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1. Introduction. This paper deals with the two-primary algebraic K-
theory of quadratic number rings. The problem is to determine the torsion
part of these groups. In [14] Quillen proved that the algebraic K-groups of
number rings are finitely generated Abelian groups, and Borel calculated
their rank in [2].

To determine the torsion part of the algebraic K-groups of number rings
is a very hard problem. One knows quite a lot about the K2-functor, but still
it is a highly nontrivial problem to determine the K2-groups. A major early
contribution to the theory is Tate’s work in [16] that gives connections be-
tween K2 and Galois cohomology. In fact p-rank formulas for K2 of number
rings can be quite easily deduced from results in [16]. These formulas involve
classical number theory like ideal class groups and the number of primes ly-
ing above a rational prime. Unfortunately p is in general restricted to be
a prime number. The situation is a bit better when it comes to quadratic
number rings. In that case there are 4-rank formulas for K2 given in terms
of classical number-theoretic invariants.

In this paper we describe a method to determine pieces of the two-
primary part of K2 of a quadratic number ring. There is a tight connection
between the ordinary and the narrow K2. This connection will be explained
in the calculations. To the authors’ knowledge, the latest and most complete
calculation of K2 of quadratic number rings can be found in [12] and [13]. We
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would also like to mention the recent papers [17] and [18]. Further a large
table of conjectural calculations is given in [3]. Our method can be used
to capture the previous calculations as well. Furthermore we lift the K2

calculations to higher even algebraic K-groups. This is done using the étale
cohomology description of the two-primary algebraic K-theory of number
rings from [15].

For the rest of the paper we fix the following notation:

• F is a number field with number ring OF ,
• RF denotes the ring of two-integers of F ,
• ∆F denotes the discriminant of F ,
• s is the number of dyadic primes in F , i.e., the number of primes lying

above 2 in F ,
• t is the number of distinct prime divisors of ∆F ,
• r1 is the number of real embeddings of F ,
• d denotes a squarefree integer,
• Pic denotes the Picard group and Pic+ denotes the narrow Picard

group,
• A{n} denotes the n-primary part of the Abelian group A and rkn(A)

the n-rank of A, where n is a prime power,
• Cn is the cyclic group of order n.

The following result concerns the algebraic K-theory of RF . However,
the fibre sequence of spectra

∨

℘ | 2
K(k℘)→ K(OF )→ K(RF )

implies that the two-primary parts of the algebraic K-groups of OF and
RF are isomorphic from degree 2 on. This is an immediate consequence of
the long exact sequence of two-completed algebraic K-groups induced by
the fibre sequence above, and Quillen’s calculation of algebraic K-theory of
finite fields.

We recall Theorem 7.11 of [15]. We alert the reader that t denotes
rk2Pic(RF ) and u denotes rk2Pic+(RF ) in [15]. We make this result ex-
plicit for quadratic number fields in Theorem 3.1.

Theorem 1.1 (Rognes–Weibel). Let n ≥ 1. The number of even cyclic
summands in the algebraic K-groups of RF are given by

(a) If F is totally imaginary , then

rk2Kn(RF ) =
{
s+ rk2Pic(RF )− 1 for n even,
1 for n odd.
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(b) If F is real , then

rk2Kn(RF ) =





s+ rk2Pic(RF )− 1 for n = 8i,
1 for n = 8i+ 1,
r1 + s+ rk2Pic(RF )− 1 for n = 8i+ 2,
r1 for n = 8i+ 3,
s+ rk2Pic+(RF )− 1 for n = 8i+ 4,
0 for n = 8i+ 5,
s+ rk2Pic+(RF )− 1 for n = 8i+ 6,
1 for n = 8i+ 7.

Now a quick outline of the paper. Fix F = Q(
√
d) and F = Q(

√−d).
In Section 2 we compute rk2Pic(RF ) and rk2Pic+(RF ). Further we com-

pare rk4Pic+(OF ) and rk4Pic+(RF ). Here the number rk4Pic+(OF ) can
be computed using a matrix MF described in Subsection 3.2. The num-
ber rk4Pic+(RF ) occurs in 4-rank formulas for both K+

2 (RF ) and K2(RF )
given in [1] (see Theorems 3.3 and 3.4 in this paper). From the comparison
of rk4Pic+(OF ) and rk4Pic+(RF ) we compute in Proposition 3.7 the 4-rank
of K+

2 (RF ) in terms of rk4Pic+(OF ). The 4-rank of K2(RF ) can then be
found using Theorems 2.9, 3.3 and 3.4.

In Subsection 3.3 we give several examples of two-primary calculations of
K2(RF ). In some cases we can completely determine the two-primary part
of K2(RF ). To obtain more information on K2(RF ){2} one would need a
2ν-rank formula for K2(RF ) where ν ≥ 3.

In Subsection 3.4 we use the étale cohomology description of the two-
primary algebraic K-theory of RF given in [15] to lift the K2 calculations
to higher even algebraic K-groups of RF . The main result is

Theorem 1.2. Let F be any number field. Let e be the exponent of
(Z/2ν)∗ where ν ≥ 2 if F is a real number field. Then

K2(RF )/2ν ∼= H2
ét(RF ;Z2(e+ 2))/2ν .

2. 2-rank and 4-rank formulas for quadratic Picard groups. In
this section we will give 2-rank formulas for “quadratic Picard groups”.
These results will be vital when we turn to the two-primary algebraic K-
theory of quadratic number rings. First we set the notation and recall some
classical results.

Let S denote a finite set of primes in F including the infinite ones, and
OF,S the ring of S-integers in F . Let Pic+(OF,S) denote the narrow Picard
group of the S-integers and Pic(OF,S) the usual Picard group of OF,S . These
groups come with a natural surjective map

ιS : Pic+(OF,S)→ Pic(OF,S).
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For a fractional ideal a in a number field F we let [a] denote the class of a in
Pic(OF,S) while [a]+ denotes the class of a in Pic+(OF,S). If S contains no
finite primes then we obtain the ordinary and the narrow ideal class group.
The notation will be Pic(OF ) and Pic+(OF ), respectively. In this case we
denote ιS with ι. We mention two classical results.

Lemma 2.1. Let F be a real quadratic number field with fundamental
unit ε. Then

ker ι ∼=
{
C2 if NF/Q(ε) = 1,
1 otherwise.

