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1. Introduction. In this paper we shall study equations of polynomial-
exponential type defined over the algebraic numbers. These are equations of
the form

k
(1.1) > P(w)af =0
=1

in variables * = (z1,...,2,) € Z", where the P, are polynomials with
coefficients in a number field K and

af =off ...apr
with a;; € K* (1 <1<k, 1 <j<n). We begin with some basic notation.
Set A = {1,...,k}. When P is a partition of A, we will write A € P to

mean that A is one of the subsets of A appearing in P. We then consider
the system of equations

(1.1)p Y P(w)af=0 (AeP)
lex

Denote by S(P) the set of solutions of (1.1)p which do not satisfy (1.1)g
for any proper refinement Q of P (notice that every solution of (1.1) lies in
S(P) for some partition P). Then let G(P) be the subgroup of Z™ consisting
of = such that

af =ai,
whenever [ and m lie in the same set \ of P.

Let d be the degree of the field K, and for [ € A let §; be the total degree
of the polynomial P;. Set

(1.2) A= (” ; 51), B = max(n, A).

leA
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190 S. Ahlgren

A is the potential number of non-zero coefficients of the polynomials P, ...
..., Py, and B = A unless all of these polynomials are constant, in which
case B = max(n, k). Recently, Schlickewei and Schmidt [7] have proved the
following

THEOREM 1.1 [7, Theorem 1]. If G(P) = {0} then
1S(P)| < 235B° 46B°

This improves (both with respect to the size and to the dependence on
certain parameters) the bound which the same authors obtained in [6].

The object in this paper is to study the case when the group G(P)
is non-trivial. Let | - | be the euclidean norm on R™ and, for positive z,
define log®™ z = max(logz,1). Let r be the rank of G(P) and let H be
the r-dimensional subspace of R” spanned by G(P). Let H* denote the
orthogonal complement of H. Then any £ € R may be written uniquely as
a sum

E=¢"+¢
where ¢ € H and ¢+ € HL. Set
(1.3) co = B1224B+2146.
and define
(1.4) S={xcZ":|xF| <colog" |z}
Let G be the group of transformations of R™ of the form
¢oxr = Ox + u,
where © € GL(n,Z) fixes H pointwise, and u € Z™. Our main result is
THEOREM 1.2. With notation as above, we have
sP)c | oS,
peP
where ® C G and |®| < 2368° (6B

Previously, Laurent [3] (see also [4]) had obtained qualitative versions of
Theorems 1.1 and 1.2. It should be noted that the map ¢ — ¢(S) is not
one-to-one. To be precise, write ¢1 ~ ¢ if p;& = O;& +u; (i = 1,2), where
u; = ug and O7, O3 induce the same map on R"/H. Then ¢1(S) = ¢2(S)
whenever ¢; ~ ¢s.

2. Absolute values and heights. We briefly describe some facts about
heights which will be used throughout. When K is a number field, let V =
V(K) denote the set of places of K. For v € V(K) let |- |, be the associated
absolute value, normalized to extend the usual, or a p-adic absolute value

of Q,and let || - ||, = |- do/d where d is the degree of K and d, is the local
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degree. For a = (g, ..., ) € K™ define the absolute multiplicative height
H(a) by
H(a) = [T llexllo,
veV

where |||, = max(||ai]|y,- .-, ||an|lv). Then define the absolute logarithmic
height h(a) = log H(cx). Both heights are defined on P"~!(A), where A is
the field of algebraic numbers.

When a € K set H(a) = H(1, ) and h(a) = h(1,a). Then

1
h(e) =) max(0,log [|a],) = 5 > llog|lely-

veV veV

As pointed out in [6], it is a consequence of Dobrowolski’s work [2] that if «
has degree d and is neither zero nor a root of unity, then

(2.1) h(a) > (21d*) 7.

3. The first step. The proof of Theorem 1.2 generalizes the method
developed by Schlickewei and Schmidt in [7]. In the next two sections, we
shall accomplish two separate goals. In the present section we give a theorem
of Schlickewei and Schmidt which lies at the heart of the method, and in the
following, we use an induction argument to reduce the proof of Theorem 1.2
to that of a certain Theorem 4.1. The task for the remainder of the paper,
then, will be to prove Theorem 4.1; in Section 5 we shall pause again to give
an overview of its proof.

A fundamental step will be to consider (1.1) as a linear equation in a
large-dimensional space over the field K. To develop this idea requires some
notation. In (1.1), let M, be the set of monomials of total degree < ;. We
may then write

P = Z ajn M
MeM;

with coefficients a;3; € K. Define
A= {(Z,M) 1l e /1, M E./\/ll, arpm 7&0}
Then (1.1) may be written as

(3.1) > amM(@)af =0.

