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polynomial-exponential equation
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1. Introduction. In this paper we shall study equations of polynomial-
exponential type defined over the algebraic numbers. These are equations of
the form

(1.1)
k∑

l=1

Pl(x)αxl = 0

in variables x = (x1, . . . , xn) ∈ Zn, where the Pl are polynomials with
coefficients in a number field K and

αxl = αx1
l1 . . . α

xn
ln

with αlj ∈ K× (1 ≤ l ≤ k, 1 ≤ j ≤ n). We begin with some basic notation.
Set Λ = {1, . . . , k}. When P is a partition of Λ, we will write λ ∈ P to
mean that λ is one of the subsets of Λ appearing in P. We then consider
the system of equations

(1.1)P
∑

l∈λ
Pl(x)αxl = 0 (λ ∈ P).

Denote by S(P) the set of solutions of (1.1)P which do not satisfy (1.1)Q
for any proper refinement Q of P (notice that every solution of (1.1) lies in
S(P) for some partition P). Then let G(P) be the subgroup of Zn consisting
of x such that

αxl = αxm
whenever l and m lie in the same set λ of P.

Let d be the degree of the field K, and for l ∈ Λ let δl be the total degree
of the polynomial Pl. Set

(1.2) A =
∑

l∈Λ

(
n+ δl
n

)
, B = max(n,A).
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A is the potential number of non-zero coefficients of the polynomials P1, . . .
. . . , Pk, and B = A unless all of these polynomials are constant, in which
case B = max(n, k). Recently, Schlickewei and Schmidt [7] have proved the
following

Theorem 1.1 [7, Theorem 1]. If G(P) = {0} then

|S(P)| < 235B3
d6B2

.

This improves (both with respect to the size and to the dependence on
certain parameters) the bound which the same authors obtained in [6].

The object in this paper is to study the case when the group G(P)
is non-trivial. Let | · | be the euclidean norm on Rn and, for positive z,
define log+ z = max(log z, 1). Let r be the rank of G(P) and let H be
the r-dimensional subspace of Rn spanned by G(P). Let H⊥ denote the
orthogonal complement of H. Then any ξ ∈ Rn may be written uniquely as
a sum

ξ = ξH + ξ⊥,
where ξH ∈ H and ξ⊥ ∈ H⊥. Set

(1.3) c0 = B1224B+21d6,

and define

(1.4) S = {x ∈ Zn : |x⊥| ≤ c0 log+ |xH |}.
Let G be the group of transformations of Rn of the form

φx = Θx+ u,

where Θ ∈ GL(n,Z) fixes H pointwise, and u ∈ Zn. Our main result is

Theorem 1.2. With notation as above, we have

S(P) ⊆
⋃

φ∈Φ
φ(S),

where Φ ⊂ G and |Φ| ≤ 236B3
d6B2

.

Previously, Laurent [3] (see also [4]) had obtained qualitative versions of
Theorems 1.1 and 1.2. It should be noted that the map φ 7→ φ(S) is not
one-to-one. To be precise, write φ1 ∼ φ2 if φix = Θix+ui (i = 1, 2), where
u1 = u2 and Θ1, Θ2 induce the same map on Rn/H. Then φ1(S) = φ2(S)
whenever φ1 ∼ φ2.

2. Absolute values and heights. We briefly describe some facts about
heights which will be used throughout. When K is a number field, let V =
V (K) denote the set of places of K. For v ∈ V (K) let | · |v be the associated
absolute value, normalized to extend the usual, or a p-adic absolute value
of Q, and let ‖ · ‖v = | · |dv/dv , where d is the degree of K and dv is the local
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degree. For α = (α1, . . . , αn) ∈ Kn define the absolute multiplicative height
H(α) by

H(α) =
∏

v∈V
‖α‖v,

where ‖α‖v = max(‖α1‖v, . . . , ‖αn‖v). Then define the absolute logarithmic
height h(α) = logH(α). Both heights are defined on Pn−1(A), where A is
the field of algebraic numbers.

When α ∈ K set H(α) = H(1, α) and h(α) = h(1, α). Then

h(α) =
∑

v∈V
max(0, log ‖α‖v) =

1
2

∑

v∈V
|log ‖α‖v|.

As pointed out in [6], it is a consequence of Dobrowolski’s work [2] that if α
has degree d and is neither zero nor a root of unity, then

(2.1) h(α) > (21d3)−1.

3. The first step. The proof of Theorem 1.2 generalizes the method
developed by Schlickewei and Schmidt in [7]. In the next two sections, we
shall accomplish two separate goals. In the present section we give a theorem
of Schlickewei and Schmidt which lies at the heart of the method, and in the
following, we use an induction argument to reduce the proof of Theorem 1.2
to that of a certain Theorem 4.1. The task for the remainder of the paper,
then, will be to prove Theorem 4.1; in Section 5 we shall pause again to give
an overview of its proof.

A fundamental step will be to consider (1.1) as a linear equation in a
large-dimensional space over the field K. To develop this idea requires some
notation. In (1.1), let Ml be the set of monomials of total degree ≤ δl. We
may then write

Pl =
∑

M∈Ml

alMM

with coefficients alM ∈ K. Define

A = {(l,M) : l ∈ Λ, M ∈Ml, alM 6= 0}.
Then (1.1) may be written as

(3.1)
∑

(l,M)∈A
alMM(x)αxl = 0.

Now define

ηlM (x) = alMM(x)αx,

and let η(x) be the vector with components ηlM (x) ((l,M) ∈ A). Define
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a = |A|; then the vector η(x) lies in Ka. The equation (3.1) becomes

(3.2)
∑

(l,M)∈A
ηlM (x) = 0.