P r o o f. We refer to [6], p. 181.

For quadratic number fields, the 2-rank of Pic+(OF ) was known to
Gauss.

Theorem 2.2 (Gauss). Let F be a quadratic number field. Then

rk2Pic+(OF ) = t− 1.

P r o o f. A short and elegant proof can be found in [7].

2.1. The 2-rank of the ideal class group of quadratic number fields. As
an application of the classical 2-rank formula for rk2Pic+(OF ) we will now
find the 2-rank of Pic(OF ). First we make some preparations.

Definition 2.3. Let k be an integer. We define

Mk := {d ∈ Z | d is squarefree and k is a norm from F = Q(
√
d)}.

Lemma 2.4. We have:

M−1 = {d ∈ Z | d > 0, p ≡ 1 mod 4 for every odd prime p dividing d},
M−2 = {d ∈ Z | d > 0, p ≡ 1 or 3 mod 8 for every odd prime p dividing d},
M2 = {d ∈ Z | p ≡ 1 or 7 mod 8 for every odd prime p dividing d}.

P r o o f. For basic properties of Hilbert symbols we refer to [11]. The
product formula for Hilbert symbols tells us that

∏
℘

(k, d)℘ = 1

where ℘ runs over the finite and infinite primes of Q, and k is an integer as
in Definition 2.3. The celebrated Hasse norm theorem in [11], p. 89, reads
as

d ∈Mk ⇔ (k, d)℘ = 1 for all primes ℘ of Q.
Hence from the product formula, d ∈ Mk only if (k, d)℘ = 1 for all finite
and infinite primes ℘ of Q except 2. Let ν∞ be the infinite prime in Q. Then
(k, d)ν∞ equals −1 if and only if both k and d are negative. Furthermore for
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an odd rational prime p,

(k, d)p =





(
k
p

)
if p | d and p - k,(

d
p

)
if p - d and p | k,

(−kd/p2

p

)
if p | d and p | k,

1 if p - d and p - k.

Thus if k has no odd prime divisors (e.g., k = −1,−2 or 2), then

d∈Mk⇔(k>0 or d>0) and
((

k

p

)
=1 for all odd primes p dividing d

)
.

We easily read off the result from the well known formulas
(−1
p

)
=

(−1)(p−1)/2 and
(

2
p

)
= (−1)(p2−1)/8.

We will need the following elementary group-theoretic result.

Lemma 2.5. For a finite Abelian group G and x ∈ G,

rk2(G/〈x〉) =
{

rk2(G) if x ∈ G2,
rk2(G)− 1 otherwise.

P r o o f. Say x generates a subgroup of order n, 〈x〉 = Cn. Further let G′

denote the quotient group, i.e., we have the exact sequence 0→ Cn → G→
G′ → 0 inducing the exact sequence Cn/2→ G/2→ G′/2→ 0.

There are two cases to consider.

1) Suppose that 2 -n. Now C2
n = Cn, and hence Cn/2 = 0. Thus x ∈ G2

and rk2(G) = rk2(G′).

2) Otherwise 2 |n. Now Cn/2 = C2 and the sequence C2
θ→ G/2 →

G′/2→ 0 is exact. If x ∈ G2, then θ must be trivial and rk2(G) = rk2(G′).
If x 6∈ G2, then θ is injective. Hence 0 → C2 → G/2 → G′/2 → 0 is exact,
and ](G/2) = 2](G′/2).

The next lemma will be used several times. To avoid possible confusion
we adopt the notation that N denotes the ideal norm, while NF/Q denotes
the element norm from F to Q. For the connection between them, see p. 57
of [6]. First we note the following easy observation: a norm 1 fractional ideal
can be written in the form c/c where c denotes the Galois conjugate of c.
Here c equals a product of primes lying above split rational primes in Q.
It is easy to prove this. Start with a norm 1 fractional ideal, say a. Write
a = b/c where b and c are coprime integral OF -ideals. If ℘ is a prime ideal
that divides b, then there must exist a prime ideal ℘ that divides c and with
the same norm as ℘. Since (b, c) = 1 we know that ℘ 6= ℘. Hence working
in a quadratic number field we conclude that ℘ and ℘ are conjugate.
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Lemma 2.6. For a fractional ideal a of F = Q(
√
d) the following hold :

[a] ∈ Pic(OF )2 ⇔ N(a) or −N(a) is a norm from F,

[a]+ ∈ Pic+(OF )2 ⇔ N(a) is a norm from F+.

P r o o f.⇒: Suppose that [a] ∈ Pic(OF )2, respectively [a]+ ∈ Pic+(OF )2.
Then we can find α ∈ F ∗, respectively α ∈ F+, and a fractional ideal b such
that a = (α)b2. We derive

|NF/Q(αN(b))| = |NF/Q(α)|N(b2) = N((α)b2) = N(a).

For the narrow case we have NF/Q(αN(b)) > 0, so we cannot have a minus
sign.
⇐: Say β ∈ F ∗, respectively β ∈ F+, with NF/Q(β) = ±N(a) (no minus

sign in the narrow case). Consider the fractional ideal b = (β)−1a. Clearly a
and b represent the same class in both the narrow and the usual ideal class
group. Furthermore

N(b) =
N(a)

|NF/Q(β)| = 1.

We know that a norm 1 fractional ideal can be written in the form d/d
where d denotes the Galois conjugate of d. Further dd is a principal fractional
ideal representing the trivial class in both the narrow and the usual ideal
class group. It follows that

[a] = [b] =
[

d2

dd

]
= [d]2.

Of course the same holds for the narrow classes as well.

Now we have all the results we need in order to find rk2Pic(OF ).

Theorem 2.7. For F = Q(
√
d) we have

rk2Pic(OF ) =




t− 1 if d < 0 or

(d > 0 and p ≡ 1 mod 4 for all odd primes p | d),
t− 2 if d>0 and p ≡ 3 mod 4 for some odd prime p | d.

P r o o f. We may assume d > 0, and due to Lemma 2.4 it suffices to show
that

rk2Pic(OF ) =
{
t− 1 if −1 is a norm from F ,
t− 2 otherwise.