Now define
mM(a:) = alMM(a:)az,

and let m(x) be the vector with components n;p(x) ((I, M) € A). Define
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a = |A|; then the vector n(x) lies in K. The equation (3.1) becomes

(3.2) > mu(x) =0.
(I,M)eA
This asserts that n(x) lies in a certain subspace T' of K of codimension 1.
Let hpr(x) be the logarithmic height of the vector with components
M(x) (M € M1U...UMy), and let hg(x) be the height of the vector with
components a;praf ((L, M) € A).
We shall require the following result of Schlickewei and Schmidt.

THEOREM 3.1 [7, Proposition B|. Suppose that a > 3. Then as x ranges
over solutions of (3.2) with

1

(3.3) ha () < @hE(iB),
the vector n(x) will be contained in the union of not more than
230(12 (32a2)nd3(n+a)

proper subspaces of T.

This theorem will be the basic tool in the proof of Theorem 1.2. A priori,
since hjs involves monomials and hg involves exponentials, it would seem
that (3.3) should be easy to achieve. However, at the outset we have no
control over the size of the coefficients a;ps in hps, and it is essential that
our bounds are independent of these coefficients. Hence much work will be
required to produce the inequality (3.3); this is the subject of Sections 8
through 11.

4. A reduction. To discuss the aforementioned Theorem 4.1, we must
introduce further notation. Recall the definition (1.2) of A. We will consider
vectors & € K4 with components &5, indexed by pairs I, M with [ € A,
M e M,.

When A C A, let Vi be the coordinate subspace of K* consisting of
vectors € with & = 0 when [ € A. Then for any partition Q, we have

> V=KA

A€Q
When T is a subspace of K4 and Q is a partition of A, let T(Q) be the
subspace of T' defined by

T(Q) =Y TnW.
AEQ
If @ is a refinement of Q then T(Q') C T(Q). Therefore T(Q') = T =

T(Q)=T. Write @ < T if T(Q) = T but no proper refinement Q" of Q has
T(Q') =T. For any T there exists Q (not necessarily unique) with @ < 7.
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For each [ € A, let P; be a polynomial of total degree < §;. We may write
Pr=73 1rem, M. Given @ € Z", let £ = &(x) € K4 be the vector with
components

S =& (x) = M(x)af (1€ A, M e M,).

Then to say that x satisfies (1.1)p is the same as to say that &(x) satisfies
the system

(41) Z Z CLlelM:O ()\EP)

lex MeM;

The equations (4.1) define a certain subspace, say W, of K.

When T is any subspace of K4, let X(T') consist of € Z" with &(z) € T.
If Q is a partition of A, let X(T, Q) consist of x € Z™ with £(x) € T(Q),
but &(x) & T(Q') for any proper refinement Q' of Q. With S(P) as defined
in Section 1, we have

S(P) = x(W,P),

where W is defined by (4.1). Notice that if P = {{1},...,{k}} then G(P) =
Z™ and Theorem 1.2 holds trivially. Therefore we shall always suppose that
P is not this partition into singletons. The next result is an analogue of
Proposition C of [7].

THEOREM 4.1. Set C' = 235B°qSB_ Let T be a non-zero subspace of K4
with P < T. Then there exist ¢ € G and proper subspaces T; of T with
T,(P)=1T; (i=1,...,C) such that

c
X(T,P) € o(S)U | X(T).
i=1

In the remainder of this section we show that Theorem 4.1 implies The-
orem 1.2; we begin with a lemma.

LEMMA 4.2. Suppose that Theorem 4.1 is true, and suppose that T is a
subspace of KA with P < T and diimT = t. Then

xrP)c | és),
PedT
where & C G and
|&7| < (20)".
Proof. This is proved by induction on ¢. When t = 0, X(7, P) is empty

(notice that &(x) = 0 is impossible since when M = 1, we have {/(x) =
af). Suppose, then, that ¢ > 0. Let

C
(4.2) X(T,P) € ¢(S)uU | X(T)

i=1
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be the cover given by Theorem 4.1. Suppose that P < T; fails to hold for
some index i. Then there is a proper refinement Q of P with T;(Q) = T;
so that X(7T;) = X(T;(Q)) C X(T(Q)) has empty intersection with X(T,P).
Suppose on the other hand that P < T;. Then if & € X(T', P)NX(T;), we have
&(x) € T, = T;(P). Since ¢ € X(T, P), we cannot have &(x) € T;(Q) C T(Q)
for a proper refinement Q of P, so that & € X(7T;,P). In this case, we obtain

