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1. Introduction. In this series, we are constructing and testing finite
pseudorandom (briefly, PR) sequences. In [MS1] we proposed the use of the
following measures of pseudorandomness:

For a binary sequence

EN = {e1, . . . , eN} ∈ {−1,+1}N ,
write

U(EN , t, a, b) =
t∑

j=1

ea+jb

and, for D = (d1, . . . , dk) with non-negative integers 0 ≤ d1 < . . . < dk,

V (EN ,M,D) =
M∑
n=1

en+d1 . . . en+dk .

Then the well-distribution measure of EN is defined as

W (EN ) = max
a,b,t
|U(EN , t, a, b)| = max

a,b,t

∣∣∣
t∑

j=1

ea+jb

∣∣∣

where the maximum is taken over all a, b, t such that a ∈ Z, b, t ∈ N and
1 ≤ a + b ≤ a + tb ≤ N , while the correlation measure of order k of EN is
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defined as

Ck(EN ) = max
M,D
|V (EN ,M,D)| = max

M,D

∣∣∣
M∑
n=1

en+d1 . . . en+dk

∣∣∣

where the maximum is taken over all D = (d1, . . . , dk) and M such that
M + dk ≤ N . The sequence EN is considered as a “good” PR sequence if
these measures W (EN ) and Ck(EN ) (at least for “small” k) are “small”. Mo-
tivation and background of these definitions was given in [MS1] and [MS2].

In Part I [MS1] of this series we showed that if p is a prime number,
N = p− 1, and the sequence EN = {e1, . . . , eN} is defined by

en =
(
n

p

)
for n = 1, . . . , N

(where
(
n
p

)
denotes the Legendre symbol), then EN is a “good” PR sequence

and, indeed,

W (EN )� N1/2 logN and Ck(EN )� kN1/2 logN.

One may guess that, perhaps, this result can be extended and generalized
in the following way: if f(n) is a completely multiplicative function such
that f(n) = −1 or +1 and f(p) = −1 often enough in every residue class
r (mod q), (r, q) = 1, then {f(1), . . . , f(n)} is a “good” PR sequence.
The most important special case is when f(n) is the Liouville function.
Let ω(n) denote the number of distinct prime factors of n, and let Ω(n)
denote the number of prime factors of n counted with multiplicity. Write
λ(n) = (−1)Ω(n) (this is the Liouville function) and γ(n) = (−1)ω(n) so that
λ(n) is completely multiplicative and γ(n) is multiplicative, and let

LN = {l1, . . . , lN} = {λ(1), . . . , λ(N)}
and

GN = {g1, . . . , gN} = {γ(1), . . . , γ(N)}.
Hildebrand [Hi1] writes: “It is natural to expect that the sequence γ(n)

(n ≥ 1) behaves like a random sequence of ± signs.” Indeed, first in Sec-
tions 2 and 3 we will study the PR properties of the sequence LN . We will
show that the well-distribution measure of the sequence is small (depending
on the Riemann hypothesis). On the other hand, only very weak estimates
can be given for the correlation of the sequence; in Section 3 we improve
slightly on the earlier results of this type. Since the estimate of the cor-
relation is so difficult, we provide partial results in three directions: first
in Sections 4 and 5 we study the “truncated” Liouville function. Secondly,
we study a PR property which is weaker than the small correlation but it
points to the same direction: namely, we study the complexity of the given



Finite pseudorandom binary sequences 369

sequences. More exactly, in Section 6 we study the connection between cor-
relation and complexity while in Section 7 we estimate the complexity of
the sequence LN under a certain hypothesis. In Part II we will compare
the complexities of the “truncated” λ and γ functions (unconditionally); we
will formulate a conjecture on the structure of the sequence {λ(1), λ(2), . . .}
and we will prove special cases of it; we will pose several unsolved prob-
lems and conjectures; finally, we will present numerical data obtained by
computers.

2. The well-distribution measure for the Liouville function. In
this section we prove the following theorem:

Theorem 1. (i) For any real number A > 0 and for N > N0(A) we have

W (LN ) < N(logN)−A.

(ii) Under the generalized Riemann hypothesis, for ε > 0 and N > N1(ε)
we have

W (LN ) < N5/6+ε.

P r o o f. Write

Fx(α) =
∑

n≤x
λ(n)e(nα).

The proof will be based on the following lemma:

Lemma 1. (i) For any real number H > 0, for x > x0(H) we have

|Fx(α)| < x(log x)−H for all 0 ≤ α ≤ 1.

(ii) Under the generalized Riemann hypothesis, for ε > 0 and x > x1(ε)
we have

|Fx(α)| < x5/6+ε for all 0 ≤ α ≤ 1.