The sequence 0 → ker ι → Pic+(OF ) → Pic(OF ) → 0 is exact, where
ker ι is known from Lemma 2.1. This gives us the exact sequence ker ι/2→
Pic+(OF )/2 → Pic(OF )/2 → 0. Clearly ker ι is generated by some [(a)]+
where a has negative norm. From Lemma 2.5 we are reduced to proving that

[(a)]+ ∈ Pic+(OF )2 ⇔ d ∈M−1

for any element a ∈ F ∗ with negative norm.
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⇒: Say [(a)]+ = [a]2+, i.e., (a) = (α)a2 for some α ∈ F+. We get

N((a)) = N((α))N(a)2, i.e., −NF/Q(a) = NF/Q(α)N(a)2

and hence

−1 = NF/Q

(
α

a
N(a)

)
∈ NF/Q(F ).

⇐: Choose α ∈ F ∗ where NF/Q(α) = −1, i.e., N((α)) = 1. The rest of
the argument can be found in the proof of Lemma 2.6.

Remark 2.8. The short exact sequence

0→ ker ι→ Pic+(OF ) ι→ Pic(OF )→ 0

is not in general split exact. One example is F = Q(
√

34). In this case
NF/Q(ε) = 1 where ε = 35 + 6

√
34 denotes the fundamental unit. Hence

ker ι ∼= C2. From Theorem 2.7 we see that

rk2Pic(OQ(
√

34)) = rk2Pic+(OQ(
√

34)) = 1.

In fact the ordinary ideal class group is cyclic of order 2, so the narrow ideal
class group is cyclic of order 4.

2.2. The 2-rank of Pic and Pic+ for the two-integers in quadratic number
fields. We will now see what happens with the 2-rank of the narrow and the
usual Picard group of the two-integers of F = Q(

√
d).

Theorem 2.9. For F = Q(
√
d) we have

rk2Pic(RF ) =
{

rk2Pic(OF ) if d ≡ 5 mod 8 or d ∈M−2 ∪M2,
rk2Pic(OF )− 1 otherwise,

rk2Pic+(RF ) =
{

rk2Pic+(OF ) if d ≡ 5 mod 8 or d ∈M2,
rk2Pic+(OF )− 1 otherwise.

P r o o f. The crucial thing here is of course the factorization of 2 in F .
There are three possibilities:

1) If d ≡ 1 mod 8, then 2 splits,
2) If d ≡ 3 mod 4 or 2 | d, then 2 ramifies,
3) If d ≡ 5 mod 8, then 2 is inert.

In the cases where 2 is inert, i.e., when d ≡ 5 mod 8 there will be no
effect on neither the narrow nor the ordinary ideal class group if we invert
2. Hence we may assume that the residue field index of 2 is not two, so
N(℘) = 2 for ℘ a dyadic prime. Clearly Pic(RF ) = Pic(OF )/〈[℘]〉 for ℘ a
dyadic prime of F . The situation for the narrow ideal class group is identical,
i.e., Pic+(RF ) = Pic+(OF )/〈[℘]+〉. We are left with proving that

[℘] ∈ Pic(OF )2 ⇔ ±2 ∈ NF/Q(F ) (only the plus sign in the narrow case).

Now mimic the proof of Lemma 2.6 and Theorem 2.7.
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Later we will need the following explicit description of rk2Pic(RF ).

Corollary 2.10. For F = Q(
√
d) we have the following calculation.

1) rk2Pic(RF ) = t− 1 in the cases:

• d < 0, d ≡ 5 mod 8,
• d < 0, p ≡ 1 or 7 mod 8 for every odd prime p dividing d,
• d > 0, d ≡ 5 mod 8 and p ≡ 1 mod 4 for every odd prime p divid-

ing d,
• d > 0, p ≡ 1 mod 8 for every odd prime p dividing d.

2) rk2Pic(RF ) = t− 3 in the case

• d > 0, d ≡ 1, 2, 3, 6 or 7 mod 8 and there exist prime numbers p1

and p2 dividing d where p1 ≡ 5 mod 8 and p2 ≡ 3 mod 4.

3) rk2Pic(RF ) = t− 2 in all other cases.

P r o o f. We compare Theorems 2.7 and 2.9. There are two cases to con-
sider.

1) The case rk2Pic(RF ) = rk2Pic(OF ) = t − 1. If F is imaginary, then
d ≡ 5 mod 8 or d ∈ M2. Lemma 2.4 gives the claimed restriction on d. For
the real case we have d ≡ 5 mod 8 or d ∈M−2 ∪M2, while p ≡ 1 mod 4 for
every odd prime p dividing d. If d ∈ M−2, then p ≡ 1 or 3 mod 8 for every
odd prime p dividing d. If d ∈ M2, then p ≡ 1 or 7 mod 8 for every odd
prime p dividing d.

2) The case rk2Pic(RF ) = t− 3. From the formula for rk2Pic(OF ), d is
positive and d 6∈M−1, i.e., there exists an odd prime congruent to 3 modulo
4 and dividing d. The “otherwise” condition in the formula for rk2Pic(RF )
is that d ≡ 1, 2, 3, 6 or 7 mod 8 and that there exists an odd prime dividing
d and congruent to 5 modulo 8.

A straightforward comparison of Theorems 2.2 and 2.9 yields

Corollary 2.11. We have the following formula for the 2-rank of the
narrow Picard group of the 2-integers in F = Q(

√
d):

rk2Pic+(RF ) =
{
t− 1 if d ≡ 5 mod 8 or d ∈M2,
t− 2 otherwise.

We also note the following two results.

Corollary 2.12. Let F = Q(
√
d). We have rk2Pic(RF ) = 0 in precisely

the following cases:
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d with the condition
−1,±2
−p p ≡ 3 mod 4 or p ≡ 5 mod 8
−2p p ≡ 3 mod 8 or p ≡ 5 mod 8
−p1p2 p1 ≡ 3 mod 8 and p2 ≡ 5 mod 8
p p is odd
2p p ≡ 3 mod 4 or p ≡ 5 mod 8
p1p2 p1 ≡ 5 mod 8 and p2 ≡ 3 mod 4
2p1p2 p1 ≡ 5 mod 8 and p2 ≡ 3 mod 4
p1p2 p1 ≡ 3 mod 4 and p2 ≡ 3 mod 4
p1p2 p1 ≡ 5 mod 8 and p2 ≡ 5 mod 8
p1p2p3 p1 ≡ 5 mod 8 and p2, p3 ≡ 3 mod 4

P r o o f. Consult Corollary 2.10 where we calculated rk2Pic(RF ). We omit
the details.