X(T,P)NX(T3) € X(T3, P).
In light of this discussion, we may rewrite (4.2) as

(4.3) X(T,P)C¢S)u | 2T, P).
P<T;

By the induction hypothesis, each set X(7;,P) is contained in the union
of not more than (2C)'~! sets ¢(S). Therefore (4.3) shows that X(T,P) is
contained in the union of not more than (2C)! such sets. m

Theorem 1.2 follows easily from this lemma. Recall that S(P) = X(W,P),
where W is the subspace defined in (4.1). Notice that dimW < A < B. If
P < W fails to hold, then, as above, S(P) = X(W,P) is empty. If, however,
P < W, then the lemma shows that S(P) is contained in the union of not
more than (2C)8 < 9368° 168 gots #(S), and the theorem is proved.

Our only remaining task is to prove Theorem 4.1.

5. The plan of attack. It will be useful at this point to give a vague
outline of the method which we shall employ to prove Theorem 4.1. We
begin in the next section by showing that in order to prove our theorem,
we may first apply a transformation ¢ € G to the variable vector . Then,
given a subspace T' as in the theorem, we shall require an assortment {L}
of suitable linear forms which vanish on 7' (a suitable form, among other
things, must behave appropriately under the action of the aforementioned
transformations). The method of constructing such forms was developed in
[7], and will be outlined in Section 9.

When @ € X(T,P) and L vanishes on T we have L(&(x)) = 0. This is
an equation of the form (3.2), and our plan will be to apply Theorem 3.1,
which assumes a certain inequality (3.3) involving heights. In an attempt to
produce this inequality we will apply two transformations ¢ € G to «x; this
is the subject of Sections 8 and 10. As it turns out, every « for which we
cannot produce (3.3) will lie in S. When @ does have (3.3), Theorem 3.1
will show that &(x) lies in one of finitely many proper subspaces T; of T,
from which we will obtain an assertion of the form given in Theorem 4.1.
To achieve this reduction of dimension it will be essential that our linear
forms L are minimal; that is, roughly speaking, that they have the smallest
possible set of non-zero coefficients.
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6. Transformations. Recall the definition of the group G given in the
introduction. In this section we show that in order to prove Theorem 4.1,
we may first apply a transformation ¢ € G to the variable vector x. Write
¢x = Ox + u as in the introduction. Define

Gi=ay% (led, 1<j<n),

where e, ..., e, are the standard basis vectors, and let 3; = (B, ..., 0m)
(le ). Then for each | we have af® = B7. Recall that £(x) was defined in

terms of the ay; to indicate this write &(x) = £€*(x). Then let £°(z) be the
vector with components

M(x)87 (le A, MeM,).

In [6, §7] it is shown that ¢ induces an invertible linear map ¢ on K with
the property that

(6.1) ¢ (¢z) = 6¢" ().
Write G(P) = G*(P), X(T) = X(T), X(T,P) = X*(T,P), and define
GP(P), X8(T), and XP(T,P) as before, but with respect to the 3;. For any
partition P and subspace T' of K4 the following properties were derived
in [6]:
X(oT) = ¢x(T),
XY(¢T,P) = X7 (T, P),
P<T<P=<¢T,
S(T(P)) = (¢T)(P),
G*(P) = OGP (P).
From (6.6) and the definition of the group G, we see that in fact,
(6.7) G(P) = G*(P),

SO O O D
CDOTP%OJ[\D
= D D =

(6.
(6.
(6.
(6.
(6.

so that the subspace H is preserved by such a transformation.

Suppose now that we have established the assertion in Theorem 4.1 after
applying the transformation ¢ € G to « (this involves replacing the oy by
(B, as above). In other words, suppose that we have proved the following
assertion:

Whenever T' is a subspace with T < P, there exist ¥ € G and proper
subspaces T; of T (i=1,...,C) with T;(P) = T; and such that

(6.8) XP(T,P) C (S U xP(T,
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Our goal is to show that this implies the same assertion with § replaced
by a. Define W = ¢T" and W; = ¢T;. If we use (6.2) and (6.3), (6.8) becomes

dT1X (W, P) C (S U¢ Lxew,
which is the same as
X(W,P) C o(S U x(W,

By (6.4), we have W < P < T < P, and by (6.5) we have
Wi(P) = (6T)(P) = S(T:(P)) = $(T}) = Wi.

Therefore our goal is achieved; after this discussion, we reach the following
conclusion:

In order to prove Theorem 4.1, we may first apply a transformation ¢ € G
to the variable vector x.