Indeed, this is Lemma 2 of [Sa].
By Lemma 1, for large enough x we have

(2.1) |FM (α)| < x(log x)−H

unconditionally and, under the generalized Riemann hypothesis,

(2.2) |FM (α)| < x5/6+ε

uniformly for M ≤ x and 0 ≤ α ≤ 1.
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Clearly we have

|U(LN , t, a, b)| =
∣∣∣
t∑

j=1

λ(a+ jb)
∣∣∣ =

∣∣∣
∑

a<n≤a+tb
n≡a (mod b)

λ(n)
∣∣∣

=
∣∣∣∣
∑

a<n≤a+tb

λ(n) · 1
b

b∑

h=1

e((n− a)h/b)
∣∣∣∣

=
1
b

∣∣∣
b∑

h=1

e(−ah/b)
∑

a<n≤a+tb

λ(n)e(nh/b)
∣∣∣

=
1
b

∣∣∣
b∑

h=1

e(−ah/b)(Fa+tb(h/b)− Fa(h/b))
∣∣∣

≤ 1
b

b∑

h=1

(|Fa+tb(h/b)|+ |Fa(h/b)|),

whence, by using (2.1) and (2.2) with N , 2A and ε/2 in place of x, H and
ε, respectively,

|U(LN , t, a, b)| < 2N(logN)−2A

unconditionally and, under GRH,

|U(LN , t, a, b)| < 2N5/6+ε/2.

It follows that, for N large enough,

W (LN ) = max
a,b,t
|U(LN , t, a, b)| < N(logN)−A

unconditionally and, under GRH,

W (LN ) = max
a,b,t
|U(LN , t, a, b)| < N5/6+ε,

which completes the proof of Theorem 1.

3. A further remark and the correlation. In Section 2 we showed
that if the generalized Riemann hypothesis is true, then the well-distribution
measure W (LN ) of the Liouville function is small. The GRH and W (LN ) are
so closely connected that if the GRH fails then this fact implies that W (LN )
is “large” for infinitely many values of N . Chowla [Ch, p. 95] writes: “The
RH for the ordinary ζ-function is equivalent to

L(x) =
x∑
n=1

λ(n) = O(x1/2+ε)

where ε is an arbitrary positive number.” Littlewood [Li] showed that if the
supremum of the real parts of the zeros of the zeta function in the critical
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strip is denoted by θ, then for all ε > 0 there are infinitely many N ∈ N
with ∣∣∣

∑

n≤N
µ(n)

∣∣∣ > Nθ−ε.

One expects that the same holds with λ in place of µ. This would imply,
e.g., that if the RH fails so badly that θ = 1, then for all ε > 0 we have

W (LN ) > N1−ε

infinitely often.
While we have a limited control over the well-distribution measure of

the Liouville function, the estimate of the correlation measure of it is a
hopelessly difficult problem. Numerous papers have been written on the
estimate of sums of the form∑

n≤x
g1(n)g2(n+ 1)

where g1 and g2 are multiplicative functions; see [Ell3] and [St1] for refer-
ences. However, as Hildebrand writes in his review [Hi3] written on Elliott’s
paper [Ell3]: “For example, in the case when the functions gi(n) are both
equal to the Möbius function µ(n) or the Liouville function λ(n), one would
naturally expect that the above sum is of order o(x) when x→∞, but even
the much weaker relation

lim inf
x→∞

1
x

∑

n≤x
λ(n)λ(n+ 1) < 1

is not known and seems to be beyond reach of the present methods.” Indeed,
the best known estimates given for the sum above by Graham and Hensley
[GH], resp. Harman, Pintz and Wolke [HPW] are

(3.1) −(1 + o(1))
1
3
<

1
x

∑

n≤x
λ(n)λ(n+ 1) < 1− 1

(log x)7+ε

for x > x0(ε) (the lower bound is a trivial consequence of Theorem 2 in
[HPW]). In the case of correlation of order 3 the situation is slightly better:
Elliott [Ell2] proved that

(3.2) lim sup
x→∞

1
x

∣∣∣
∑

n≤x
λ(n)λ(n+ 1)λ(n+ 2)

∣∣∣ ≤ 20
21
.