Corollary 2.13. Let F = Q(
√
d) with d positive. We have rk2Pic+(RF )

= 0 in precisely the following cases:

d with the condition
2
p p ≡ 1 mod 4
2p p ≡ 3 mod 8 or p ≡ 5 mod 8
p1p2 p1 ≡ 3 mod 8 and p2 ≡ 3 mod 8
p1p2 p1 ≡ 5 mod 8 and p2 ≡ 5 mod 8

P r o o f. Use Corollary 2.11.

2.3. The 4-rank of Pic+(OF ) and Pic+(RF ) for F a quadratic number
field. Next we would like to compare the 4-rank of Pic+(OF ) with the 4-rank
of Pic+(RF ). This turns out to be harder than for the 2-rank. We start with
a result about the 4-rank of a finite Abelian group. For an element x in a
group G, let ord(x) denote the order of the subgroup generated by x.

Lemma 2.14. For a finite Abelian group G and x ∈ G,

rk4(G/〈x〉)=





rk4(G) if x ∈ G4, or (x 6∈ G2 and ord(x) ≡ 2 mod 4)
or (x 6∈G2 and x2∈G4 and ord(x) ≡ 0 mod 4),

rk4(G)− 1 otherwise.

P r o o f. This goes like the analogous lemma we had for the 2-rank. We use
the same notion, namely that x generates a subgroup of order n, 〈x〉 = Cn.
Further let G′ denote the quotient group. The exact sequence 0 → Cn →
G→ G′ → 0 induces the exact sequences

Cn/2
θ→ G/2→ G′/2→ 0 and Cn/4

λ→ G/4→ G′/4→ 0.

We divide the proof into the following cases.
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1) Suppose x ∈ G4. Then im(λ) = 0, i.e., G/4 ∼= G′/4. In particular their
4-ranks agree.

2) Clearly 2 -n gives C4
n = Cn and x ∈ C4

n. Hence we are in the situation
above.

3) The case n ≡ 2 mod 4 gives C2
n = C4

n = Cn/2, so we get the exact
sequences

C2
θ→ G/2→ G′/2→ 0 and C2

λ→ G/4→ G′/4→ 0.

• If x ∈ G2\G4, then θ is trivial and λ is injective. Thus ](G/2) = ](G′/2)
and ](G/4) = 2](G′/4). Therefore rk2(G)=rk2(G′) and rk4(G)=rk4(G′)+1.
• Now for the possibility x 6∈ G2. Both θ and λ are now injective,

so ](G/2) = 2](G′/2) and ](G/4) = 2](G′/4). Consequently rk2(G) =
rk2(G′) + 1 and rk4(G) = rk4(G′).

4) The case n ≡ 0 mod 4 gives C2
n = Cn/2 and C4

n = Cn/4. Hence we get
the exact sequences

C2
θ→ G/2→ G′/2→ 0 and C4

λ→ G/4→ G′/4→ 0.

• If x ∈ G2 \G4, the map θ must be trivial while kerλ ∼= C2. As before
](G/2) = ](G′/2) and ](G/4) = 2](G′/4). We get rk2(G) = rk2(G′) and
rk4(G) = rk4(G′) + 1.
• If x 6∈ G2 and x2 ∈ G4 then θ is injective while kerλ ∼= C2. Hence

](G/2) = 2](G′/2) and ](G/4) = 2](G′/4). Thus rk2(G) = rk2(G′) + 1 and
rk4(G) = rk4(G′).
• The only possibility left is x 6∈ G2 and x 6∈ G4. Now both θ and λ are

injective. We get ](G/2) = 2](G′/2) and ](G/4) = 4](G′/4). This implies
rk2(G) = rk2(G′) + 1 and rk4(G) = rk4(G′) + 1.

Let ℘ be a dyadic prime in F . From Lemma 2.14 we know when equality
occurs between rk4Pic+(OF ) and rk4Pic+(RF ), namely if and only if we are
in one of the following cases:

(1) [℘]+ ∈ Pic+(OF )4,
(2) [℘]+ 6∈ Pic+(OF )2 and ord([℘]+) ≡ 2 mod 4,
(3) [℘]+ 6∈ Pic+(OF )2, [℘]2+ ∈ Pic+(OF )4 and ord([℘]+) ≡ 0 mod 4.

Otherwise we have rk4Pic+(RF ) = rk4Pic+(OF ) − 1. It is not easy to
tell if a class is a fourth power in Pic+(OF ). However, we can find answers
in some cases.

Lemma 2.15. Let F = Q(
√
d) where d ≡ 3 or 5 mod 8. Then

rk4Pic+(OF ) = rk4Pic+(RF ).

P r o o f. We know that 2 is inert if d ≡ 5 mod 8, so we can focus on
d ≡ 3 mod 8. In this case, 2 ramifies and hence [℘]+ is trivial or represents
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a class of order two. Recall that N(℘) = 2 in this case. If the order of [℘]+
is 1, then we are in case (1). If the order is two, we are in case (2) since

[℘]+ ∈ Pic+(OF )2 ⇔ d ∈M2 ⇒ d ≡ 1, 2, 6 or 7 mod 8.

We have already seen proofs of both the equivalence and the implication
above, so we will not repeat the argument once more.

Lemma 2.16. For F = Q(
√
d) where d ≡ 2, 6 or 7 mod 8 we have

rk4Pic+(OF ) = rk4Pic+(RF ) if and only if :

(i) d 6∈M2 or (ii) [℘]+ is a fourth power in Pic+(OF ).

P r o o f. If (ii) holds, then we are in situation (1). If (i) holds, i.e., [℘]+ 6∈
Pic+(OF )2, then ord([℘]+) = 1 or ord([℘]+) = 2. These possibilities are
covered by (1), respectively (2). Conversely suppose that equality holds. We
can be in case (1), which gives us that (ii) is true. Case (2) implies that (i) is
true. We can never be in situation (3) since 2 ramifies, and hence the order
of [℘]+ equals 1 or 2.

