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On a generalization of the Selberg trace formula
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1. Introduction. The Selberg trace formula (the original paper is [Se];
for a nice account see [I]) is obtained (e.g. for a co-compact Fuchsian group
Γ with fundamental domain F in H, where H is the upper half-plane) by
computing in two different ways (geometrically and spectrally) the integral

TrK =
\
F

K(z, z) dµz,

where K(z, w) is an automorphic kernel function. We take here instead of
TrK an integral of the form

TruK =
\
F

K(z, z)u(z) dµz,

where u is an automorphic eigenfunction of the Laplace operator, so we
write u(z) in place of the identically 1 function.

On the geometric side of our formula we get integrals of u on certain
closed geodesics of the Riemann surface Γ \H. On the spectral side integrals
of the form \

F

|uj(z)|2u(z) dµz

appear (the uj run over an orthonormal basis of automorphic Laplace-
eigenforms), so our formula (Theorem 1) is a duality between such inte-
grals and certain geodesic integrals of u. New integral transformations are
involved depending on the Laplace-eigenvalue of u. We invert these integral
transformations in Section 5, Theorem 2.

We develop the formula for finite volume Fuchsian groups, so (as in the
case of the Selberg trace formula)

T
F
K(z, z)u(z) dµz will not be convergent,

and we take instead

TrYuK =
\

F (Y )

K(z, z)u(z) dµz,
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320 A. Biró

where F (Y ) is obtained from F by cutting off the cuspidal zones at height Y .
We let Y →∞, and the main term (which is in our case a power of Y , while
in the case of the Selberg trace formula the main term is log Y ) will cancel
out. An interesting feature of our formula is the appearance of the Riemann
zeta-function in the contribution of the parabolic conjugacy classes.

In Section 6 we prove lemmas on special functions needed in Section 5.

Acknowledgements. I would like to thank Professor G. Halász for
introducing me to the Selberg trace formula.

2. Notations and statement of the main result. Let H be the open
upper half-plane. The elements

(
a b

c d

)
of the group PSL(2,R) act on H by

the rule z → (az+ b)/(cz+ d). The hyperbolic Laplace operator is given by

∆ = y2
(
∂2

∂x2 +
∂2

∂y2

)
.

It is well known that ∆ commutes with the action of PSL(2,R).
Let Γ ⊂ PSL(2,R) be a finite volume Fuchsian group, i.e. Γ acts discon-

tinuously on H, and it has a fundamental domain of finite volume.
The constants in the symbols O will depend on the group Γ . For a

function f we denote its jth derivative by f (j).
We fix a complete set A of inequivalent cusps of Γ , and we will denote

the elements of A by a, b or c, so e.g.
∑
a

∑
c or

⋃
a will mean that a and

c run over A. We say that σa is a scaling matrix of a cusp a if σa∞ = a,
σ−1
a Γaσa = B, where Γa is the stability group of a in Γ , and B is the group

of integer translations. The scaling matrix is determined up to composition
with a translation from the right.

We also fix a complete set P of representatives of Γ -equivalence classes
of the set {z ∈ H : γz = z for some id 6= γ ∈ Γ}. For a p ∈ P let mp be the
order of the stability group of p in Γ .

Let
P (Y ) = {z = x+ iy : 0 < x ≤ 1, y > Y },

and let YΓ be a constant (depending only on the group Γ ) such that for
any fixed Y ≥ YΓ the cuspidal zones Fa(Y ) = σaP (Y ) are disjoint, and
the fixed fundamental domain F of Γ (it contains exactly one point of each
Γ -equivalence class of H) is partitioned into

F = F (Y ) ∪
⋃
a

Fa(Y ),

where F (Y ) is the central part,

F (Y ) = F \
⋃
a

Fa(Y ),

and F (Y ) has compact closure.
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Denote by {uj(z) : j ≥ 0} a complete orthonormal system of Maass forms
for Γ for the discrete spectrum (u0(z) is constant), with Laplace-eigenvalue
λj = sj(sj − 1), Re sj ≥ 1/2, sj = 1/2 + itj and Fourier expansion

uj(σaz) = βa,j(0)y1−sj +
∑

n6=0

βa,j(n)Wsj (nz),

where W is the Whittaker function.
The Fourier expansion of the Eisenstein series (as in [I], (8.2)) is given

by

Ec(σaz, 1/2 + ir) = δacy
1/2+ir + ϕa,c(1/2 + ir)y1/2−ir

+
∑

n6=0

ϕa,c(n, 1/2 + ir)W1/2+ir(nz).

Let {sl : l ∈ L} be the set of the poles of the Eisenstein series for Γ . Then
1/2 < sl ≤ 1 for every l ∈ L, and L is a finite set. We have βa,j(0) = 0 if
j > 0, and uj(z) is not a linear combination of residues of Eisenstein series,
so if j > 0 is such that βa,j(0) 6= 0 for some a, then sj = sl for some l ∈ L.
The functions ϕa,a(s) may have poles only at the points sl. Let us denote
the residue of ϕa,a(s) at s = sl by Ra,sl , when l ∈ L.

Let 1/2 ≤ Re s < 1, and let u(z) be a fixed Γ -automorphic eigenfunction
of the Laplace operator with eigenvalue λ = s(s−1), and Fourier expansion
at any cusp a of Γ

u(σaz) = βa(0)ys + β̃a(0)y1−s +
∑

n 6=0

βa(n)Ws(nz).