7. Linear forms. We collect further notation from [7] which we shall
require. Any linear form L on K“ may be written

(7.1) L&)=Y > bl =L'(&)+...+ LF (&),

leA MeM,;
where £ = (517 s 7£k)7 £l = (&M)MEMN and

L&) = > bvbiu

MeM;

with by € K. Set
B(L)={le A:L"#0}, A(L)={(,M): b # 0}.

Let T be the subspace of K given in Theorem 4.1, and let £(T) be the
space of linear forms vanishing on T'. Then £(T') # {0} (for if £(T') = {0},
then T = K4, so that P < T implies that P is the partition consisting
entirely of singletons). A non-zero form L € £(T) will be called minimal if
there is no non-zero form L' € L(T) with A(L") & A(L). Since P < T, a
minimal form L has B(L) C A for some A € P.

We introduce a lexicographical ordering of monomials: write M > N if
M=X1. . Xin) N=XJ"...XIn with iy > js, fs41 = Jst1,--+»0n = jn for
some s. We also introduce a symbol [J such that M > O for every monomial
M. Let L be a form, written as in (7.1). If [ € B(L), then L' # 0. In this
case we let M;(L) be the largest (with respect to >) monomial with non-zero
coefficient b;ps, and let b;(L) be the corresponding coefficient. If | ¢ B(L),
then L! = 0, and we set M;(L) = 0J, b;(L) = 0, and b;(L)M;(L) = O.
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With every form L we associate k-tuples of leading monomials, leading
coefficients, and leading terms: (My(L), ..., My(L)), (b1(L),...,bx(L)), and
(b1(L)My(L),...,bp(L)My(L)), respectively.

8. The first transformation. In this section we shall make the first step
towards producing the inequality (3.3). Recall that this inequality required
that the height of a vector with components a;yraf be large. We begin here
by considering certain vectors with components o, and we show that after
an appropriate transformation the height of such vectors can be controlled.

Let a,8 € (K*)" have components «;, (;, respectively. We define
a/B = (a1/B1,...,an/Bn). Now, given ay,...,a as in Section 1, define
o™ = a;/a,, (1 <1,m < k), and let aé»m be the jth component of a!™.
Set

lm

(8.1) V' = log [l

Then ), ’yé@” = 0 by the product formula (here, and below, a sum over v
will mean a sum over v € V(K)). For & = (&1,...,&,) € R, define

(8:2) g€ = Ak
=1

lo (1<j<n,veV(K)).

Notice that >, ¢g!™ (&) = 0. Then define
(3) V() = 3 max(0,617(€) = 5 3 lol" (@)

For & € Z", we have g™ (x) = log ||(a;/ctm ) ||+, whence

(8.4) Yim(x) = h((au/am)®) = haf, ay,)  (x € Z").
Notice that for 1 <1,m,p <k, we have 757" = 'y;f) + %" Tt follows that
(85) Tplm (é) S Q;Z)lp(é) + 1/}pm(€) (E € Rn);

this fact will be needed in the next section.
Recall that we write [ z m to mean that [ and m lie in the same set \
of P. For v € V(K) define

N, = {&: ¢!™(&) = 0 whenever [ z m},
so that N, is a subspace of R™. When o € Z", we have
90" () = log||(c/ctm)"|o.
Therefore G(P) is contained in N,, so that H C N, for each v € V(K).

This shows that when [ 2 m, we have 1, (€ + h) = ¥, (€) for any &€ € R™
and h € H.

As in the introduction, let H+ be the orthogonal complement of H; H+
is a subspace of dimension s = n—r. If n = r then S = Z™ and Theorem 4.1
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holds trivially; we may therefore suppose that s > 0. Recall that when
£ € R™ we write &€ = £ + ¢+ where ¢ € H and ¢~ € HL.

LEMMA 8.1. Let I' be the projection of Z"™ on H+. Then I is a lattice
on H+.

Proof. Let 7 : Z" — H~' denote the projection map. It is clear that
7(Z"™) is a group under addition. Since H~ is a rational subspace we know
that H-NZ" C w(Z") is a lattice on H~; therefore 7(Z") contains s linearly
independent points. So to prove our lemma we need only show that m(Z")
is discrete. Since H' is a rational subspace, there exists a basis of R™ of
the form {a;}i<i<n, where each a; has integral components, and further,
we have a; € H- (1 <i<s)anda; € H (s+1<i<n). Let ey,...,e,
be the standard basis vectors. Then there exist rationals c;; such that e; =
Sor aia; (1 <j<mn). If Disacommon denominator for all of the «;;,
then we see that for each j we have

S
©(Dej) =Y (Dayj)a; € H-NZ".
i=1
It follows that 7(Z™) C %(H +NZ"). Since H+ NZ" is discrete we conclude
that m(Z") is discrete, and the lemma is proved. m

Now let P be a partition as in Theorem 4.1. Define the function

(8.6) w"(€) = max max Y (&)-

Since P is fixed, we will write w = w? for simplicity. For any &, the discussion
above shows that 1, (£") = ¥y, (€); therefore also w(€™) = w(§).