Lemma 2.17. For F = Q(
√
d) where d ≡ 1 mod 8 we have rk4Pic+(OF ) =

rk4Pic+(RF ) if and only if either

1) [℘]+ is a fourth power in Pic+(OF ), or
2) ord([℘]+) ≡ 2 mod 4 and d 6∈M2, or
3) ord([℘]+) ≡ 0 mod 4, d 6∈M2 and ([℘]2+) ∈ Pic+(OF )4.

P r o o f. In this case the norm of ℘ equals 2. This is where the condition
d 6∈M2 comes in and replaces [℘]2+ 6∈ Pic+(OF )2.

3. Calculations of two-primary algebraic K-theory for quadratic
number rings. In this section we will do the announced algebraic K-theory
calculations. From the results on the quadratic Picard groups in Section 2 we
can give a complete description of the 2-rank of Kn(RF ) for F a quadratic
number field. This will be carried out in Subsection 3.1. Further Subsec-
tion 3.2 describes a method to determine parts of the two-primary algebraic
K-theory of quadratic number rings. Several examples will be treated in
Subsection 3.3. The final effort is to lift the K2 calculations to higher even
algebraic K-groups. This will be done in Subsection 3.4.

3.1. Calculation of rk2Kn(RF ) for F a quadratic number field. We will
give a version of Theorem 1.1 for quadratic number fields. Our 2-rank cal-
culation of Pic(RF ) and Pic+(RF ) for F =Q(

√
d) gives an answer in terms

of the number of distinct prime divisors t of ∆F and the number of dyadic
primes s in F . The integer s is known to be 2 for d≡1 mod 8 and 1 otherwise.

Theorem 3.1. Let F = Q(
√
d) with d squarefree. Let s be the number of

dyadic primes and t the number of distinct prime divisors of ∆F . We have
the following calculation of rk2Kn(RF ):
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1) Let F be imaginary. If (d ≡ 5 mod 8) or (p ≡ 1 or 7 mod 8 for all
odd primes p dividing d), then:

n ≥ 1 mod 2 rk2Kn(RF )

1 1
2 s+ t− 2

In all other cases we have:

n ≥ 1 mod 2 rk2Kn(RF )

1 1
2 s+ t− 3

2) Let F be real. If (d ≡ 5 mod 8 and p ≡ 1 mod 4 for all odd primes p
dividing d) or (p ≡ 1 mod 8 for all odd primes p dividing d), then:

n ≥ 1 mod 8 rk2Kn(RF )

1 1
2 s+ t
3 2
8 s+ t− 2

If d ≡ 1, 2, 3, 6 or 7 mod 8 and there exist odd prime numbers p1 and p2

dividing d such that p1 ≡ 5 mod 8 and p2 ≡ 3 mod 4, then:

n ≥ 1 mod 8 rk2Kn(RF )

1 1
2 s+ t− 2
3 2
8 s+ t− 4

In all other cases we have:

n ≥ 1 mod 8 rk2Kn(RF )

1 1
2 s+ t− 1
3 2
8 s+ t− 3

For the other values of n modulo 8 we have the following. If (d≡5 mod 8)
or (p ≡ 1 or 7 mod 8) for all odd primes p dividing d, then:

n ≥ 1 mod 8 rk2Kn(RF )

4 s+ t− 2
5 0
6 s+ t− 2
7 1
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In all other cases:

n ≥ 1 mod 8 rk2Kn(RF )

4 s+ t− 3
5 0
6 s+ t− 3
7 1

P r o o f. Compare Theorem 1.1, Corollaries 2.10 and 2.11.

3.2. A method for two-primary calculations of K2 for quadratic number
rings. In this subsection we describe a method that in some favorable cases
calculates the two-primary part of K2 of quadratic number rings.

The narrow version of K2(F ) is defined by a split short exact sequence

0→ K+
2 (F )→ K2(F )→

⊕

℘ real

µ2 → 0

induced by Hilbert symbols. Next one defines K+
2 (OF,S) := K2(OF,S) ∩

K+
2 (F ).

The following result is part of Corollary 3.9 in [8].

Theorem 3.2 (Keune). For F = Q(
√
d) we have

rk2K
+
2 (RF ) = rk2Pic+(RF ) + s− 1.

One main reason for focusing on K2 is that we have 4-rank formulas
for K2 of quadratic number fields. We continue to work with the quadratic
number field F = Q(

√
d) where d is a squarefree integer. Let F = Q(

√−d)
with two-integers RF and let δ = rk2Pic+(RF ) − rk2Pic(RF ). It follows
from Theorem 2.9 that δ equals 0 if d ∈ M−1 ∪M−2 and 1 in all other
cases. Various 4-rank formulas for K2 are known (see [5] and [9]). We use
the following results from [1].

Theorem 3.3 (Boldy). For F = Q(
√
d) we have

rk4K
+
2 (RF ) = rk4Pic+(RF ) + s− 1.

Theorem 3.4 (Boldy). For F = Q(
√
d) we have

rk4K2(RF ) = rk4Pic+(RF ) + s+ δ − 1.

Definition 3.5. Let rkn denote the n-rank of K2(RF ) and rk+
n denote

the n-rank of K+
2 (RF ). Here n is a prime power. We will only consider n = 2

and n = 4.

Let p1, . . . , pt̄ be the prime divisors of ∆F with the modification that
pt̄ = 2 in case 2 | ∆F . Likewise we let s denote the number of dyadic primes
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in F . The matrix

MF =




(d/p1
p1

) (
p1
p2

) · · · (
p1
pt̄−1

)
(
p2
p1

) (d/p2
p2

) · · · (
p2
pt̄−1

)

...
...

. . .
...(pt̄−1

p1

) (pt̄−1
p2

) · · · (d/pt̄−1
pt̄−1

)
(
pt̄
p1

) (
pt̄
p2

) · · · (
pt̄
pt̄−1

)




is described in [10], using ideas of Rédei. Here
(
p
q

)
denotes the quadratic

residue symbol of p and q. We adopt the following conventions. The value
in MF of

(
p
q

)
= 1 is 0, while the MF value of

(
p
q

)
= −1 is 1. Let

r2 = rk2Pic+(OF ) = t− 1 and r4 = rk4Pic+(OF ).

Then

r4 = r2 − rankF2(MF ).