For simplicity we assume that s 6= 2sl − 1 for l ∈ L.
We introduce the notations

Bu =
∑
a

βa(0), B̃u =
∑
a

β̃a(0),

Bu(S) =
∑
a

βa(0)ϕa,a

(
1 + S

2

)
, B̃u(S) =

∑
a

β̃a(0)ϕa,a

(
1 + S

2

)
.

Let k be a function on [0,∞), and assume that it satisfies

(A) k is a compactly supported continuous function on [0,∞).

As usual (see [I], (1.62)), let

g(a) = 2q
(
ea + e−a − 2

4

)
, where q(ν) =

∞\
0

k(ν + τ)√
τ

dτ,

and let h be the Fourier transform of g,

h(r) =
∞\
−∞

g(a)eira da.
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We assume that

(B) h(r) is even, it is holomorphic in the strip |Im r| ≤ 1/2 + ε, and
h(r) = O((1 + |r|)−2−ε) in this strip for some ε > 0.

The point-pair invariant determined by k is

k(z, w) = k

( |z − w|2
4 Im z Imw

)

for z, w ∈ H. The automorphic kernel function K(z, w) is given by

K(z, w) =
∑

γ∈Γ
k(z, γw).

Define

TrYuK =
\

F (Y )

K(z, z)u(z) dµz.

We will determine the asymptotic behaviour of TrYuK as Y → ∞ in
two different ways. Firstly, by partitioning Γ into conjugacy classes, and
secondly, using the spectral theorem (which is applicable by our conditions
on k and h), since introducing the notations

IYu (r) =
∑
c

\
F (Y )

|Ec(z, 1/2+ir)|2u(z) dµz, IYu (uj) =
\

F (Y )

|uj(z)|2u(z) dµz,

we have by the spectral theorem

TrYuK =
∑

j

h(tj)IYu (uj) +
1

4π

∞\
−∞

h(r)IYu (r) dr.

We give here the statement of our Lemma 4 (which will be proved in
Section 4 below), because to state Theorem 1 we need the quantities Iu(uj)
and Iu(r) defined in that lemma.

Lemma 4. Define

ψYa (r, s) =
Y s

s
+ ϕa,a(1/2 + ir)

Y s−2ir

s− 2ir
,

ĨYu (r) = IYu (r)−
(∑

a

βa(0)(ψYa (r, s) + ψYa (−r, s))

+ β̃a(0)(ψYa (r, 1− s) + ψYa (−r, 1− s))
)
,

and

ĨYu (uj) = IYu (uj)−
∑
a

|βa,j(0)|2
(
βa(0)

Y 1+s−2sj

1 + s− 2sj
+ β̃a(0)

Y 2−s−2sj

2− s− 2sj

)
.
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Then
∑

|tj |≤R
|ĨYu (uj)|+

R\
−R
|ĨYu (r)| dr = O(R2),

uniformly in Y . The limits

Iu(r) = lim
Y→∞

ĨYu (r), Iu(uj) = lim
Y→∞

ĨYu (uj)

obviously exist , and then, of course,

∑

|tj |≤R
|Iu(uj)|+

R\
−R
|Iu(r)| dr = O(R2).

If uj(z) is not a linear combination of residues of Eisenstein series, then

Iu(uj) =
\
F

|uj(z)|2u(z) dµz.

In particular Iu(u0) = 0.

With the above notations and assumptions our formula is the following:

Theorem 1. Assume that k satisfies condition (A) and h satisfies con-
dition (B). Let

Σhyp =
∑

[γ]
γ hyperbolic

( \
Cγ

u dS
) π/2\
−π/2

k

(
N(γ) +N(γ)−1 − 2

4 cos2 ϑ

)
fλ(ϑ)

dϑ

cos2 ϑ
,

where the summation is over the hyperbolic conjugacy classes of Γ , N(γ) is
the norm of (the conjugacy class of ) γ, Cγ is the closed geodesic obtained
by factorizing the noneuclidean line connecting the fixed points of γ by the
action of the centralizer of γ in Γ , dS = |dz|/y is the hyperbolic arc length,
and fλ(ϑ) is the solution of the differential equation

f (2)(ϑ) =
λ

cos2 ϑ
f(ϑ), ϑ ∈ (−π/2, π/2),

with fλ(0) = 1, f (1)
λ (0) = 0. Let

Σell =
∑

p∈P

2π
mp

u(p)
mp−1∑

l=1

∞\
0

k

(
sin2 lπ

mp
sinh2 r

)
gλ(r) sinh r dr,

where gλ(r) (r ∈ [0,∞)) is the unique solution of

g(2)(r) +
cosh r
sinh r

g(1)(r) = λg(r)
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with gλ(0) = 1. Let

Σpar = Bu21−sζ(1− s)
∞\
0

k(ν)ν−(1+s)/2 dν + B̃u2sζ(s)
∞\
0

k(ν)ν(s−2)/2 dν,

where ζ is the Riemann zeta-function. Then the equality

Σhyp +Σell +Σpar =
1
2
h

(
i
s

2

)
Bu(s) +

1
2
h

(
i
1− s

2

)
B̃u(1− s)

+
∑

j>0

h(tj)Iu(uj) +
1

4π

∞\
−∞

h(r)Iu(r) dr

holds, where Iu(uj) and Iu(r) is given in Lemma 4.