This asserts that η(x) lies in a certain subspace T of Ka of codimension 1.
Let hM (x) be the logarithmic height of the vector with components

M(x) (M ∈M1∪ . . .∪Mk), and let hE(x) be the height of the vector with
components alMαxl ((l,M) ∈ A).

We shall require the following result of Schlickewei and Schmidt.

Theorem 3.1 [7, Proposition B]. Suppose that a ≥ 3. Then as x ranges
over solutions of (3.2) with

(3.3) hM (x) ≤ 1
4a2hE(x),

the vector η(x) will be contained in the union of not more than

230a2
(32a2)nd3(n+a)

proper subspaces of T .

This theorem will be the basic tool in the proof of Theorem 1.2. A priori,
since hM involves monomials and hE involves exponentials, it would seem
that (3.3) should be easy to achieve. However, at the outset we have no
control over the size of the coefficients alM in hM , and it is essential that
our bounds are independent of these coefficients. Hence much work will be
required to produce the inequality (3.3); this is the subject of Sections 8
through 11.

4. A reduction. To discuss the aforementioned Theorem 4.1, we must
introduce further notation. Recall the definition (1.2) of A. We will consider
vectors ξ ∈ KA with components ξlM indexed by pairs l,M with l ∈ Λ,
M ∈Ml.

When λ ⊆ Λ, let Vλ be the coordinate subspace of KA consisting of
vectors ξ with ξlM = 0 when l 6∈ λ. Then for any partition Q, we have∑

λ∈Q
Vλ = KA.

When T is a subspace of KA and Q is a partition of Λ, let T (Q) be the
subspace of T defined by

T (Q) =
∑

λ∈Q
T ∩ Vλ.

If Q′ is a refinement of Q then T (Q′) ⊆ T (Q). Therefore T (Q′) = T ⇒
T (Q) = T . Write Q ≺ T if T (Q) = T but no proper refinement Q′ of Q has
T (Q′) = T . For any T there exists Q (not necessarily unique) with Q ≺ T .
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For each l ∈ Λ, let Pl be a polynomial of total degree ≤ δl. We may write
Pl =

∑
M∈Ml

alMM . Given x ∈ Zn, let ξ = ξ(x) ∈ KA be the vector with
components

ξlM = ξlM (x) = M(x)αxl (l ∈ Λ, M ∈Ml).

Then to say that x satisfies (1.1)P is the same as to say that ξ(x) satisfies
the system

(4.1)
∑

l∈λ

∑

M∈Ml

alMξlM = 0 (λ ∈ P).

The equations (4.1) define a certain subspace, say W , of KA.
When T is any subspace ofKA, let X(T ) consist of x ∈ Zn with ξ(x) ∈ T .

If Q is a partition of Λ, let X(T,Q) consist of x ∈ Zn with ξ(x) ∈ T (Q),
but ξ(x) 6∈ T (Q′) for any proper refinement Q′ of Q. With S(P) as defined
in Section 1, we have

S(P) = X(W,P),
where W is defined by (4.1). Notice that if P = {{1}, . . . , {k}} then G(P) =
Zn and Theorem 1.2 holds trivially. Therefore we shall always suppose that
P is not this partition into singletons. The next result is an analogue of
Proposition C of [7].

Theorem 4.1. Set C = 235B2
d6B. Let T be a non-zero subspace of KA

with P ≺ T . Then there exist φ ∈ G and proper subspaces Ti of T with
Ti(P) = Ti (i = 1, . . . , C) such that

X(T,P) ⊆ φ(S) ∪
C⋃

i=1

X(Ti).

In the remainder of this section we show that Theorem 4.1 implies The-
orem 1.2; we begin with a lemma.

Lemma 4.2. Suppose that Theorem 4.1 is true, and suppose that T is a
subspace of KA with P ≺ T and dimT = t. Then

X(T,P) ⊆
⋃

φ∈ΦT
φ(S),

where ΦT ⊂ G and
|ΦT | ≤ (2C)t.

P r o o f. This is proved by induction on t. When t = 0, X(T,P) is empty
(notice that ξ(x) = 0 is impossible since when M = 1, we have ξlM (x) =
αxl ). Suppose, then, that t > 0. Let

(4.2) X(T,P) ⊆ φ(S) ∪
C⋃

i=1

X(Ti)
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be the cover given by Theorem 4.1. Suppose that P ≺ Ti fails to hold for
some index i. Then there is a proper refinement Q of P with Ti(Q) = Ti,
so that X(Ti) = X(Ti(Q)) ⊆ X(T (Q)) has empty intersection with X(T,P).
Suppose on the other hand that P ≺ Ti. Then if x ∈ X(T,P)∩X(Ti), we have
ξ(x) ∈ Ti = Ti(P). Since x ∈ X(T, P ), we cannot have ξ(x) ∈ Ti(Q) ⊆ T (Q)
for a proper refinement Q of P, so that x ∈ X(Ti,P). In this case, we obtain

X(T,P) ∩ X(Ti) ⊆ X(Ti,P).

In light of this discussion, we may rewrite (4.2) as

(4.3) X(T,P) ⊆ φ(S) ∪
⋃

P≺Ti
X(Ti,P).

By the induction hypothesis, each set X(Ti,P) is contained in the union
of not more than (2C)t−1 sets φ(S). Therefore (4.3) shows that X(T,P) is
contained in the union of not more than (2C)t such sets.