This fact motivates the definition of MF .
From Theorems 3.3 and 3.4 we see that if we know the value of rk+

4 , then
we also know the value of rk4 since their difference is given by δ. What we
will do is to express rk+

2 and rk+
4 in terms of r2 and r4.

The first problem is to find rk4Pic+(RF ). As we saw in Subsection 2.3
there are cases where it is hard to find this number. We will run into trouble
in the cases:

Situation 1: [℘]+ ∈ Pic+(OF )4.

Situation 2: (ord([℘]+) ≡ 0 mod 4 and [℘]+ ∈ Pic+(OF )4) or (ord([℘]+)
≡ 2 mod 4).

Translating the Lemmas 2.15–2.17 from F to F yields

Corollary 3.6. We have rk4Pic+(RF ) = rk4Pic+(OF ) in the three
cases:

1) d ≡ 3, 5 mod 8,
2) d ≡ 1, 2, 6 mod 8 with the restriction (d 6∈M2) or Situation 1,
3) d ≡ 7 mod 8 with the restriction

Situation 1 or (d 6∈M2, ord([℘]+) ≡ 2 mod 4)

or (d 6∈M2, [℘]2+ ∈ Pic+(OF )4, ord([℘]+) ≡ 0 mod 4).

In all other cases we have rk4Pic+(OF )− rk4Pic+(RF ) = 1.
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Proposition 3.7. We have the following calculation of rk+
2 and rk+

4 :

d ≡ mod 8 Case with the condition rk+
2 rk+

4

1 1.1 d 6∈M2 r2 − 1 r4
1 1.2 d ∈M2 and Sit. 1 r2 r4
1 1.2 d ∈M2 and not Sit. 1 r2 r4 − 1
3 2 r2 r4
5 3 r2 − 1 r4

2, 6 4.1 d 6∈M2 r2 − 1 r4
2, 6 4.2 d ∈M2 and Sit. 1 r2 r4
2, 6 4.2 d ∈M2 and not Sit. 1 r2 r4 − 1
7 5.1 d 6∈M2 and Sit. 1 r2 r4 + 1
7 5.1 d 6∈M2 and not Sit. 1 r2 r4
7 5.2 d ∈M2 and Sit. 1 r2 + 1 r4 + 1
7 5.2 d ∈M2 and not Sit. 1 r2 + 1 r4

with the additional remark :
If d ≡ 7 mod 8 and d ∈M2, then r4 = 0 implies rk+

4 = 1.

P r o o f. Case 1.1: d ≡ 1 mod 8 and d 6∈M2. Then rk2Pic+(OF ) = r2−1,
rk2Pic+(RF ) = r2 − 2 and rk4Pic+(RF ) = r4. Further s = 2 and s = 1.
Hence rk+

2 = r2 − 1 and rk+
4 = r4.

Case 1.2: d ≡ 1 mod 8, d ∈ M2. We get that rk2Pic+(OF ) = r2 − 1,
rk2Pic+(RF ) = r2−1, rk4Pic+(RF ) = r4 in Situation 1 and rk4Pic+(RF ) =
r4 − 1 in all other cases. Further s = 2 and s = 1. Hence rk+

2 = r2, rk
+
4 = r4

if Situation 1 holds and rk+
4 = r4 − 1 otherwise.

Case 2: d ≡ 3 mod 8. We derive that rk2Pic+(OF ) = r2+1, rk2Pic+(RF )
= r2 since d 6∈M2, and also rk4Pic+(RF ) = r4. Further s = s = 1. We find
that rk+

2 = r2 and rk+
4 = r4.

Case 3: d ≡ 5 mod 8. We get rk2Pic+(OF ) = r2 − 1, rk2Pic+(RF ) =
r2−1 and rk4Pic+(RF ) = r4. Further s = s = 1. This time we find rk+

2 = r2

and rk+
4 = r4.

Case 4.1: d ≡ 2, 6 mod 8, d 6∈ M2. We get rk2Pic+(OF ) = r2 − 1,
rk2Pic+(RF ) = r2 − 1, rk4Pic+(RF ) = r4. Further s = s = 1. Hence rk+

2 =
r2 − 1 and rk+

4 = r4.
Case 4.2: d ≡ 2, 6 mod 8, d ∈M2. Now rk2Pic+(OF ) = rk2Pic+(RF ) =

r2, rk4Pic+(RF ) = r4 if Situation 1 holds and rk4Pic+(RF ) = r4 − 1 oth-
erwise. Again s = s = 1, so rk+

2 = r2, rk
+
4 = r4 if Situation 1 holds and

rk+
4 = r4 − 1 otherwise.
Case 5.1: d ≡ 7 mod 8, d 6∈ M2. We get rk2Pic+(OF ) = r2 + 1,

rk2Pic+(RF ) = r2, rk4Pic+(RF ) = r4 if Situation 1 holds and rk4Pic+(RF )
= r4 − 1 otherwise. Again s = 1 and s = 2. Hence rk+

2 = r2, rk
+
4 = r4 + 1 if

Situation 1 holds and rk+
4 = r4 otherwise.
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Case 5.2: d ≡ 7 mod 8, d ∈M2. We get rk2Pic+(OF ) = rk2Pic+(RF ) =
r2+1, rk4Pic+(RF ) = r4 in Situation 1 and rk4Pic+(RF ) = r4−1 otherwise.
Trivially s = 1 and s = 2. So rk+

2 = r2 + 1, rk+
4 = r4 + 1 if Situation 1 holds

and rk+
4 = r4 otherwise.

Now for the additional remark. When r4 = 0 we claim that [℘]+ ∈
Pic+(OF )4, i.e., we are in Situation 1. The condition on d implies [℘]+ ∈
Pic+(OF )2 from Lemmas 2.5 and 2.7. The assumption r4 = 0 implies
Pic+(OF )2 = Pic+(OF )4, i.e., [℘]+ is a fourth power in Pic+(OF ).

Now an outline of the method that we use for the calculations. Propo-
sition 3.7 calculates rk+

2 and rk+
4 in terms of r2 and r4, respectively. It is

trivial to find r2, while the matrix MF takes care of r4. In this way we au-
tomatically determine rk4 from δ. The matrix MF will play the vital part
in the calculations. Using this method with ideas going all the way back
to Rédei we have a quite powerful machine in hand that provides lots of
examples. This will be discussed in the next subsection.