3. The geometric trace. For the first computation of TrYuK we par-
tition Γ into conjugacy classes [γ] = {τ−1γτ : τ ∈ Γ}. Let id 6= γ ∈ Γ ,
and

TYγ =
∑

δ∈[γ]

\
F (Y )

k(z, δz)u(z) dµz.

We have τ−1
1 γτ1 = τ−1

2 γτ2 if and only if τ2τ−1
1 ∈ C(γ), where C(γ) is the

centralizer of γ in Γ . So

TYγ =
∑

τ∈C(γ)\Γ

\
F (Y )

k(z, τ−1γτz)u(z) dµz.

Since k(z, τ−1γτz) = k(τz, γτz) and u(z) = u(τz), we obtain

TYγ =
\

C(γ)\H(Y )

k(z, γz)u(z) dµz,

where H(Y ) =
⋃
γ∈Γ γF (Y ). Let h ∈ SL(2,R). Then

TYγ =
\

h−1(C(γ)\H(Y ))

k(hz, γhz)u(hz) dµz(1)

=
\

(h−1C(γ)h)\(h−1H(Y ))

k(z, h−1γhz)u(hz) dµz.

So far this is valid for every id 6= γ ∈ Γ . We now examine separately the
case of hyperbolic, elliptic or parabolic transformations.

If γ is hyperbolic or elliptic, then Tγ = limY→∞ TYγ exists, and by (1)
we get

(2) Tγ =
\

(h−1C(γ)h)\H
k(z, h−1γhz)u(hz) dµz.

If γ is hyperbolic, then we choose h ∈ SL(2,R) so that h−1γh is a dilation,
i.e. h−1γhz = N(γ)z for z ∈ H, where N(γ) > 1 (N(γ) is the “norm”
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of γ). Then, if the fixed points of γ are z1 and z2, then C(γ) = {σ ∈ Γ :
σz1 = z1, σz2 = z2}. This is an infinite cyclic group. Let γ0 be the gener-
ator of C(γ) with the property that γ = γl0 with a positive integer l. Then
h−1C(γ)h is the group generated by the dilation z → N(γ0)z, and a fun-
damental domain of this group in H is {z ∈ H : 1 ≤ |z| < N(γ0)}, so by
the substitution z = rei(π/2+ϑ) (r ∈ (1, N(γ0)), ϑ ∈ (−π/2, π/2)) we deduce
(since dµz = dxdy

y2 = rdrdϑ
r2 cos2 ϑ ) by (2) that

Tγ =
π/2\
−π/2

N(γ0)\
1

k

(
N(γ) +N(γ)−1 − 2

4 cos2 ϑ

)
u(h(rei(π/2+ϑ)))

dr dϑ

r cos2 ϑ
.

Introduce the notation

F (z) =
N(γ0)\

1

u(h(rz))
dr

r
(z ∈ H).

Then

Tγ =
π/2\
−π/2

k

(
N(γ) +N(γ)−1 − 2

4 cos2 ϑ

)
F (ei(π/2+ϑ))

dϑ

cos2 ϑ
.

Now, F is constant on euclidean lines through the origin, i.e. F (z) = F (rz)
for all r > 0, because u(h(z)) is automorphic with respect to h−1Γh. In
particular,

u(h(N(γ0)z)) = u(h(z)) for z ∈ H.
So F depends only on ϑ (if z = rei(π/2+ϑ)), i.e. F (z) = F (ϑ), where F is a
function on (−π/2, π/2).

On the other hand, since u is an eigenfunction of ∆ with eigenvalue λ, so
is F (z) (because ∆ commutes with the group action). Using the form of the
Laplace operator in polar coordinates (∆ = (r cosϑ)2(∂2/∂r2 + r−1∂/∂r +
r−2∂2/∂ϑ2)), we find that F (ϑ) satisfies a second order ordinary differential
equation, which depends only on λ:

F (2)(ϑ) =
λ

cos2 ϑ
F (ϑ) (ϑ ∈ (−π/2, π/2)).

Let fλ(ϑ) be the solution of this differential equation with fλ(0) = 1,
f

(1)
λ (0) = 0, and f̃λ(ϑ) the one with f̃λ(0) = 0, f̃ (1)

λ (0) = 1. Then F (ϑ) =
F (0)fλ(ϑ) + F (1)(0)f̃λ(ϑ), and f̃λ(ϑ) is an odd function, so it gives 0 in Tγ ,
i.e.

Tγ = F (0)
π/2\
−π/2

k

(
N(γ) +N(γ)−1 − 2

4 cos2 ϑ

)
fλ(ϑ)

dϑ

cos2 ϑ
.

Here F (0) =
TN(γ0)
1 u(h(ri))drr =

T
Cγ
u dS, where dS = |dz|/y is the hyper-
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bolic arc length, and Cγ is the closed geodesic Cγ = C(γ) \ lγ , where lγ is
the noneuclidean line connecting the fixed points (z1 and z2) of γ, and we
factorize it by the action of C(γ) (so we can take for Cγ any segment of
length logN(γ0) on lγ). Hence

(3) Tγ =
( \
Cγ

u dS
) π/2\
−π/2

k

(
N(γ) +N(γ)−1 − 2

4 cos2 ϑ

)
fλ(ϑ)

dϑ

cos2 ϑ
,

when γ is hyperbolic.
If γ is elliptic, then by conjugation in Γ we may assume that its fixed

point is a p ∈ P . Then C(γ) = Γp = {σ ∈ Γ : σp = p}; this is a finite set,
|Γp| = mp. We choose h ∈ SL(2,R) such that h(i) = p, then h−1γh = R(lϑp)
for some integer 0 < l < mp, where ϑp = π/mp, and

R(ϕ) =
(

cosϕ sinϕ
− sinϕ cosϕ

)
.