Theorem 1.2 follows easily from this lemma. Recall that S(P) = X(W,P),
where W is the subspace defined in (4.1). Notice that dimW ≤ A ≤ B. If
P ≺W fails to hold, then, as above, S(P) = X(W,P) is empty. If, however,
P ≺ W , then the lemma shows that S(P) is contained in the union of not
more than (2C)B ≤ 236B3

d6B2
sets φ(S), and the theorem is proved.

Our only remaining task is to prove Theorem 4.1.

5. The plan of attack. It will be useful at this point to give a vague
outline of the method which we shall employ to prove Theorem 4.1. We
begin in the next section by showing that in order to prove our theorem,
we may first apply a transformation φ ∈ G to the variable vector x. Then,
given a subspace T as in the theorem, we shall require an assortment {L}
of suitable linear forms which vanish on T (a suitable form, among other
things, must behave appropriately under the action of the aforementioned
transformations). The method of constructing such forms was developed in
[7], and will be outlined in Section 9.

When x ∈ X(T,P) and L vanishes on T we have L(ξ(x)) = 0. This is
an equation of the form (3.2), and our plan will be to apply Theorem 3.1,
which assumes a certain inequality (3.3) involving heights. In an attempt to
produce this inequality we will apply two transformations φ ∈ G to x; this
is the subject of Sections 8 and 10. As it turns out, every x for which we
cannot produce (3.3) will lie in S. When x does have (3.3), Theorem 3.1
will show that ξ(x) lies in one of finitely many proper subspaces Ti of T ,
from which we will obtain an assertion of the form given in Theorem 4.1.
To achieve this reduction of dimension it will be essential that our linear
forms L are minimal; that is, roughly speaking, that they have the smallest
possible set of non-zero coefficients.
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6. Transformations. Recall the definition of the group G given in the
introduction. In this section we show that in order to prove Theorem 4.1,
we may first apply a transformation φ ∈ G to the variable vector x. Write
φx = Θx+ u as in the introduction. Define

βlj = α
Θej
l (l ∈ Λ, 1 ≤ j ≤ n),

where e1, . . . , en are the standard basis vectors, and let βl = (βl1, . . . , βln)
(l ∈ Λ). Then for each l we have αΘxl = βxl . Recall that ξ(x) was defined in
terms of the αl; to indicate this write ξ(x) = ξα(x). Then let ξβ(x) be the
vector with components

M(x)βxl (l ∈ Λ,M ∈Ml).

In [6, §7] it is shown that φ induces an invertible linear map φ̂ on KA with
the property that

(6.1) ξα(φx) = φ̂ξβ(x).

Write G(P) = Gα(P), X(T ) = Xα(T ), X(T,P) = Xα(T,P), and define
Gβ(P), Xβ(T ), and Xβ(T,P) as before, but with respect to the βl. For any
partition P and subspace T of KA the following properties were derived
in [6]:

Xα(φ̂T ) = φXβ(T ),(6.2)

Xα(φ̂T,P) = φXβ(T,P),(6.3)

P ≺ T ⇔ P ≺ φ̂T,(6.4)

φ̂(T (P)) = (φ̂T )(P),(6.5)

Gα(P) = ΘGβ(P).(6.6)

From (6.6) and the definition of the group G, we see that in fact,

(6.7) Gβ(P) = Gα(P),

so that the subspace H is preserved by such a transformation.
Suppose now that we have established the assertion in Theorem 4.1 after

applying the transformation φ ∈ G to x (this involves replacing the αl by
βl as above). In other words, suppose that we have proved the following
assertion:

Whenever T is a subspace with T ≺ P, there exist ψ ∈ G and proper
subspaces Ti of T (i = 1, . . . , C) with Ti(P) = Ti and such that

(6.8) Xβ(T,P) ⊆ ψ(S) ∪
C⋃

i=1

Xβ(Ti).
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Our goal is to show that this implies the same assertion with β replaced
by α. Define W = φ̂T and Wi = φ̂Ti. If we use (6.2) and (6.3), (6.8) becomes

φ−1Xα(W,P) ⊆ ψ(S) ∪
C⋃

i=1

φ−1Xα(Wi),

which is the same as

Xα(W,P) ⊆ φψ(S) ∪
C⋃

i=1

Xα(Wi).

By (6.4), we have W ≺ P ⇔ T ≺ P, and by (6.5) we have

Wi(P) = (φ̂Ti)(P) = φ̂(Ti(P)) = φ̂(Ti) = Wi.

Therefore our goal is achieved; after this discussion, we reach the following
conclusion:

In order to prove Theorem 4.1, we may first apply a transformation φ ∈ G
to the variable vector x.

7. Linear forms. We collect further notation from [7] which we shall
require. Any linear form L on KA may be written

(7.1) L(ξ) =
∑

l∈Λ

∑

M∈Ml

blMξlM = L1(ξ1) + . . .+ Lk(ξk),

where ξ = (ξ1, . . . , ξk), ξl = (ξlM )M∈Ml
, and

Ll(ξl) =
∑

M∈Ml

blMξlM

with blM ∈ K. Set

B(L) = {l ∈ Λ : Ll 6= 0}, A(L) = {(l,M) : blM 6= 0}.
Let T be the subspace of KA given in Theorem 4.1, and let L(T ) be the

space of linear forms vanishing on T . Then L(T ) 6= {0} (for if L(T ) = {0},
then T = KA, so that P ≺ T implies that P is the partition consisting
entirely of singletons). A non-zero form L ∈ L(T ) will be called minimal if
there is no non-zero form L′ ∈ L(T ) with A(L′) $ A(L). Since P ≺ T , a
minimal form L has B(L) ⊆ λ for some λ ∈ P .