3.3. Examples of K2 of quadratic number rings. This subsection con-
sists of examples. We will heavily use the formulas obtained in the previous
subsection and the calculations will usually be based on the matrix MF .
Whenever we write the word matrix we refer to MF . First we make an
elementary observation.

Example 3.8. Let F be a real quadratic number field and suppose that
rk+

4 = 0. Then
K2(RF ){2} ∼= (Z/2)rk2−rk4 ⊕ (Z/4)rk4 .

P r o o f. Recall that rk2 +rk4 = rk+
2 +rk+

4 +2 from the 2-rank and 4-rank
formulas. From the exact sequence 0→ K+

2 (RF )→ K2(RF )→ µ2⊕µ2 → 0
we find that rk2 + rk4 + . . . = 2 + rk+

2 + rk+
4 + . . . , i.e., rk8 + rk16 + . . . =

rk+
8 + rk+

16 + . . . But the assumption is that rk+
4 = 0.

Before we begin with the examples we ought to recall the following. For
d < 0 we clearly have rk2 = rk+

2 and rk4 = rk+
4 since the narrow and the

usual K2 are equal. For d positive we have rk2 = rk+
2 + 2 − δ and rk4 =

rk+
4 + δ. Again we emphasize that δ = 0 if d ∈ M−1 ∪ M−2, and 1 in

all other cases. All the p, q and r’s occurring in the examples are prime
numbers. In the calculations we will refer to the various cases occurring in
Proposition 3.7. Let us begin with an easy example.

Example 3.9. Let F = Q(
√−p). Then

K2(RF ){2} ∼=



Z/2n for p ≡ 1 mod 8,
Z/2 for p ≡ 7 mod 8,
0 otherwise,

for some n ≥ 2.
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P r o o f. We divide the calculation into cases according to the congruence
class of p modulo 8.

1) p ≡ 1 mod 8. Now d ≡ 7 mod 8, d ∈M2, so we are in Case 5.2. From
d ≡ 3 mod 4 we find that ∆ = p, i.e., t = 1, r2 = r4 = 0. Thus we are in
Situation 1 and rk2 = rk4 = 1.

2) p ≡ 3 mod 8. We have d ≡ 5 mod 8, i.e., Case 3. From d ≡ 1 mod 4
we find that ∆ = 4p, i.e., t = 2, r2 = 1 and hence rk2 = 0.

3) p ≡ 5 mod 8. We have d ≡ 3 mod 8, d 6∈ M2, i.e., Case 2. From
d ≡ 3 mod 4 we find that ∆ = p, i.e., t = 1, r2 = 0 and hence rk2 = 0.

4) p ≡ 7 mod 8. We have d ≡ 1 mod 8, d ∈ M2, i.e., Case 1.2. From
d ≡ 1 mod 4 we find that ∆ = 4p, i.e., t = 2, r2 = 1. The matrix is

[ (−d/p
p

)
(

2
p

)
]

=

[ (−1
p

)
(

2
p

)
]
∼
[

1
0

]

and hence r4 = r2 − 1 = 0, i.e., rk2 − 1 = rk4 = 0.

Remark 3.10. One can prove that n = 2 in the case p ≡ 9 mod 16.
The situation is far more complicated if p ≡ 1 mod 16, because in this case
n ≥ 3. As an example we mention that n = 3 for p = 17. All these claims
follow from unpublished work of Qin; see also [4] for similar computations.

Next we consider F = Q(
√−p1 . . . p2m+1q1 . . . q2n+1) with pi ≡ 7 mod 8

and qi ≡ 5 mod 8. From the residue classes of the pi’s and qi’s modulo eight
we have

(
pi
pj

)
=
(pj
pi

)
. We are in Case 3, and we easily find rk2 = 2(m+n)+1

from Theorem 3.1. Let p̂i denote the product p1 . . . pi−1pi+1 . . . q2n−1 and
likewise for q̂i. The matrix is

MF =




−( p̂1
p1

) (
p1
p2

) · · · (
p1

q2n−1

)
(
p2
p1

) −( p̂2
p2

) · · · (
p2

q2n−1

)

...
...

. . .
...( q2n+1

p1

) ( q2n+1
p2

) · · · ( q̂2n+1
q2n+1

)
(

2
p1

) (
2
p2

) · · · (
2

q2n+1

)




.

We make some observations on MF . First assume that all the quadratic
residue symbols are 1. Then the entries in the first 2m + 1 columns are all
zero except eii = 1 for 1 ≤ i ≤ 2m+ 1. Next consider the remaining 2n+ 1
columns. All the entries are zero except the last row where all the entries
are 1. Thus the F2-rank of MF is 2m+ 2 and rk4 = 2n. Hence we record

Example 3.11. Let F =Q(
√−p1 . . . p2m+1q1 . . . q2n+1) with pi≡7 mod 8

and qi ≡ 5 mod 8. If all the quadratic symbols we can make from the pi’s
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and qi’s are 1, then

K2(RF ){2} ∼= (Z/2)2m+1 ⊕ (Z/2a1)⊕ . . .⊕ (Z/2a2n)

for some ai ≥ 2.

Next consider the following slight modification of the last example. We
adjoin one more pi, say p2m+2, such that there are an even number of pi’s.
This change of input brings us over to Case 2. The 2-rank rk2 equals 2(m+
n+ 1), and

MF =




−( p̂1
p1

) (
p1
p2

) · · · (
p1

q2n−1

)
(
p2
p1

) −( p̂2
p2

) · · · (
p2

q2n−1

)

...
...

. . .
...(

q2n
p1

) (
q2n
p2

) · · · (
q̂2n
q2n

)
( q2n+1

p1

) ( q2n+1
p2

) · · · ( q2n+1
q2n

)




.

If all the quadratic residue symbols are 1, then eii = 1 for 1 ≤ i ≤ 2m+2
while all the other entries are zero. Consequently,

K2(RF ){2} ∼= (Z/2)2m+2 ⊕ (Z/2a1)⊕ . . .⊕ (Z/2a2n)

for some ai ≥ 2. Suppose the only nontrivial quadratic symbols are
(
p1
p2

)
=

. . . =
(
pi
pi+1

)
= −1. The number rk4 equals 2n + 1 if i is odd, as one easily

checks by looking at MF . However, rk4 will be 2n+ 1 if i is even.