Then, by (2),

Tγ =
1
mp

\
H

k(z,R(lϑp)z)u(hz) dµz.

We use the substitution z = R(ϕ)e−ri , i.e. we use geodesic polar coordinates
(see [I], Sections 1.3 and 10.6), where r ∈ (0,∞), ϕ ∈ (0, π), getting

Tγ =
1
mp

∞\
0

k(sin2 lϑp sinh2 r)
( π\

0

u(h(R(ϕ)e−ri)) dϕ
)

(2 sinh r) dr,

because R(ϕ) commutes with R(lϑp), and with z = e−ri we have

|z −R(lϑp)z|2
4 Im z ImR(lϑp)z

= sin2 lϑp sinh2 r,

and furthermore dµz = (2 sinh r) dr dϕ. Define

G(z) =
1
π

π\
0

u(h(R(ϕ)z)) dϕ.

One obtains G(z) by averaging the function u(h(z)) over the stability group
of i in SL(2,R) (or what amounts to the same, by averaging over non-
euclidean circles around i), so G(z) is radial at i, i.e. it depends only on the
noneuclidean distance of z and i (see [I], Lemma 1.10). On the other hand,
since u is an eigenfunction of ∆ with eigenvalue λ, so is G(z) (because
∆ commutes with the group action). A radial (at i) eigenfunction of ∆
of eigenvalue λ is determined up to a constant factor ([I], Lemma 1.12),
so using the form of the Laplace operator in geodesic polar coordinates
(∆ = ∂2/∂r2 + (cosh r/sinh r)∂/∂r+ (2 sinh r)−2∂2/∂ϕ2, see [I], (1.20)), we



Selberg trace formula 327

find that if gλ(r) (r ∈ [0,∞)) is the unique solution of

g(2)(r) +
cosh r
sinh r

g(1)(r) = λg(r)

with gλ(0) = 1, then G(z) = u(p)gλ(r) for z = R(ϕ)e−ri, since h(i) = p.
This shows

(4) Tγ =
2π
mp

u(p)
∞\
0

k(sin2 lϑp sinh2 r)gλ(r) sinh r dr,

when γ is elliptic.
If γ is parabolic, then by conjugation in Γ we may assume that its fixed

point is an a ∈ A. Then C(γ) = Γa = {σ ∈ Γ : σa = a}. Let γa be a
generator of Γa. Then γ = γla for some l 6= 0. In this case we choose h = σa,
the scaling matrix, i.e. σa∞ = a, σ−1

a γaσa =
( 1 1

0 1

)
. Then by (1) we have

(5) TYγ =
\

B\(σ−1
a H(Y ))

k(z, z + l)u(σaz) dµz,

where B is the set of integer translations.

Lemma 1. There is a constant cΓ such that

{z ∈ H : cΓ /Y ≤ Im z ≤ Y } ⊆ σ−1
a H(Y ) ⊆ {z ∈ H : Im z ≤ Y }.

P r o o f. If z ∈ (σ−1
a H(Y ))∩P (Y ), then γσaz ∈ F (Y ) ⊆ F for some γ ∈ Γ

and σaz ∈ Fa(Y ) ⊆ F , so γσaz = σaz ∈ F (Y )∩Fa(Y ) = ∅, a contradiction.
This proves one half of the lemma, because σ−1

a H(Y ) is invariant under
B = σ−1

a Γaσa.
If z 6∈ σ−1

a H(Y ), then Imσ−1
b γσaz > Y for some γ ∈ Γ and b ∈ A.

Let σ−1
b γσa =

( · ·
C D

)
. Then either C = 0, and in this case σ−1

b γσa∞ =
∞, so a = b, σ−1

a γσa ∈ σ−1
a Γaσa = B, and Im z > Y , or C 6= 0, when

Imσ−1
b γσaz = Im z/|Cz+D|2 ≤ 1/(C2 Im z), which means Im z < 1/(C2Y ).

This proves the lemma, because min
{
C > 0 :

( · ·
C ·
) ∈ σ−1

b Γσa
}

exists (see
[I], pp. 53–54), a, b ∈ A, A is finite.

This shows that for γ parabolic and Y large enough we can integrate
in (5) over {z = x + iy : 0 ≤ y ≤ Y, 0 ≤ x ≤ 1}, because k(z, z + l) =
k(l2/(4y2)), and this is 0 for y small, since l 6= 0, and k has compact support.
So

TYγ =
Y\
0

k

(
l2

4y2

)
(βa(0)ys + β̃a(0)y1−s)

dy

y2 ,

and with the substitution ν = l2/(4y2) this is

|l|−1
∞\

l2/(4Y 2)

k(ν)(βa(0)(|l|/(2ν1/2))s + β̃a(0)(|l|/(2ν1/2))1−s)ν−1/2 dν.
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Lemma 2. If 0 < ReS < 1, then, as Y →∞,

∑

l 6=0

|l|S−1
∞\

l2/(4Y 2)

k(ν)(4ν)−S/2ν−1/2 dν

= g(0)
Y S

S
+ 21−Sζ(1− S)

∞\
0

k(ν)ν−(1+S)/2 dν +O(Y ReS−1 log Y ),

where ζ is the Riemann zeta-function.