When ¢ € Z", x ¢ H, there exist [, m with [ L m such that (ay/am)®
is not a root of unity. Using (8.6), (8.4), and Dobrowolski’s estimate (2.1),
we see that

(i) w(xt) > (21d*)™r (zt e, =+ #0).
From (8.3) we infer the properties

(i) W ) SwE) twirt) (€ e HY),
(iif) w(vEH) = hlw(€") (& € HT, 7 ER).

LEMMA 8.2. Suppose that w : H- — R satisfies (i)-(iii). Then there
exists a basis by, ..., b of I' such that for \i,...,\s € R,

wA1bt + .. 4 AbL) > 475 max(|\s|w(b;H)).

Proof. In the case when I' = Z°*, this is Proposition 4.2 of Schlickewei
[5]. The general case follows easily. Let ¢ : I' — Z° be an isomorphism of
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Z-modules, and extend ¢ to an isomorphism H+ — R®. Define the function
w* on R? by

Wi (x) = w(p™ (@)
Then w* satisfies (i)—(iii) with I" = Z°. By Schlickewei’s result, there exists
a basis €1,...,€, of Z® such that for any Ay,..., s € R,

w (A1 + ...+ Aseg) > 47 max(|\|w* (&5)).
Then the basis by, . .., bt of I' given by b;- = p=1(&;) (i = 1,..., s) satisfies
the conditions of the lemma. =

LEMMA 8.3. There exists a basis ai,...,a3 of I' such that for \1,..., \n
eR,

IAai + ...+ Aal| < s?max |\
1

Proof. Let eq,...,e, be the standard basis for R”. Then the projections

et ,...,er span I over R. For each i, |e;-| < 1. By a fact from the Geometry
of Numbers (see, for example, Lemma 8 of [1, Ch. V]), there exists a basis
ai,...,at of I' such that |a;-| < smax|e;| <s (i=1,...,5). Then

IMai + ...+ Aar| < smax|\ai| < s%max |\,
as required. m

Let {b;-}s_, and {a; }{_, be the bases of I" given by Lemmas 8.2 and 8.3.
Suppose that & = Aai + ...+ A;at € I'. Then, using Lemmas 8.2 and
8.3 along with (i), we obtain

(8.7) w(Miby + ... 4+ AbF) > 47 max(|\;|w(b;)) > 47°(21d) ™! max |\

> 47%572(21d%) 7|

For ¢« = 1,...,s fix vectors a;,b; € Z" which project onto ail, bf,
respectively. Let {¢s41,...,¢,} be a basis for the lattice of integer points
on H. We claim that a4,...,as,¢cs41,...,c, form a basis of Z™. To see this,

let « be a given element of Z". If x+ = Zle o;a;- with g; € Z, then set
y=x—Y ., 0a; Since y+ = 0, we conclude that y is an integer point
on H, and our claim follows. Similarly, by, ..., bs, cs+1,...,c, form a basis
of Z™, and we may define a transformation © € GL(n,Z) by

@(az):bz (i:1,...,8),

Oc;))=c¢; (i=s+1,...,n).
It is clear that © fixes H pointwise. Using (8.7), we see that for £ € R", we
have

w(O(8) =w(O(&)"h) > arl€,
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where
(8.8) c1 =47%s7%(21d%)

By the discussion in Section 6, we may apply the transformation 6.
Recall that this entails replacing the vectors a; with vectors 3, satisfying

B = af™.

The function w = w, was defined in terms of the «;. Similarly, define wg in
terms of the 3;. Then for £ € R", we have

ws(€) = wa (O€) > /€™

We may therefore assume from this point forward that

(8.9) w(E) =wP (&) > et (EeRM).

9. Construction of linear forms. Recall that £(T") denotes the space
of linear forms vanishing on 7. As mentioned in Section 5, the plan is to
apply Theorem 3.1 to equations of the form (3.2) defined by certain minimal
forms L € L(T). Since we must apply transformations to the vector x, we
require forms with certain special properties. Here we outline the construc-
tion of such forms developed in Section 16 of [7] and quote several results
proved in that work.

Suppose that P is not the partition into singletons, and that

(9.1) P<T.

For A € P let L(T') consist of forms L € £(T) with B(L) C .

Now let A € P with |A] > 1 be given. For simplicity, suppose that
A={1,...,r}. We will construct a partition of A, A = U;Zl L, into non-
empty subsets p;, as well as forms Ly, ..., Ly in £(T).