The value of the constant on the right hand side of (3.2) has been improved
slightly by Ruzsa (unpublished yet). In this section we generalize and slightly
improve the lower bound in (3.1) and inequality (3.2):

Theorem 2. Let g(n) be a completely multiplicative arithmetic function
such that g(n) ∈ {−1,+1} for all n ∈ N and g(2) = −1. Let k, d ∈ N. Then
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for all x ≥ 2 we have

(3.3)
∣∣∣
∑

n≤x
g(n)g(n+ d) . . . g(n+ 2kd)

∣∣∣

≤





(
1− 2

3(2k + 1)

)
x+O(log x) if d is even,

(
1− 2

3(k + 1)

)
x+O(log x) if d is odd ,

where the constant factor implied by the O(. . .) notation depends on k and
d only (but not on g and x).

In the g = λ special case we get

Corollary 1. For k, d ∈ N we have∣∣∣
∑

n≤x
λ(n)λ(n+ d) . . . λ(n+ 2kd)

∣∣∣

≤





(
1− 2

3(2k + 1)

)
x+O(log x) if d is even,

(
1− 2

3(k + 1)

)
x+O(log x) if d is odd ,

and , in particular ,
∣∣∣
∑

n≤x
λ(n)λ(n+ d)λ(n+ 2d)

∣∣∣ ≤
{

7
9x+O(log x) if d is even,
2
3x+O(log x) if d is odd.

P r o o f (of Theorem 2). Write

t(n) = g(n)g(n+ d) . . . g(n+ 2kd),

and, for ε ∈ {−1,+1},
T (x, ε) = |{n : n ≤ x, t(n) = ε}|

so that∑

n≤x
g(n)g(n+ d) . . . g(n+ 2kd) =

∑

n≤x
t(n) = T (x,+1)− T (x,−1)

=
{

[x]− 2T (x,−1),
−[x] + 2T (x,+1),

whence

(3.4)
∣∣∣
∑

n≤x
g(n)g(n+ d) . . . g(n+ 2kd)

∣∣∣ ≤ [x]− 2 min{T (x,−1), T (x,+1)}.

Thus it remains to give a lower bound for T (x, ε) for both ε = −1 and +1.
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Clearly, for all n ∈ N we have

(3.5) t(2n)t(2n+ d) . . . t(2n+ 2kd)

=
2k∏

j=0

t(2n+ jd) =
2k∏

j=0

2k∏

l=0

g((2n+ jd) + ld) =
4k∏
u=0

(g(2n+ ud))ϕ(u)

where ϕ(u) denotes the number of pairs (j, l) with

j + l = u, j, l ∈ {0, 1, . . . , 2k}.
Since this is

ϕ(u) = ϕ(4k − u) = u+ 1 for u ∈ {0, 1, . . . , 2k},
we have

ϕ(u) ≡
{

0 (mod 2) for u = 1, 3, . . . , 4k − 1,
1 (mod 2) for u = 0, 2, . . . , 4k.

Thus, if we use also g(2) = −1 and the complete multiplicativity of g(n), it
follows from (3.5) that

t(2n)t(2n+ d) . . . t(2n+ 2kd) = g(2n)g(2n+ 2d) . . . g(2n+ 4kd)

= (g(2))2k+1g(n)g(n+ d) . . . g(n+ 2kd)

= −t(n).

This clearly implies that for both ε = −1 and +1,

(3.6) at least one of t(n), t(2n), t(2n+ d), . . . , t(2n+ 2kd) is ε.

Consider now a number y ≥ 1, let m denote the greatest positive integer
such that

2m+ 2kd ≤ 4y,
let C = C(k, d) be a large but fixed number, and write

h =





[
m

(2k + 1)d
− C

]
if d is even,

[
m

2(k + 1)d
− C

]
if d is odd.

Let us write
S(n) = {n, 2n, 2n+ d, . . . , 2n+ 2kd}

(for all n ∈ N) and

(3.7) T (y) =





h⋃

j=1

d/2⋃

l=1

S
(
m− (j − 1)(2k + 1)

d

2
− (l − 1)

)
if d is even,

h⋃

j=1

d⋃

l=1

S(m− (j − 1)(k + 1)d− (l − 1)) if d is odd.
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A simple computation shows that if C is large enough in terms of k and d,
then for (j, l) 6= (j′, l′) the sets S on the right hand side of (3.7) are not
overlapping, and all these sets are covered by the interval (y, 4y]. Since by
(3.6) each of these sets S contains an integer r with t(r) = ε, it follows that

T (4y, ε)− T (y, ε) = |{r : y < r ≤ 4y, t(r) = ε}|

≥





|{(j, l) : 1 ≤ j ≤ h, 1 ≤ l ≤ d/2}|
=
hd

2
=

m

2(2k + 1)
+O(1) =

y

2k + 1
+O(1) if d is even,

|{(j, l) : 1 ≤ j ≤ h, 1 ≤ l ≤ d}|
= hd =

m

2(k + 1)
+O(1) =

y

k + 1
+O(1) if d is odd.