We introduce a lexicographical ordering of monomials: write M > N if
M = Xi1

1 . . . Xin
n , N = Xj1

1 . . . Xjn
n with is > js, is+1 = js+1, . . . , in = jn for

some s. We also introduce a symbol ¤ such that M > ¤ for every monomial
M . Let L be a form, written as in (7.1). If l ∈ B(L), then Ll 6= 0. In this
case we let Ml(L) be the largest (with respect to >) monomial with non-zero
coefficient blM , and let bl(L) be the corresponding coefficient. If l 6∈ B(L),
then Ll = 0, and we set Ml(L) = ¤, bl(L) = 0, and bl(L)Ml(L) = ¤.
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With every form L we associate k-tuples of leading monomials, leading
coefficients, and leading terms: (M1(L), . . . ,Mk(L)), (b1(L), . . . , bk(L)), and
(b1(L)M1(L), . . . , bk(L)Mk(L)), respectively.

8. The first transformation. In this section we shall make the first step
towards producing the inequality (3.3). Recall that this inequality required
that the height of a vector with components alMαxl be large. We begin here
by considering certain vectors with components αxl , and we show that after
an appropriate transformation the height of such vectors can be controlled.

Let α,β ∈ (K×)n have components αj , βj , respectively. We define
α/β = (α1/β1, . . . , αn/βn). Now, given α1, . . . ,αk as in Section 1, define
αlm = αl/αm (1 ≤ l,m ≤ k), and let αlmj be the jth component of αlm.
Set

(8.1) γlmjv = log ‖αlmj ‖v (1 ≤ j ≤ n, v ∈ V (K)).

Then
∑
v γ

lm
jv = 0 by the product formula (here, and below, a sum over v

will mean a sum over v ∈ V (K)). For ξ = (ξ1, . . . , ξn) ∈ Rn, define

(8.2) glmv (ξ) =
n∑

j=1

γlmjv ξj .

Notice that
∑
v g

lm
v (ξ) = 0. Then define

(8.3) ψlm(ξ) =
∑
v

max(0, glmv (ξ)) =
1
2

∑
v

|glmv (ξ)|.

For x ∈ Zn, we have glmv (x) = log ‖(αl/αm)x‖v, whence

(8.4) ψlm(x) = h((αl/αm)x) = h(αxl ,α
x
m) (x ∈ Zn).

Notice that for 1 ≤ l,m, p ≤ k, we have γlmjv = γlpjv + γpmjv . It follows that

(8.5) ψlm(ξ) ≤ ψlp(ξ) + ψpm(ξ) (ξ ∈ Rn);

this fact will be needed in the next section.
Recall that we write l P∼ m to mean that l and m lie in the same set λ

of P. For v ∈ V (K) define

Nv = {ξ : glmv (ξ) = 0 whenever l P∼ m},
so that Nv is a subspace of Rn. When x ∈ Zn, we have

glmv (x) = log ‖(αl/αm)x‖v.
Therefore G(P) is contained in Nv, so that H ⊆ Nv for each v ∈ V (K).

This shows that when l
P∼ m, we have ψlm(ξ+ h) = ψlm(ξ) for any ξ ∈ Rn

and h ∈ H.
As in the introduction, let H⊥ be the orthogonal complement of H; H⊥

is a subspace of dimension s = n−r. If n = r then S = Zn and Theorem 4.1



198 S. Ahlgren

holds trivially; we may therefore suppose that s > 0. Recall that when
ξ ∈ Rn we write ξ = ξH + ξ⊥ where ξH ∈ H and ξ⊥ ∈ H⊥.

Lemma 8.1. Let Γ be the projection of Zn on H⊥. Then Γ is a lattice
on H⊥.

P r o o f. Let π : Zn → H⊥ denote the projection map. It is clear that
π(Zn) is a group under addition. Since H⊥ is a rational subspace we know
that H⊥∩Zn ⊆ π(Zn) is a lattice on H⊥; therefore π(Zn) contains s linearly
independent points. So to prove our lemma we need only show that π(Zn)
is discrete. Since H⊥ is a rational subspace, there exists a basis of Rn of
the form {ai}1≤i≤n, where each ai has integral components, and further,
we have ai ∈ H⊥ (1 ≤ i ≤ s) and ai ∈ H (s + 1 ≤ i ≤ n). Let e1, . . . , en
be the standard basis vectors. Then there exist rationals αij such that ej =∑n
i=1 αijaj (1 ≤ j ≤ n). If D is a common denominator for all of the αij ,

then we see that for each j we have

π(Dej) =
s∑

i=1

(Dαij)aj ∈ H⊥ ∩ Zn.

It follows that π(Zn) ⊆ 1
D (H⊥∩Zn). Since H⊥∩Zn is discrete we conclude

that π(Zn) is discrete, and the lemma is proved.

Now let P be a partition as in Theorem 4.1. Define the function

(8.6) ωP(ξ) = max
λ∈P

max
l,m∈λ

ψlm(ξ).

Since P is fixed, we will write ω = ωP for simplicity. For any ξ, the discussion
above shows that ψlm(ξ⊥) = ψlm(ξ); therefore also ω(ξ⊥) = ω(ξ).

When x ∈ Zn, x 6∈ H, there exist l, m with l
P∼ m such that (αl/αm)x

is not a root of unity. Using (8.6), (8.4), and Dobrowolski’s estimate (2.1),
we see that

(i) ω(x⊥) ≥ (21d3)−1 (x⊥ ∈ Γ, x⊥ 6= 0).