We call a form L € L,(T) 1-stable if |[B(L)| > 1 and L cannot be written
as a sum L = L'+ L” where L' and L” are non-zero, lie in £,(T), and
have B(L') N B(L"”) = (. There are 1-stable forms; if there were not then
every form in £ (7") would be a sum of forms whose sets B have cardinality
one, so that if Q were obtained from P by breaking A into the singletons
{1},...,{r} we would have T(Q) = T, against (9.1). We may therefore
choose a set 1 € A with minimal cardinality such that there is a 1-stable
form L with B(L) = uy. Notice that |ui| > 1.

Suppose that j > 1 and that subsets pi,..., ;-1 of A have been con-
structed. Set

Jj—1
Vi1 = U Mg -
i=1

If vj_1 = A weset t =7 — 1, and our construction is finished. Otherwise let
U;_1 be the complement of v;_; in A\. We call a form L € L5(T') j-stable if
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L cannot be written as L = L’ + L where B(L') C v;_; and B(L") C7;_;.
j-stable forms do exist, for otherwise every form L € £,(T') could be written
asasum L = L'+ L” with L', L' as above. Then if Q is obtained from P by
dividing A into v;_; and 7;_1, we would have T'(Q) = T, contradicting (9.1).

We may therefore choose p1; C 7;_; of minimal cardinality such that
there is a j-stable form L with

(92) B(L) NVj_1 = .

It is clear that p; # (. Continuing in this manner, we obtain sets p1, .. ., (i
which partition A.

Now renumber the elements of A so that
pi={rj-1+1,....rp (1<j<t)

with 0 =79 <71 < ... <71 = 7. Recall the definition (given in Section 7)
of the leading monomials My (L),..., My(L). Given forms L,L" € £,(T),
write L' < L if

MS(L,) < MS(L)’ Ms—l—l(L/) = Ms-l-l(L)’ (R MT(L/) = M’I’(L)

for some s (this should not be confused with our earlier ordering of mono-
mials).

By the construction, for every j, 1 < j <'t, there exist j-stable forms L;
satisfying (9.2), where we define vy = 0, 7y = A. A form L; is j-proper if it
is minimal with respect to < among all j-stable forms with (9.2). Since the
ordering < depends only on the leading monomials, j-proper forms may not
be uniquely determined. If, however, both L; and L;- are j-proper, then

(My(Lj), ..., My (Lj)) = (My(L}), ..., M, (L})).
We shall require several results from [7].

LemmMA 9.1 ([7, Lemmas 16.1, 16.2]). (1) Suppose that L; and L’ are
j-proper. Then their tuples of leading coefficients are proportional.

(2) Let L; be a j-proper form with |A(L;)| as small as possible. Then L;
is a minimal form.

Now let P be a partition as in Theorem 4.1, and for every A € P with
|A] > 1 construct j-proper forms Ly;, j = 1,...,t, with ¢t = t(X) < |\, as
above. This set of forms will be fixed for the remainder.

LEMMA 9.2 ([7, Lemma 17.1]). The forms Ly; satisfy the following prop-
erty: For every A € P and everyl,m € X there is a chain of forms Lyj(), - - -,
Lyj(q with ¢ <t(X), I € B(Lyj(1)), and m € B(Lyj(q)), and such that

(9.3) B(Lyjy) N B(Lajirr) #0 (1 <i<q).
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To ease notation, we write Max to denote the maximum over all pairs
[, m with [,m € B(Ly;) for some A, j. Recall the definition (8.3) of the
functions y,,, and for & € R™ define

(9.4) X (&) = Max )y, (€).
We shall require the next lemma in Section 10.

LEMMA 9.3. For £ € R", we have

(9-5) X (&) > cal€?],
where
(9.6) ey = (21kd?s%4%)~!
Proof. Suppose that & € R™. By (8.6) and (8.9), ¢y (€) > ¢1|€F] for
some [, m with [ 8 m; say [,m € A where A € P. Let Lyj),--.,Lxjq) be

the chain of forms given by Lemma 9.2, and let (7) lie in the set (9.3). Then,
using (8.5), we have

1€ < PYum(€) < Pri1)(€) + -+ Yigg—1y,m (&)

The lemma follows since co = ¢1/k and ¢ < k. m

10. Preparing for the second transformation. Recall that we have
fixed a set of forms Ly;. In this section we use a translation € — x — u
in order to control the height of the coefficients of these forms. Since P is

fixed, we will simplify our notation by writing X = X*. When [ L m we
have Yy, (€7) = i (€) for any € € R”, therefore also X (€1) = X(€). Now
X is a non-negative function which satisfies
(10.1)  X(E +n") <X(E)+X(n), X(EH) = [yX(E)
(YER, & nt e HY).
In view of Lemma 9.3, we may conclude that the set X C H' defined by
X={¢"ecH": X&) <1}

is a convex, symmetric, compact set which contains 0 in its interior (see, for
example, Chapter 4 of [1]).