P r o o f. Summing the left-hand side over l gives

2
∞\

1/(4Y 2)

k(ν)(4ν)−S/2ν−1/2
( ∑

1≤l≤2Y
√
ν

lS−1
)
dν.

Since ∑

1≤l≤2Y
√
ν

lS−1 = (2Y
√
ν)S/S + ζ(1− S) +O((Y

√
ν)ReS−1),

the lemma follows, because k has compact support, k(0) is finite, k is con-
tinuous at 0, and 2

T∞
0 k(ν)ν−1/2 dν = g(0).

Summing over the parabolic conjugacy classes means summing over l 6= 0
and a ∈ A, so by the above lemma we have proved the following.

Lemma 3. Define

TYpar =
∑

δ∈Γ
δ parabolic

\
F (Y )

k(z, δz)u(z) dµz.

Then the difference of TYpar and

g(0)
(
Y s

s
Bu +

Y 1−s

1− s B̃u
)

tends to

Bu21−sζ(1− s)
∞\
0

k(ν)ν−(1+s)/2 dν + B̃u2sζ(s)
∞\
0

k(ν)ν(s−2)/2 dν,

as Y →∞.

4. The spectral trace—end of the proof of Theorem 1. We now
compute TrYuK in another way, based on the spectral theorem. Remember
that

(6) TrYuK =
∑

j

h(tj)IYu (uj) +
1

4π

∞\
−∞

h(r)IYu (r) dr.
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We need several lemmas. Firstly we give the proof of the lemma stated in
Section 2.

Proof of Lemma 4. We get the main term in IYu (r) if we substitute the
constant terms of Ec(z, 1/2 + ir) and of u(z) in the cuspidal zones Fa(YΓ );
this gives the sum of

∑
a

∑
c

(
δac +

∣∣∣∣ϕa,c
(

1
2

+ ir

)∣∣∣∣
2)(

βa(0)
Y s

s
+ β̃a(0)

Y 1−s

1− s
)
,

∑
a

∑
c

δacϕa,c

(
1
2

+ ir

)(
βa(0)

Y s+2ir

s+ 2ir
+ β̃a(0)

Y 1−s+2ir

1− s+ 2ir

)

and
∑
a

∑
c

δacϕa,c

(
1
2

+ ir

)(
βa(0)

Y s−2ir

s− 2ir
+ β̃a(0)

Y 1−s−2ir

1− s− 2ir

)
.

Using
∑
c |ϕa,c(1/2 + ir)|2 = 1 ([I], Theorem 6.6) and ϕa,a(1/2 + ir) =

ϕa,a(1/2− ir), we find that this main term will be IYu (r)− ĨYu (r). Similarly,
the main term of IYu (uj) will be IYu (uj)− ĨYu (uj). Applying Lemmas 5 and
6 below we get the result.

We need the following crude bound.

Lemma 5. For R ≥ 1 and Y > 0 we have
R\
−R

∑
c

\
F (Y )

|Ec(z, 1/2 + ir)|2 dµz dr = O(R2(1 + log Y )).

P r o o f. This follows easily from [I], formulas (10.9), (6.24) and (10.13).
Lemma 6. For R ≥ 1 we have

R\
−R

(∞\
YΓ

1\
0

|Ec(σaz, 1/2+ir)−δacy1/2+ir−ϕa,c(1/2+ir)y1/2−ir|2yRe s dx dy

y2

)
dR

= O(R2),

and

∑

|tj |≤R

( ∞\
YΓ

1\
0

|uj(σaz)− βa,j(0)y1−sj |2yRe s dx dy

y2

)
= O(R2).

P r o o f. This follows easily by Parseval’s identity, Lemma 7 below, and
[I], (8.27) (see also (8.4) and (8.5) there). (We use the Fourier expansions,
fix an n 6= 0 and sum over the spectrum.)
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Lemma 7. If T is real and n 6= 0 is an integer , then
∞\
YΓ

|W1/2+iT (iny)|2yRe s dy

y2

=
{
O((|T |/|n|)Re s−1e−π|T |) if |n| = O(|T |),
O(e−cΓ |n|) if |T |/|n| is sufficiently small (depending on Γ ),

where cΓ is a positive constant depending on Γ .

P r o o f. By the definition of W we have
∞\
YΓ

|W1/2+iT (iny)|2yRe s dy

y2 = O

(
|n|1−Re s

\
2π|n|YΓ

|KiT (y)|2yRe s dy

y

)
,

and the lemma follows by [I], p. 228, the formula above (B.37), and [Le],
(5.10.24).

We need one more lemma for the computation of TrYuK.

Lemma 8. Let 0 < ReS < 1 and S 6= 2sl − 1 for l ∈ L. Then the
difference of

∞\
−∞

h(r)ϕa,a(1/2 + ir)
Y S−2ir

S − 2ir
dr

and

πϕa,a

(
1 + S

2

)
h

(
i
S

2

)
−2π

∑

1/2<sl≤(1+ReS)/2
l∈L

h

(
i

(
sl− 1

2

))
Y 1+S−2sl

1 + S − 2sl
Ra,sl

tends to 0 as Y →∞.