Example 3.12. Let F =Q(
√−p1 . . . p2m+2q1 . . . q2n+1) with pi≡7 mod 8

and qi ≡ 5 mod 8. If the only nontrivial quadratic symbols are
(
p1
p2

)
= . . . =(

pi
pi+1

)
= −1 where i is even, then

K2(RF ){2} ∼= (Z/2)2m+1 ⊕ (Z/2a1)⊕ . . .⊕ (Z/2a2n+1)

for some ai ≥ 2.

Next consider the real quadratic number field F = Q(
√
p1 . . . p2n+1)

for some pi ≡ 3 mod 8. One checks that rk2 = 2n + 2, rk+
2 = 2n and(

pi
pj

)
= −(pjpi

)
. The matrix is

MF =




(
p̂1
p1

) · · · (
p1
p2n

)
(
p2
p1

) · · · (
p2
p2n

)
...

. . .
...(p2n−1

p1

) · · · ( p̂2n−1
p2n−1

)
(
p2n
p1

) · · · (
p2n
p2n−1

)




.
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If all the possible quadratic residue symbols we can make out of the
pi’s are trivial, then rk4 = rk2. By looking at the matrix one finds that if(
p1
p2

)
, . . . ,

(pi−1
pi

)
are the only quadratic residue symbols equal to −1, then

rk4 = rk+
4 = 2n− i+ 1. Hence

Example 3.13. Let F = Q(
√
p1 . . . p2n+1) with pi ≡ 3 mod 8. If

(
p1
p2

)
=

. . . =
(pi−1
pi

)
are the only quadratic residue symbols equal to −1, then

K+
2 (RF ){2} ∼= (Z/2)i+1 ⊕ (Z/2a1)⊕ . . .⊕ (Z/2a2n−i−1)

and

K2(RF ){2} ∼= (Z/2)i+3 ⊕ (Z/2b1)⊕ . . .⊕ (Z/2b2n−i−1)

for some aj , bj ≥ 2.

We end the section with two more concrete examples.

Example 3.14. For F = Q(
√−pqr) with p, q ≡ 7 mod 8, r ≡ 5 mod 8

and
(
p
r

)
= −1

K2(RF ){2} ∼= Z/2⊕ Z/2.
P r o o f. We are in Case 2. One finds that rk2 = 2 and rk4 = r4. The

matrix is: 


1 1
0 1
1 0


 ,




1 0
0 1
1 1


 ,




0 1
1 0
1 0


 or




0 0
1 0
1 1


 .

Hence r4 = 2− rkF2(MF ) = 0.

Example 3.15. Let F = Q(
√

2pqr) with p ≡ 1 mod 8, q ≡ 3 mod 8 and
r ≡ 5 mod 8. Assume that −( qp

)
=
(
r
p

)
= 1. Then

K+
2 (RF ){2} ∼= Z/2⊕ Z/2

and

K2(RF ){2} ∼= Z/2⊕ Z/2⊕ Z/2n
for some n ≥ 2.

P r o o f. We are in Case 4.1, rk2 = 2 and rk4 = r4. The matrix is



( 2qr
p

) (
p
q

) (
p
r

)
(
q
p

) ( 2pr
q

) (
q
r

)
(
r
p

) (
r
q

) ( 2pq
r

)
(

2
p

) (
2
q

) (
2
r

)




=




1 1 0
1
(
r
q

) (
r
q

)

0
(
r
q

) −( rq
)

0 1 1


 ∼ . . . ∼




1 0 0
0 1 0
0 0 1
0 0 0




and hence rk+
4 = 0. Since d 6∈ M−1 ∪M−2 we find that δ = 1, rk2 = 3 and

rk4 = 1.
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3.4. Lifting the K2 calculations to higher K-groups. The basis for lifting
the previous K2 calculations to higher algebraic K-groups is

Theorem 3.16 (Rognes–Weibel). Let F be a totally imaginary number
field. Then

K2n(RF ){2} ∼= H2
ét(R;Z2(n+ 1)).

For a real number field F ,

K8n+2(RF ){2} ∼= H2
ét(R;Z2(4n+ 2)).

Let e denote the exponent of (Z/2ν)∗. The motivation for introducing e
is the isomorphism Z/2ν(i) ∼= Z/2ν(e+ i) of sheaves for the étale topology.
The exact sequence

0→ Z2(i) 2ν→ Z2(i)→ Z/2ν(i)→ 0

of coefficient sheaves induces the horizontal exact sequence diagram:

0 → H2
ét(RF ;Z2(2))/2ν → H2

ét(RF ;Z/2ν(2)) → 2νH
3
ét(RF ;Z2(2)) → 0

↓ ∼=
0 → H2

ét(RF ;Z2(e+ 2))/2ν → H2
ét(RF ;Z/2ν(e+ 2)) → 2νH

3
ét(RF ;Z2(e+ 2)) → 0

Lemma 3.17. Let i 6= 0, 1. Then

H3
ét(RF ;Z2(i)) ∼=

{
(Z/2)r1 for i odd ,
0 for i even.

P r o o f. Combine Corollary 4.4, Propositions 2.4 and 4.6 of [15].

Combining the diagram, Theorem 3.16 and Lemma 3.17 yields

Theorem 3.18. Let e be the exponent of (Z/2ν)∗ where ν ≥ 2 if F is
a real number field. Recall that e = 2ν−1 for 1 ≤ ν ≤ 2, and e = 2ν−2 for
ν ≥ 3. We have the isomorphism

K2(RF )/2ν ∼= H2
ét(RF ;Z2(e+ 2))/2ν .

In particular if F is totally imaginary , or if F is real and e ≡ 0 mod 4, then

K2(RF )/2ν ∼= K2e+2(RF )/2ν .

Remark 3.19. This result lifts the K2 calculations to higher K-groups.
This illustrates in yet another way how important and interesting K2 is!

We illustrate this result using the field F from Example 3.14. Recall that
K2(RF ){2} ∼= (Z/2)2. Thus K2(RF ){2} ∼= K2(RF )/2 and K2(RF ){2} ∼=
K2e+2(RF )/2ν .
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