We will now consider points (&,¢) € R**! = R"™ x R. Recall the defini-
tions of g!™ in (8.2) and of the leading monomials b; at the end of Section 7.
Then, for [,m € B(L,;), define

Xy = 10g [b1(Lxg) /b (L) o
’g’l)\?}lv (E’ C) = gvm(E) + C/\n]?vC7

@Zl Zmax 0 g)\]v E C Z |~l)\rjnv
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X(€,¢) = Max ¢ (€, ¢).

Notice that for x € Z"™ we have
(10.2) X(x,1) = Max h(b;(Lx; ), by (L;) %)
= Max h(bi(Laj)aj /bm(Lxj)o,).

Also notice that for any £ € R™ we have é’?(é, 0) = X(&) and X(S Q) =
(5 (). Let X C H' xR be the set of points (E , ¢) such that X(E ,0) < 1.
X enjoys properties analogous to those in (10.1); therefore X is convex, sym-
metric, closed, and has (0, 0) in its interior. However, X may be unbounded.
We extract the following from the proof of Lemma 15.1 of [7].

LEMMA 10.1. There exists a fized & € R™ such that for any £ € R™,

X(€) <2X(E+€,1).

Proof. If X is unbounded, then there exists (¢7,¢0) # (0,0) with
(50 ,Co) = 0. Since X is bounded, we must have (; # 0; by homogene-
ity we may choose (£1,1) with X(Ell, 1) = 0. On the other hand, when X
is bounded, hence compact, choose (50 ,Co) € X with ¢y maximal. Rewrite
& = Co&y, so that (o(&7,1) € X.

Now suppose that (¢4,¢) € X. When X is unbounded, ¢(¢1,1) € X,
but this holds also when X is bounded, since |¢| < (p in that case. Taking
the difference, we see that (5L — Cfll, 0) € 2?2, from which &+ — Cé’f € 2X.
In other words, (EJ‘,C) € X implies that &X — Cﬁf‘ € 2X. By reason of
homogeneity, X (&5 — ¢&1) < 2X(&+,¢). We may conclude that X(&4) <
2X (e + C&L, ¢) for any (¢€+,¢) € HL x R. The lemma follows upon setting
(=1.m

Now let &; be as in Lemma 10.1, choose u € Z™ such that |u + &| <
v/n/2, and set p = &; +u. Then Lemmas 9.3 and 10.1 show that for € Z"
we have

Xl@—u1)=X(@—p+&,1)
> 53X (@ — p) 2 gelat — pt| > gea(lzr| - Vin/2).
In view of (10.2) we have proved the following
LEMMA 10.2. There exists uw € Z" such that for any x € 7",
Maxh(bi(Laj)a; o b (Laj) e a,) > Sea(lz| — v/n/2).

11. Applying the second transformation. Let u € Z™ be the point
given in Lemma 10.2, and apply the transformation ¢ = x — u to the
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variable vector x. As in Section 6, this induces an invertible linear transfor-
mation ¢ on K4, which, by (6.1), satisfies

(11.1) £(ox) = 6(€(x)).
(Notice that such a transformation does not involve replacing the exponen-
tial bases a;.)

Now define forms L aj on K A by

Ly;j(€(x)) = Ly (&(z — u)).
By (11.1) we see that Z,\j € L(¢'T). Moreover, since B(E,\j) = B(Ly;j),
these new forms are again j-stable, now with respect to the subspace g_lT.
Finally, since the leading monomials of L,; are the same as those of L,;,
we see that the new forms are in fact j-proper.
If b(Ly;) was a leading coeflicient of Ly, then b;(Ly;)c; ™ is a leading
coefficient of L »j- By Lemma 10.2 we obtain

(11.2)  Maxh(b(Lyj)af, bpn(Lrj)ad,) > Leo(lat| — vnj2)  (x € Z™).

We now replace the forms E,\j with j-proper forms EA]- € [,(qg*lT)

whose sets A(L j) are as small as possible. By Lemma 9.1, each form Lj;
is minimal, and has leading coefficients which are proportional to those of
L j- Therefore (11.2) still holds when we replace L Aj With Ly;.