P r o o f. This follows by replacing the line of integration to Im r =
−ReS/2− ε with some ε > 0, passing through simple poles at r = −iS/2,
and r = −i(sl − 1/2) lying in this strip for l ∈ L.

This means that if h satisfies condition (B), then with the notations

ΣY
u,h(S)

=
∑

1/2<sl≤(1+ReS)/2
l∈L

h(tl)
Y 1+S−2sl

1 + S − 2sl

∑
a

βa(0)
( ∑

j
sj=sl

|βa,j(0)|2 −Ra,sl
)
,

Σ̃Y
u,h(S)

=
∑

1/2<sl≤(1+ReS)/2
l∈L

h(tl)
Y 1+S−2sl

1 + S − 2sl

∑
a

β̃a(0)
( ∑

j
sj=sl

|βa,j(0)|2 −Ra,sl
)
,
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where tl = i(sl − 1/2), we have proved by (6), Lemmas 4 and 8, using

1
2π

∞\
−∞

h(r) dr = g(0)

the following:

Lemma 9. The difference of TrYuK and

g(0)
(
Y s

s
Bu +

Y 1−s

1− s B̃u
)

+
1
2
h

(
i
s

2

)
Bu(s)

+
1
2
h

(
i
1− s

2

)
B̃u(1− s) +ΣY

u,h(s) + Σ̃Y
u,h(1− s)

tends to
∑

j

h(tj)Iu(uj) +
1

4π

∞\
−∞

h(r)Iu(r) dr,

as Y →∞.

Since k has compact support, it is obvious that

TYhyp =
∑

δ∈Γ
δ hyperbolic

\
F (Y )

k(z, δz)u(z) dµz

and

TYell =
∑

δ∈Γ
δ elliptic

\
F (Y )

k(z, δz)u(z) dµz

have finite limits as Y →∞ (and of course TYid =
T
F (Y ) k(z, z)u(z) dµz tends

to 0 as Y → ∞, because
T
F
u(z) dµz = 0), so by Lemmas 3 and 9 we see

that ΣY
u,h(s) + Σ̃Y

u,h(1− s) tends to a finite limit as Y →∞. But this sum is
a finite linear combination of Y -powers with nonzero exponents, and every
exponent has nonnegative real part. So the fact that this sum has a finite
limit as Y →∞ implies that this sum is identically 0. (It is not hard to see
that in fact

∑
j, sj=sl |βa,j(0)|2 −Ra,sl = 0, but we do not need it.)

This last remark, together with (3), (4), Lemmas 3, 4 and 9, proves
Theorem 1.

5. The inversion of the integral transformations. The transforma-
tion formulas between the functions k, g and h are well known, but we now
have a new integral transformation for every λ < 0, namely

(7) R(y) =
π/2\
−π/2

k

(
y

cos2 ϑ

)
fλ(ϑ)

dϑ

cos2 ϑ
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for y > 0. Our aim is now to invert this transformation, i.e. to express h
(and in our way k, q and g) in terms of R.

To this end let R be a smooth, compactly supported function on (0,∞)
(i.e. it is 0 in a neighbourhood of 0 as well as in a neighbourhood of ∞).
Denote the Mellin transform of R by

R̂(s) =
∞\
0

R(y)ys−1 dy,

and assume that R̂(0) = 0 (one needs this unsignificant restriction).
By Mellin inversion

R(y) =
1

2πi

\
(σ)

y−sR̂(s) ds

for y > 0 and for any real σ. We see from this that (7) is satisfied with the
function k(τ) (τ > 0) defined by

(8) k(τ) =
1

2πi

\
(σ)

τ−s

Fλ(s)
R̂(s) ds,

where σ > 1/2, and Fλ(s) =
Tπ/2
−π/2 fλ(ϑ) cos2s−2 ϑdϑ. We know Fλ(s) ex-

plicitly,

Fλ(s) =
√
π
Γ (s− z1)Γ (s− z2)

Γ 2(s)
,

with z1 = 1/4 + it/2, z2 = 1/4− it/2, 1/4 + t2 = −λ (see Lemma 11).
It is easy to see from (8) that k is continuous on [0,∞), k(0) is finite

(replace the line of integration by σ = −ε with some ε > 0, and use R̂(0) =
0), and k has compact support (this follows from the fact that R has compact
support, letting σ →∞), i.e. k satisfies condition (A).

For this k by (8) we get

q(ν) =
1

2πi

∞\
0

T
(σ)(ν + τ)−sF−1

λ (s)R̂(s) ds
√
τ

dτ

for ν > 0. With the substitution τ = ν sin2 ϑ/cos2 ϑ, ϑ ∈ (0, π/2), we have

∞\
0

(ν + τ)−s√
τ

dτ = 2ν1/2−s
π/2\
0

cos2s−2 ϑ dϑ = ν1/2−sE(s),

where E(s) =
√
πΓ (s− 1/2)/Γ (s) by the Corollary to Lemma 11. So

(9) q(ν) =
1

2πi

\
(σ)

ν1/2−s E(s)
Fλ(s)

R̂(s) ds
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for ν > 0, with

E(s)
Fλ(s)

=
Γ (s)Γ (s− 1/2)

Γ (s− z1)Γ (s− z2)
.

