)

rij(n)[rii(n)rjj(n)]−1/2 → %ij ,(4)
m(2) < 1,(5)
m(n)(lnn)1/3 → 0.(6)

Then

P [r(n)−1/2(Mn − (1− r(n))1/2bn) ≤ x] → Φ(x) for all x ∈ Rd,

where Φ denotes the normal distribution function with zero mean vector and
covariance matrix (%ij).

Remark. It is easy to check that

rij(n) = [ln(n + 1)]p(i,j), where −1 < p(i, j) < −1/3,

is a covariance sequence which satisfies the assumptions of Theorem 2.

P r o o f (of Theorem 2). Write xn = r(n)x+(1− r(n))1/2bn. Denote by
{Yn

k}, {Z
n
k}, {W

n
k}, for k ∈ N(n), n ∈ N, three auxiliary arrays of random

vectors. It is required that the rows of the arrays are standard stationary
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normal sequences and for n ∈ N:

cov(Yn
k ) = cov(Zn

k ) = cov(Wn
k ) = cov(X1) for k ∈ N(n),

cov(Yn
1 ,Yn

k ) = cov(X1,Xn) for k ∈ N(n),

cov(Zn
1 ,Zn

k ) = cov(X1,Xk) for k ∈ N(s),

cov(Zn
1 ,Zn

k ) = cov(X1,Xs) for k ∈ N(n) \ N(s),

cov(Wn
1 ,Wn

k ) = cov(X1,Xs) for k ∈ N(n),

where

s = s(n) =
〈

exp
{[

1− 2
(

1 +
1
t

)
m(n)

]
lnn− (lnn)1/2

}〉
,

t ∈
(

0,
1−m(2)
1 + m(2)

)
,

and 〈a〉 denotes the integer part of a.
Set MY

n = max{Yn
1 , . . . ,Yn

n}, MZ
n = max{Zn

1 , . . . ,Zn
n} and MW

n =
max{Wn

1 , . . . ,Wn
n}. Since a normal distribution function is a monotonic

function of its covariances (see Berman [1]) we conclude that

P [MY
n ≤ xn] ≤ P [Mn ≤ xn] ≤ P [MZ

n ≤ xn].

Hence, to complete the proof it is sufficient to show that

P [MY
n ≤ xn] → Φ(x),(7)

P [MZ
n ≤ xn] → Φ(x).(8)

By the assumptions of Theorem 2 (without (2) and (6)), Theorem 3 of
Wísniewski [6] yields (7). The proof of (8) falls naturally into the following
two parts:

(9) |P [MZ
n ≤ xn]− P [MW

n ≤ xn]| → 0,

(10) P [MW
n ≤ xn] → Φ(x).

To deal with (9) we note that

x2
ni = 2(1− rii(n)) lnn + o((lnn)1/2), max{rij(s), rij(k)} = rij(k),

|rij(s)− rij(k)| ≤ rij(k), 0 < rij(k) < 1 for k ∈ N(s) \ {1}

and apply the Normal Comparison Lemma:

|P [MZ
n ≤ xn]− P [MW

n ≤ xn]|

≤ C
∑
i,j

s∑
k=2

n exp{−[2− rii(n)− rjj(n)][1 + rij(k)]−1 lnn + o((lnn)1/2)}.

Divide the above sum into Σ1(n) and Σ2(n), where k ∈ N(T )\{1} for Σ1(n)
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and k ∈ N(s) \ N(T ) for Σ2(n), and T = 〈nt〉. Then

Σ1(n) ≤ K
∑
i,j

exp{(1 + t− [2− rii(n)− rjj(n)][1 + m(2)]−1) ln n

+ o((lnn)1/2)}.

Since rii(n) → 0 for i ∈ N(d) the definition of t ensures the existence of
ε > 0 such that for all sufficiently large n we have

Σ1(n) ≤ Kd2 exp{−ε lnn + o((lnn)1/2)} = o(1).

We now turn to the proof of Σ2(n) = o(1). Let wij(n) denote the exponents
of the components occurring in Σ2(n). Then

wij(n) ≤ [rij(T ) + rii(n) + rjj(n)− 1] lnn + o((lnn)1/2).

From (2) we conclude that

rij(T ) ≤ rij(n) ln n

lnT
≤ 2

t
rij(n).

This gives

wij(n) ≤ w(n) =
[
2
(

1 +
1
t

)
m(n)− 1

]
lnn + o((lnn)1/2).

By the definition of s we have

Σ2(n) ≤ Kd2s(n)ew(n) ≤ Kd2 exp[−(lnn)1/2 + o((lnn)1/2)] = o(1)

and (9) is proved.
We next show (10). Since Theorem 3 of Wísniewski [6] implies

P [MW
n ≤ xs] → Φ(x),

according to a multidimensional version of Khinchin’s theorem it is sufficient
to show that for i ∈ N(d),

(11)
rii(s)
rii(n)

→ 1,

(12) bnrii(n)−1/2[(1− rii(n))1/2 − (1− rii(s))1/2] → 0.

We deduce from (2) that

ln s

lnn
≤ rii(n)

rii(s)
≤ 1.

On the other hand, the definitions of s and (3) give

ln s

lnn
= 1− 2

(
1 +

1
t

)
m(n)− (lnn)−1/2 → 1,

which establishes (11).
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Since (1−r)1/2 = 1− 1
2r+O(r2) as r → 0 it follows that for all sufficiently

large n,

0 ≤ bnrii(n)−1/2[(1− rii(n))1/2 − (1− rii(s))1/2]

≤ bnrii(n)−1/2[rii(s))− rii(n)] + o(1)

≤ (2rii(n) ln n)1/2(rii(n) ln n)−1[rii(s) ln n− rii(n) ln n] + o(1)

≤ (2rii(n) ln n)1/2

(
lnn

ln s
− 1

)
+ o(1)

≤ (2rii(n) ln n)1/2

[
2
(

1 +
1
t

)
m(n) + o((lnn)−1/2)

]
+ o(1)

≤ 23/2

(
1 +

1
t

)
[m(n)(lnn)1/3]3/2 + o(1).

From the above inequalities and (6) we obtain (12). This completes the
proof.
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