From (8.3) we infer the properties

ω(ξ⊥ + η⊥) ≤ ω(ξ⊥) + ω(η⊥) (ξ⊥,η⊥ ∈ H⊥),(ii)

ω(γξ⊥) = |γ|ω(ξ⊥) (ξ⊥ ∈ H⊥, γ ∈ R).(iii)

Lemma 8.2. Suppose that ω : H⊥ → R satisfies (i)–(iii). Then there
exists a basis b⊥1 , . . . , b

⊥
s of Γ such that for λ1, . . . , λs ∈ R,

ω(λ1b
⊥
1 + . . .+ λsb

⊥
s ) ≥ 4−s max

i
(|λi|ω(b⊥i )).

P r o o f. In the case when Γ = Zs, this is Proposition 4.2 of Schlickewei
[5]. The general case follows easily. Let ϕ : Γ → Zs be an isomorphism of
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Z-modules, and extend ϕ to an isomorphism H⊥ → Rs. Define the function
ω∗ on Rs by

ω∗(x) = ω(ϕ−1(x)).

Then ω∗ satisfies (i)–(iii) with Γ = Zs. By Schlickewei’s result, there exists
a basis ε1, . . . , εs of Zs such that for any λ1, . . . , λs ∈ R,

ω∗(λ1ε1 + . . .+ λsεs) ≥ 4−s max
i

(|λi|ω∗(εi)).

Then the basis b⊥1 , . . . , b
⊥
s of Γ given by b⊥i = ϕ−1(εi) (i = 1, . . . , s) satisfies

the conditions of the lemma.

Lemma 8.3. There exists a basis a⊥1 , . . . ,a
⊥
s of Γ such that for λ1, . . . , λn

∈ R,

|λ1a
⊥
1 + . . .+ λsa

⊥
s | ≤ s2 max

i
|λi|.

P r o o f. Let e1, . . . , en be the standard basis for Rn. Then the projections
e⊥1 , . . . , e

⊥
n span Γ over R. For each i, |e⊥i | ≤ 1. By a fact from the Geometry

of Numbers (see, for example, Lemma 8 of [1, Ch. V]), there exists a basis
a⊥1 , . . . ,a

⊥
s of Γ such that |a⊥i | ≤ smax |e⊥i | ≤ s (i = 1, . . . , s). Then

|λ1a
⊥
1 + . . .+ λsa

⊥
s | ≤ smax |λia⊥i | ≤ s2 max |λi|,

as required.

Let {b⊥i }si=1 and {a⊥i }si=1 be the bases of Γ given by Lemmas 8.2 and 8.3.
Suppose that ξ⊥ = λ1a

⊥
1 + . . . + λsa

⊥
s ∈ Γ . Then, using Lemmas 8.2 and

8.3 along with (i), we obtain

ω(λ1b
⊥
1 + . . .+ λsb

⊥
s ) ≥ 4−s max

i
(|λi|ω(b⊥i )) ≥ 4−s(21d3)−1 max

i
|λi|(8.7)

≥ 4−ss−2(21d3)−1|ξ⊥|.
For i = 1, . . . , s fix vectors ai, bi ∈ Zn which project onto a⊥i , b⊥i ,

respectively. Let {cs+1, . . . , cn} be a basis for the lattice of integer points
on H. We claim that a1, . . . ,as, cs+1, . . . , cn form a basis of Zn. To see this,
let x be a given element of Zn. If x⊥ =

∑s
i=1 %ia

⊥
i with %i ∈ Z, then set

y = x −∑s
i=1 %iai. Since y⊥ = 0, we conclude that y is an integer point

on H, and our claim follows. Similarly, b1, . . . , bs, cs+1, . . . , cn form a basis
of Zn, and we may define a transformation Θ ∈ GL(n,Z) by

Θ(ai) = bi (i = 1, . . . , s),

Θ(ci) = ci (i = s+ 1, . . . , n).

It is clear that Θ fixes H pointwise. Using (8.7), we see that for ξ ∈ Rn, we
have

ω(Θ(ξ)) = ω(Θ(ξ)⊥) ≥ c1|ξ⊥|,
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where

(8.8) c1 = 4−ss−2(21d3)−1.

By the discussion in Section 6, we may apply the transformation Θ.
Recall that this entails replacing the vectors αl with vectors βl satisfying

βxl = αΘxl .

The function ω = ωα was defined in terms of the αl. Similarly, define ωβ in
terms of the βl. Then for ξ ∈ Rn, we have

ωβ(ξ) = ωα(Θξ) ≥ c1|ξ⊥|.
We may therefore assume from this point forward that

(8.9) ω(ξ) = ωP(ξ) ≥ c1|ξ⊥| (ξ ∈ Rn).

9. Construction of linear forms. Recall that L(T ) denotes the space
of linear forms vanishing on T . As mentioned in Section 5, the plan is to
apply Theorem 3.1 to equations of the form (3.2) defined by certain minimal
forms L ∈ L(T ). Since we must apply transformations to the vector x, we
require forms with certain special properties. Here we outline the construc-
tion of such forms developed in Section 16 of [7] and quote several results
proved in that work.

Suppose that P is not the partition into singletons, and that

(9.1) P ≺ T.
For λ ∈ P let Lλ(T ) consist of forms L ∈ L(T ) with B(L) ⊆ λ.

Now let λ ∈ P with |λ| > 1 be given. For simplicity, suppose that
λ = {1, . . . , r}. We will construct a partition of λ, λ =

⋃t
j=1 µj , into non-

empty subsets µj , as well as forms L1, . . . , Lt in Lλ(T ).
We call a form L ∈ Lλ(T ) 1-stable if |B(L)| > 1 and L cannot be written

as a sum L = L′ + L′′ where L′ and L′′ are non-zero, lie in Lλ(T ), and
have B(L′) ∩ B(L′′) = ∅. There are 1-stable forms; if there were not then
every form in Lλ(T ) would be a sum of forms whose sets B have cardinality
one, so that if Q were obtained from P by breaking λ into the singletons
{1}, . . . , {r} we would have T (Q) = T , against (9.1). We may therefore
choose a set µ1 ⊆ λ with minimal cardinality such that there is a 1-stable
form L with B(L) = µ1. Notice that |µ1| > 1.