Since R has compact support (as a function on (0,∞)), we see by (9)
that q is smooth on (0,∞), g(ν) = 0 for ν large enough (by letting σ →∞),
and in a neighbourhood of 0 it has an absolutely convergent expansion of
the type q(ν) =

∑∞
n=0 cnν

n/2 with c1 = 0, i.e. the coefficient of ν1/2 is 0
(we see this by letting σ → −∞, and using R̂(0) = 0). This implies that
the function g (which is even and defined on (−∞,∞)) is smooth on [0,∞),
g(a) = 0 for a large enough, and for small positive a it has an absolutely
convergent expansion of the type g(a) =

∑∞
n=0 dna

n with d1 = 0. These
properties of g imply (after three-fold integration by parts) that h satisfies
condition (B).

Now, let |Im r| < 1/2. Then by (9), taking 1/2 + |Im r| < σ < 1 (since
the double integral is absolutely convergent in this case) we have

(10) h(r) =
1

2πi

\
(σ)

22s E(s)
Fλ(s)

R̂(s)
( ∞\
−∞

(ea + e−a − 2)1/2−seira da
)
ds.

We have to compute the inner integral. With the notations

G(A,B) =
∞\
0

(ea − 1)AeBa da, F (r, s) = G(1− 2s,−1/2 + s+ ir)

one obtains

(11)
∞\
−∞

(ea + e−a − 2)1/2−seira da = F (r, s) + F (−r, s).

By Lemma 10 one has

(12) F (r, s)

= π
Γ (−1/2 + s+ ir)

Γ (3/2− s+ ir)Γ (2s− 1)
{cotπ(1− 2s)− cotπ(1/2− s+ ir)}.

So we have determined h, but for the application of Theorem 1 we also need
∞\
0

k

(
sin2 lπ

mp
sinh2 r

)
gλ(r) sinh r dr.

By (8) we have
∞\
0

k

(
sin2 lπ

mp
sinh2 r

)
gλ(r) sinh r dr =

1
2πi

\
(σ)

Gλ(s)
Fλ(s)

R̂(s) sin−2s lπ

mp
ds
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for 1/2 < σ < 1, where Gλ(s) =
T∞
0 gλ(r) sinh1−2s r dr. So by Lemma 11 we

obtain

(13)
∞\
0

k

(
sin2 lπ

mp
sinh2 r

)
gλ(r) sinh r dr

=
1

4i
√
π
· 1
Γ (1− z1)Γ (1− z2)

\
(σ)

R̂(s)
sinπs

sin−2s lπ

mp
ds,

where z1 = 1/4 + it/2, z2 = 1/4− it/2, 1/4 + t2 = −λ.
We have proved the following.

Theorem 2. Let R be a smooth, compactly supported function on (0,∞)
(i.e. it is 0 in a neighbourhood of 0 as well as in a neighbourhood of ∞).
Denote the Mellin transform of R by

R̂(s) =
∞\
0

R(y)ys−1 dy,

and assume that R̂(0) = 0. Then the function k defined by (8) satisfies
condition (A), the corresponding h satisfies condition (B), so Theorem 1 is
applicable for them. The function h(r) for |Im r| < 1/2 is given in (10),

∞\
0

k

(
sin2 lπ

mp
sinh2 r

)
gλ(r) sinh r dr

is given in (13) (for the functions E, Fλ, and Gλ see Lemma 11 and its
Corollary), and for y > 0 we have

R(y) =
π/2\
−π/2

k

(
y

cos2 ϑ

)
fλ(ϑ)

dϑ

cos2 ϑ
.

6. Two lemmas on special functions

Lemma 10. Let

G(A,B) =
∞\
0

(ea − 1)AeBa da for ReA > −1, Re(A+B) < 0.

Then

G(A,B) = π
Γ (B)

Γ (A+B + 1)Γ (−A)
{cotπA− cotπ(A+B)},

where cot = cos /sin.
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P r o o f. We first fix −1 < A < 0, and consider G(A,B) as a function
of B. In this case we have by partial integration

G(A,B) = −
∞\
0

(
(ea − 1)A+1

A+ 1

)
(e(B−1)a(B − 1)) da

=
1−B
1 +A

(G(A,B)−G(A,B − 1)),

and this gives

G(A,B) =
B − 1
A+B

G(A,B − 1).

Now let G̃(A,B) = Γ (B)/Γ (A + B + 1). Then this satisfies the same
functional equation as G, i.e.

G̃(A,B) =
B − 1
A+B

G̃(A,B − 1),

so G(A,B)/G̃(A,B) (as a function of B) is periodic with respect to 1, and
it is meromorphic on the whole plane. For ReB < −A the function G is
regular, so in this region the only singularities of G/G̃ are the roots of
G̃, i.e. B = −A − 1,−A − 2, . . . Now, it is easy to see from the integral
representation that G(A,B) has a pole of order 1 with residue −1 at B =
−A, and G̃(A,−A) = Γ (−A). From these considerations it follows that

G(A,B)

G̃(A,B)
+

π

Γ (−A)
cotπ(A+B)

is an entire function of B, periodic with respect to 1, it has at most poly-
nomial growth on vertical lines, so it is a constant. Its value at B = 0 is

π
Γ (−A) cotπA. This proves the lemma for −1 < A < 0, and it is enough by
analytic continuation.