For any form L with coefficients b;ps as in (7.1), let hpg(x) denote the
height of the vector with components

bvad  ((I,M) e A(L)).
It is clear that we have
(11.3) maxhy, (@) > Max h(by(Laj)af by (Lyj)a®,).
To ease notation we shall write L; for EAJ-. In view of (11.2) and (11.3) we
have proved the following

LEMMA 11.1. We may assume that the forms Ly; are minimal. Further,
we may suppose that for x € 7',

maxhr,; p(@) 2 jea(let| = v /2),

12. Proof of Theorem 4.1. Recall the definition of %(T P) given in

Section 4. Using Lemma 11.1, we may divide solutions (T, P) into
classes Cy; with & € C); if
(12.1) Py, e(@) = Sea(lat] - Vi/2).

There are at most A classes. To ease notation, we fix a form L = Ly; and the
corresponding class C = Cy;. Recall the definitions (1.3), (1.4) of ¢y and S.
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Vectors x € C satisfying

(12.2) xdS

have |z1| > ¢g > /n, so that by (12.1), such x have
(12.3) hig(x) > csla,
where

(12.4) c3 = Lo = (84kd?s%4%) 7,

We shall assume initially that (12.2), whence (12.3) holds.

For € C we have L(§(x)) = 0. We restrict our attention to the vector
&, (x) with components &/ () where (I, M) € A(L). Then &, (x) € K¢
with a = |A(L)| > 2. With a slight abuse of notation, we will write

(12.5) L(g, () = 0.

This says that &£, () lies in a certain subspace U of K of codimension 1.

Let hrar(x) be the height of the vector with components M(x) (M €
M, 1 € B(L)). Notice that for any L the monomials which occur have total
degree < max(dq,...,0;) < A. Therefore we always have

(12.6) hpy(x) < Alog™ |z|.
Suppose first that a = 2. Then the equation (12.5) takes the form
bM (z)af = b M'(x)a®

so that

hre(x) = hpa(x) < Alog™ ||
Together with (12.3) and (12.4) this gives
(12.7) lzt| < A-84kd®s?4% log™ |x| < B*22BT7d log™ ||

(here, and below, we use the fact that max(A4, k, s) < B, and that 84 < 27).
At this point it will be convenient to record a lemma.

LEMMA 12.1. Suppose that ¢ < B%228+943 and that |x*| < clog™ |z|.
Then x € S.

Proof. We operate under the hypothesis of the lemma. Suppose first
that |zt| < |xf|. Then |x| < 2|zf|, so that |z*| < 2clogt x| <
colog™ |x|, and x € S.

If, on the other hand, |x| < |zt|, then |z| < 2|zt|, whence |z|
2clog™ |zt|. Then (since generally exp(t) > t?/2), we obtain |x*| < 8c?
co < colog’ |xf|, and again x € S. m

<
<

Applying this lemma, we see that x satisfying (12.7) lie in S. Along with
(12.2), this shows that C C S when a = 2.
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We will now assume that a > 3 (recall that we always have a < A). When
x € C, we have (12.5), which is of the form (3.2) studied in Theorem 3.1.
To use this theorem, we need (3.3). In other words we need
1
hrm(z) < @hLE(m)a
which, using (12.3) and (12.6), will hold if
1
(12.8) Alog? |z| < wc?,\zcl].
After applying Theorem 3.1, we conclude that vectors & () with € C and
x satisfying (12.2), (12.8), lie in at most

(12.9) 930a” (3942 )ng3(n+a) < 931B° OB

proper subspaces of U (recall that U is defined by (12.5)). Let U’ be one
of these subspaces. Then U’ is defined by L'(&¢;) = 0 for a linear form L’
which is not proportional to L. Since A(L’") C A(L), we may replace L’ by
L" = L' — BL with suitable § € K to ensure that A(L") G A(L). In other
words, we may suppose that A(L’) & A(L). Now, since L is minimal, we
must have L’ ¢ L(T). Therefore, whenever &; (x) € U’, we may conclude
that &(x) lies in a certain proper subspace T” of T Since B(L’') C B(L) C A
for some A € P, we have T'(P) = T". Therefore, using the estimate (12.9), we
see that points « € C satisfying (12.2) and (12.8) lie in a union UZC:/1 X(T;),
where €’ = 234B° 4B and each T} is a proper subspace of T with T,(P) =T;.
If, however, (12.8) is violated, then

|et| < 4A3(84kd3s%4%) log™ |x| < B22BT043 log™ ||,
so that @ € § by Lemma 12.1.
When a = 2, we have shown that our chosen class C is contained in
S. When a > 3, we have shown that C is contained in a set of the form
S UUZC:1 X(T;). Theorem 4.1 follows easily, since there are at most B possible
classes.

Acknowledgments. I am indebted to Wolfgang Schmidt for his helpful
comments on my work.
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