Suppose that j > 1 and that subsets µ1, . . . , µj−1 of λ have been con-
structed. Set

νj−1 =
j−1⋃

i=1

µi.

If νj−1 = λ we set t = j − 1, and our construction is finished. Otherwise let
νj−1 be the complement of νj−1 in λ. We call a form L ∈ Lλ(T ) j-stable if
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L cannot be written as L = L′+L′′ where B(L′) ⊆ νj−1 and B(L′′) ⊆ νj−1.
j-stable forms do exist, for otherwise every form L ∈ Lλ(T ) could be written
as a sum L = L′+L′′ with L′, L′′ as above. Then if Q is obtained from P by
dividing λ into νj−1 and νj−1, we would have T (Q) = T , contradicting (9.1).

We may therefore choose µj ⊆ νj−1 of minimal cardinality such that
there is a j-stable form L with

(9.2) B(L) ∩ νj−1 = µj .

It is clear that µj 6= ∅. Continuing in this manner, we obtain sets µ1, . . . , µt
which partition λ.

Now renumber the elements of λ so that

µj = {rj−1 + 1, . . . , rj} (1 ≤ j ≤ t)
with 0 = r0 < r1 < . . . < rt = r. Recall the definition (given in Section 7)
of the leading monomials M1(L), . . . ,Mk(L). Given forms L,L′ ∈ Lλ(T ),
write L′ < L if

Ms(L′) < Ms(L), Ms+1(L′) = Ms+1(L), . . . , Mr(L′) = Mr(L)

for some s (this should not be confused with our earlier ordering of mono-
mials).

By the construction, for every j, 1 ≤ j ≤ t, there exist j-stable forms Lj
satisfying (9.2), where we define ν0 = ∅, ν0 = λ. A form Lj is j-proper if it
is minimal with respect to < among all j-stable forms with (9.2). Since the
ordering < depends only on the leading monomials, j-proper forms may not
be uniquely determined. If, however, both Lj and L′j are j-proper, then

(M1(Lj), . . . ,Mrj (Lj)) = (M1(L′j), . . . ,Mrj (L
′
j)).

We shall require several results from [7].

Lemma 9.1 ([7, Lemmas 16.1, 16.2]). (1) Suppose that Lj and L′j are
j-proper. Then their tuples of leading coefficients are proportional.

(2) Let Lj be a j-proper form with |A(Lj)| as small as possible. Then Lj
is a minimal form.

Now let P be a partition as in Theorem 4.1, and for every λ ∈ P with
|λ| > 1 construct j-proper forms Lλj , j = 1, . . . , t, with t = t(λ) ≤ |λ|, as
above. This set of forms will be fixed for the remainder.

Lemma 9.2 ([7, Lemma 17.1]). The forms Lλj satisfy the following prop-
erty : For every λ ∈ P and every l,m ∈ λ there is a chain of forms Lλj(1), . . . ,
Lλj(q) with q ≤ t(λ), l ∈ B(Lλj(1)), and m ∈ B(Lλj(q)), and such that

(9.3) B(Lλj(i)) ∩ B(Lλj(i+1)) 6= ∅ (1 ≤ i < q).
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To ease notation, we write Max to denote the maximum over all pairs
l, m with l,m ∈ B(Lλj) for some λ, j. Recall the definition (8.3) of the
functions ψlm, and for ξ ∈ Rn define

(9.4) XP(ξ) = Maxψlm(ξ).

We shall require the next lemma in Section 10.

Lemma 9.3. For ξ ∈ Rn, we have

(9.5) XP(ξ) ≥ c2|ξ⊥|,
where

(9.6) c2 = (21kd3s24s)−1.

P r o o f. Suppose that ξ ∈ Rn. By (8.6) and (8.9), ψlm(ξ) ≥ c1|ξ⊥| for

some l, m with l
P∼ m; say l,m ∈ λ where λ ∈ P. Let Lλj(1), . . . , Lλj(q) be

the chain of forms given by Lemma 9.2, and let l(i) lie in the set (9.3). Then,
using (8.5), we have

c1|ξ⊥| ≤ ψlm(ξ) ≤ ψl,l(1)(ξ) + . . .+ ψl(q−1),m(ξ).

The lemma follows since c2 = c1/k and q ≤ k.

10. Preparing for the second transformation. Recall that we have
fixed a set of forms Lλj . In this section we use a translation x 7→ x − u
in order to control the height of the coefficients of these forms. Since P is
fixed, we will simplify our notation by writing X = XP . When l

P∼ m we
have ψlm(ξ⊥) = ψlm(ξ) for any ξ ∈ Rn, therefore also X (ξ⊥) = X (ξ). Now
X is a non-negative function which satisfies

(10.1) X (ξ⊥ + η⊥) ≤ X (ξ⊥) + X (η⊥), X (γξ⊥) = |γ|X (ξ⊥)

(γ ∈ R, ξ⊥,η⊥ ∈ H⊥).

In view of Lemma 9.3, we may conclude that the set X ⊂ H⊥ defined by

X = {ξ⊥ ∈ H⊥ : X (ξ⊥) ≤ 1}
is a convex, symmetric, compact set which contains 0 in its interior (see, for
example, Chapter 4 of [1]).