For λ < 0 let fλ(ϑ) (ϑ ∈ (−π/2, π/2)) be the solution of the differential
equation

f (2)(ϑ) =
λ

cos2 ϑ
f(ϑ)

with fλ(0) = 1, f (1)
λ (0) = 0; and let gλ(r) (r ∈ [0,∞)) be the solution of

g(2)(r) +
cosh r
sinh r

g(1)(r) = λg(r)

with gλ(0) = 1.

Lemma 11. Let λ < 0 and

Fλ(s) =
π/2\
−π/2

fλ(ϑ) cos2s−2 ϑdϑ for Re s > 1/2,
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Gλ(s) =
∞\
0

gλ(r) sinh1−2s r dr for 1/2 < Re s < 1.

Then

Fλ(s) =
√
π
Γ (s− z1)Γ (s− z2)

Γ 2(s)
,

Gλ(s) =
Γ (s− z1)Γ (s− z2)

Γ 2(s)
· π

2 sinπs
· 1
Γ (1− z1)Γ (1− z2)

,

where z1 = 1/4 + it/2, z2 = 1/4− it/2, 1/4 + t2 = −λ.

P r o o f. It is easy to see by elementary considerations (using the fact
that λ/cos2 ϑ is negative and it is decreasing for ϑ ≥ 0) that |fλ(ϑ)| ≤ 1 for
every ϑ, and this implies that f (1)

λ (ϑ) cosϑ is bounded for a fixed λ (since
f

(2)
λ (ϑ) cos2 ϑ is bounded).

On the other hand, the function gλ(r) is also bounded for a fixed λ (for
example because there are nonzero bounded eigenfunctions of the Laplace
operator on H with eigenvalue λ (e.g. f(z) = fλ(ϑ) for z = rei(π/2+ϑ)), and
we know ([I], Cor 1.13) that averaging any eigenfunction over hyperbolic
circles around any point w in H, we get a multiple of gλ(r(z, w)), where
r is the hyperbolic distance), and then g

(1)
λ (r) is also bounded, because

(g(1)
λ (r) sinh r)(1) = λgλ(r) sinh r. Observe also that g(1)

λ (0) = 0. We will
repeatedly use these remarks in the following calculations.

Using the differential equation for fλ(ϑ) and partial integration twice we
have

λFλ(s) =
π/2\
−π/2

f
(2)
λ (ϑ) cos2s ϑdϑ

=
π/2\
−π/2

fλ(ϑ)[2s(2s− 1) cos2s−2 ϑ sin2 ϑ− 2s cos2s ϑ] dϑ,

and this implies λFλ(s) = 2s(2s − 1)Fλ(s) − (2s)2Fλ(s + 1), i.e. Fλ is a
meromorphic function on the whole plane satisfying

Fλ(s+ 1) = Fλ(s)
2s(2s− 1)− λ

(2s)2 .

Using the differential equation for gλ(r) and partial integration we have

λGλ(s) =
∞\
0

(g(1)
λ (r) sinh r)(1) sinh−2s r dr = 2s

∞\
0

g
(1)
λ (r) sinh−2s r cosh r dr,
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and a new partial integration gives, by the equality cosh2 = 1 + sinh2, that

λGλ(s) = 2s(2s− 1)Gλ(s)

+ 2s lim
ε→0+0

(
2s
∞\
ε

gλ(r) sinh−2s−1 r dr − gλ(ε) sinh−2s ε cosh ε
)
.

Now, gλ(ε) = 1 +O(ε2) = cosh ε, from which it follows easily that this last
limit is a regular function of s for −1/2 < Re s < 1 and it equals 2sGλ(s+1)
for −1/2 < Re s < 0. This shows that Gλ is a meromorphic function on the
whole plane satisfying

Gλ(s+ 1) = −Gλ(s)
2s(2s− 1)− λ

(2s)2 .

and we also see that in 1/2 < Re s < 2 the only pole of Gλ(s) is at s = 1, it
is of first order and the residue is (from the integral representation) −1/2.

Let Xλ(s) = Γ (s − z1)Γ (s − z2)/Γ 2(s). Then Fλ/Xλ is periodic with
respect to 1, and it is regular for Re s > 1/2, i.e. it is an entire function,
and it has at most polynomial growth on vertical lines, so it is a constant.
As s→∞, we see by Stirling’s formula and by fλ(0) = 1 that this constant
is lims→∞

√
s
Tπ/2
−π/2 cos2s−2 ϑ dϑ, so it is independent of λ. For λ→ 0− 0 we

have Xλ(s)→ Γ (s− 1/2)/Γ (s) and fλ(ϑ)→ 1 for every ϑ, so
Fλ
Xλ

(1)→ π

Γ (1/2)
=
√
π.

On the other hand, for

Qλ(s) =
Gλ(s)
Xλ(s)

− π

2 sinπs
· 1
Γ (1− z1)Γ (1− z2)

we have Qλ(s+1) = −Qλ(s), and Qλ is regular for 1/2 < Re s < 2 (including
s = 1), so it is an entire function, it has at most polynomial growth on
vertical lines, hence it is identically 0.

Corollary. For Re s > 1/2 let E(s) =
Tπ/2
−π/2 cos2s−2 ϑdϑ. Then

E(s) =
√
π
Γ (s− 1/2)

Γ (s)
.

P r o o f. This follows by letting λ→ 0− 0.
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