We will now consider points (ξ, ζ) ∈ Rn+1 = Rn × R. Recall the defini-
tions of glmv in (8.2) and of the leading monomials bl at the end of Section 7.
Then, for l,m ∈ B(Lλj), define

clmλjv = log ‖bl(Lλj)/bm(Lλj)‖v,
g̃lmλjv(ξ, ζ) = glmv (ξ) + clmλjvζ,

ψ̃lmλj (ξ, ζ) =
∑
v

max(0, g̃lmλjv(ξ, ζ)) =
1
2

∑
v

|g̃lmλjv(ξ, ζ)|,
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X̃ (ξ, ζ) = Max ψ̃lmλj (ξ, ζ).

Notice that for x ∈ Zn we have

X̃ (x, 1) = Maxh(bl(Lλj)αxl , bm(Lλj)αxm)(10.2)

= Maxh(bl(Lλj)αxl /bm(Lλj)αxm).

Also notice that for any ξ ∈ Rn we have X̃ (ξ, 0) = X (ξ) and X̃ (ξ⊥, ζ) =
X̃ (ξ, ζ). Let X̃ ⊂ H⊥×R be the set of points (ξ⊥, ζ) such that X̃ (ξ⊥, ζ) ≤ 1.
X̃ enjoys properties analogous to those in (10.1); therefore X̃ is convex, sym-
metric, closed, and has (0, 0) in its interior. However, X̃ may be unbounded.

We extract the following from the proof of Lemma 15.1 of [7].

Lemma 10.1. There exists a fixed ξ1 ∈ Rn such that for any ξ ∈ Rn,

X (ξ) ≤ 2X̃ (ξ+ ξ1, 1).

P r o o f. If X̃ is unbounded, then there exists (ξ⊥0 , ζ0) 6= (0, 0) with
X̃ (ξ⊥0 , ζ0) = 0. Since X is bounded, we must have ζ0 6= 0; by homogene-
ity we may choose (ξ⊥1 , 1) with X̃ (ξ⊥1 , 1) = 0. On the other hand, when X̃
is bounded, hence compact, choose (ξ⊥0 , ζ0) ∈ X̃ with ζ0 maximal. Rewrite
ξ⊥0 = ζ0ξ

⊥
1 , so that ζ0(ξ⊥1 , 1) ∈ X̃.

Now suppose that (ξ⊥, ζ) ∈ X̃. When X̃ is unbounded, ζ(ξ⊥1 , 1) ∈ X̃,
but this holds also when X̃ is bounded, since |ζ| ≤ ζ0 in that case. Taking
the difference, we see that (ξ⊥ − ζξ⊥1 , 0) ∈ 2X̃, from which ξ⊥ − ζξ⊥1 ∈ 2X.
In other words, (ξ⊥, ζ) ∈ X̃ implies that ξ⊥ − ζξ⊥1 ∈ 2X. By reason of
homogeneity, X (ξ⊥ − ζξ⊥1 ) ≤ 2X̃ (ξ⊥, ζ). We may conclude that X (ξ⊥) ≤
2X̃ (ξ⊥+ ζξ⊥1 , ζ) for any (ξ⊥, ζ) ∈ H⊥×R. The lemma follows upon setting
ζ = 1.

Now let ξ1 be as in Lemma 10.1, choose u ∈ Zn such that |u + ξ1| ≤√
n/2, and set µ = ξ1 +u. Then Lemmas 9.3 and 10.1 show that for x ∈ Zn

we have

X̃ (x− u, 1) = X̃ (x− µ+ ξ1, 1)

≥ 1
2X (x− µ) ≥ 1

2c2|x⊥ − µ⊥| ≥ 1
2c2(|x⊥| − √n/2).

In view of (10.2) we have proved the following

Lemma 10.2. There exists u ∈ Zn such that for any x ∈ Zn,

Maxh(bl(Lλj)α−ul αxl , bm(Lλj)α−um αxm) ≥ 1
2c2(|x⊥| − √n/2).

11. Applying the second transformation. Let u ∈ Zn be the point
given in Lemma 10.2, and apply the transformation φx = x − u to the
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variable vector x. As in Section 6, this induces an invertible linear transfor-
mation φ̂ on KA, which, by (6.1), satisfies

(11.1) ξ(φx) = φ̂(ξ(x)).

(Notice that such a transformation does not involve replacing the exponen-
tial bases αl.)

Now define forms L̂λj on KA by

L̂λj(ξ(x)) = Lλj(ξ(x− u)).

By (11.1) we see that L̂λj ∈ L(φ̂−1T ). Moreover, since B(L̂λj) = B(Lλj),
these new forms are again j-stable, now with respect to the subspace φ̂−1T .
Finally, since the leading monomials of L̂λj are the same as those of Lλj ,
we see that the new forms are in fact j-proper.

If bl(Lλj) was a leading coefficient of Lλj , then bl(Lλj)α−ul is a leading
coefficient of L̂λj . By Lemma 10.2 we obtain

(11.2) Maxh(bl(L̂λj)αxl , bm(L̂λj)αxm) ≥ 1
2c2(|x⊥| − √n/2) (x ∈ Zn).

We now replace the forms L̂λj with j-proper forms L̃λj ∈ L(φ̂−1T )
whose sets A(L̃λj) are as small as possible. By Lemma 9.1, each form L̃λj
is minimal, and has leading coefficients which are proportional to those of
L̂λj . Therefore (11.2) still holds when we replace L̂λj with L̃λj .

For any form L with coefficients blM as in (7.1), let hLE(x) denote the
height of the vector with components

blMα
x
l ((l,M) ∈ A(L)).

It is clear that we have

(11.3) max
λ,j

hL̃λjE(x) ≥ Maxh(bl(L̃λj)αxl , bm(L̃λj)αxm).

To ease notation we shall write Lλj for L̃λj . In view of (11.2) and (11.3) we
have proved the following

Lemma 11.1. We may assume that the forms Lλj are minimal. Further ,
we may suppose that for x ∈ Zn,

max
λ,j

hLλjE(x) ≥ 1
2c2(|x⊥| − √n/2).

12. Proof of Theorem 4.1. Recall the definition of X(T,P) given in
Section 4. Using Lemma 11.1, we may divide solutions x ∈ X(T,P) into
classes Cλj with x ∈ Cλj if

(12.1) hLλjE(x) ≥ 1
2c2(|x⊥| − √n/2).

There are at most A classes. To ease notation, we fix a form L = Lλj and the
corresponding class C = Cλj . Recall the definitions (1.3), (1.4) of c0 and S.
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Vectors x ∈ C satisfying

(12.2) x 6∈ S
have |x⊥| ≥ c0 >

√
n, so that by (12.1), such x have

(12.3) hLE(x) ≥ c3|x⊥|,
where

(12.4) c3 = 1
4c2 = (84kd3s24s)−1.

We shall assume initially that (12.2), whence (12.3) holds.
For x ∈ C we have L(ξ(x)) = 0. We restrict our attention to the vector

ξL(x) with components ξlM (x) where (l,M) ∈ A(L). Then ξL(x) ∈ Ka

with a = |A(L)| ≥ 2. With a slight abuse of notation, we will write

(12.5) L(ξL(x)) = 0.

This says that ξL(x) lies in a certain subspace U of Ka of codimension 1.
Let hLM (x) be the height of the vector with components M(x) (M ∈

Ml, l ∈ B(L)). Notice that for any L the monomials which occur have total
degree ≤ max(δ1, . . . , δk) ≤ A. Therefore we always have

(12.6) hLM (x) ≤ A log+ |x|.
Suppose first that a = 2. Then the equation (12.5) takes the form

bM(x)αxl = b′M ′(x)αxm,

so that

hLE(x) = hLM (x) ≤ A log+ |x|.
Together with (12.3) and (12.4) this gives

(12.7) |x⊥| ≤ A · 84kd3s24s log+ |x| ≤ B422B+7d3 log+ |x|
(here, and below, we use the fact that max(A, k, s) ≤ B, and that 84 < 27).
At this point it will be convenient to record a lemma.

Lemma 12.1. Suppose that c ≤ B622B+9d3 and that |x⊥| ≤ c log+ |x|.
Then x ∈ S.

P r o o f. We operate under the hypothesis of the lemma. Suppose first
that |x⊥| ≤ |xH |. Then |x| ≤ 2|xH |, so that |x⊥| ≤ 2c log+ |xH | ≤
c0 log+ |xH |, and x ∈ S.

If, on the other hand, |xH | ≤ |x⊥|, then |x| ≤ 2|x⊥|, whence |x⊥| ≤
2c log+ |x⊥|. Then (since generally exp(t) ≥ t2/2), we obtain |x⊥| ≤ 8c2 ≤
c0 ≤ c0 log+ |xH |, and again x ∈ S.

Applying this lemma, we see that x satisfying (12.7) lie in S. Along with
(12.2), this shows that C ⊂ S when a = 2.
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We will now assume that a ≥ 3 (recall that we always have a ≤ A). When
x ∈ C, we have (12.5), which is of the form (3.2) studied in Theorem 3.1.
To use this theorem, we need (3.3). In other words we need

hLM (x) ≤ 1
4a2hLE(x),

which, using (12.3) and (12.6), will hold if

(12.8) A log+ |x| ≤ 1
4A2 c3|x⊥|.

After applying Theorem 3.1, we conclude that vectors ξL(x) with x ∈ C and
x satisfying (12.2), (12.8), lie in at most

(12.9) 230a2
(32a2)nd3(n+a) ≤ 234B2

d6B

proper subspaces of U (recall that U is defined by (12.5)). Let U ′ be one
of these subspaces. Then U ′ is defined by L′(ξL) = 0 for a linear form L′

which is not proportional to L. Since A(L′) ⊆ A(L), we may replace L′ by
L′′ = L′ − βL with suitable β ∈ K to ensure that A(L′′) $ A(L). In other
words, we may suppose that A(L′) $ A(L). Now, since L is minimal, we
must have L′ 6∈ L(T ). Therefore, whenever ξL(x) ∈ U ′, we may conclude
that ξ(x) lies in a certain proper subspace T ′ of T . Since B(L′) ⊆ B(L) ⊆ λ
for some λ ∈ P, we have T ′(P) = T ′. Therefore, using the estimate (12.9), we
see that points x ∈ C satisfying (12.2) and (12.8) lie in a union

⋃C′
i=1 X(Ti),

where C ′ = 234B2
d6B , and each Ti is a proper subspace of T with Ti(P) = Ti.

If, however, (12.8) is violated, then

|x⊥| ≤ 4A3(84kd3s24s) log+ |x| ≤ B622B+9d3 log+ |x|,
so that x ∈ S by Lemma 12.1.

When a = 2, we have shown that our chosen class C is contained in
S. When a ≥ 3, we have shown that C is contained in a set of the form
S∪⋃C′i=1 X(Ti). Theorem 4.1 follows easily, since there are at most B possible
classes.

Acknowledgments. I am indebted to Wolfgang Schmidt for his helpful
comments on my work.
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