Thus we have

T (x, ε) =
∑

4j≤x

(
T

(
x

4j−1 , ε

)
− T

(
x

4j
, ε

))
+O(1)(3.8)

≥





∑

4j≤x

(
x

(2k + 1)4j
+O(1)

)
+O(1) if d is even,

∑

4j≤x

(
x

(k + 1)4j
+O(1)

)
+O(1) if d is odd,

≥





x

4(2k + 1)

∞∑

l=0

1
4l

+O(log x) =
x

3(2k + 1)
+O(log x)

if d is even,

x

4(k + 1)

∞∑

l=0

1
4l

+O(log x) =
x

3(k + 1)
+O(log x)

if d is odd.
(3.3) follows from (3.4) and (3.8) and this completes the proof of Theorem 2.

Theorem 3. Let g(n) be a completely multiplicative arithmetic function
such that g(n) ∈ {−1,+1} for all n ∈ N. Let k, d ∈ N. Then for all x ≥ 2
we have∑

n≤x
g(n)g(n+ d) . . . g(n+ (2k − 1)d)

≥





−
(

1− 2
3k

)
x+O(log x) if d is odd ,

−
(

1− 1
3k

)
x+O(log x) if d is even,

where the constant factor implied by the O(. . .) notation depends on k and
d only.
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Note that the lower bound − 1
3x + O(log x) for k = 1, d odd is best

possible as the completely multiplicative function f(n) defined by f(2) =
−1, f(p) = +1 for p > 2 shows.

In the g = λ special case we get

Corollary 2. For k, d ∈ N we have
∑

n≤x
λ(n)λ(n+ d) . . . λ(n+ (2k − 1)d)

≥





−
(

1− 2
3k

)
x+O(log x) if d is odd ,

−
(

1− 1
3k

)
x+O(log x) if d is even,

and , in particular ,

∑

n≤x
λ(n)λ(n+ d) ≥

{
− 1

3x+O(log x) if d is odd,

− 2
3x+O(log x) if d is even.

P r o o f (of Theorem 3). Since the proof is similar to that of Theorem 2,
we leave some details to the reader.

Again we write

t(n) = g(n)g(n+ d) . . . g(n+ (2k − 1)d)

and

T (x,+1) = |{n : n ≤ x, t(n) = +1}|
so that
∑

n≤x
g(n)g(n+ d) . . . g(n+ (2k − 1)d) =

∑

n≤x
t(n) = −[x] + 2T (x,+1).

To give a lower bound for T (x,+1), we use

t(2n)t(2n+ d) . . . t(2n+ (2k − 1)d)

= g(2n)g(2n+ 2d) . . . g(2n+ 4k − 2)

= (g(2))2kg(n)g(n+ d) . . . g(n+ (2k − 1)d) = t(n),

so that

(3.9) at least one of t(n), t(2n), t(2n+ d), . . . , t(2n+ (2k − 1)d)

is equal to + 1.

Now for some y ≥ 1, let m denote the greatest positive integer such that

2m+ (2k − 1)d ≤ 4y,



376 J. Cassaigne et al .

let C be large enough in terms of k and d, and write

h =
[
m

2kd
− C

]
.

Let

S(n) = {n, 2n, 2n+ d, . . . , 2n+ (2k − 1)d}
(for all n ∈ N) and

(3.10) T (y) =





h⋃

j=1

d⋃

l=1

S(m− (j − 1)kd− (l − 1)) if d is odd,

h⋃

j=1

d/2⋃

l=1

S(m− (j − 1)kd− (l − 1)) if d is even.

Again the sets S in (3.10) are not overlapping, and by (3.9), each of them
contains an r ∈ N with t(r) = +1. Thus

T (4y,+1)− T (y,+1) = |{r : y < r ≤ 4y, t(r) = +1}| = |T (y)|

=





hd =
m

2k
+O(1) =

y

k
+O(1) if d is odd,

h
d

2
=
m

4k
+O(1) =

y

2k
+O(1) if d is even.

The proof can be completed in the same way as the proof of Theorem 2.

4. The well-distribution measure of the truncated Liouville
function. Since one cannot control the PR properties of the Liouville func-
tion satisfactorily, one might like to look for partial results in other direc-
tions; the remaining part of this paper is devoted to results of this type.
First we study functions “close” the Liouville function but easier to handle.
For y ≤ 1 let λy(n) and γy(n) denote the multiplicative functions defined
by

λy(pα) =
{

(−1)α (= λ(pα)) for p ≤ y,
+1 for p > y,

and

γy(pα) =
{−1 (= γ(pα)) for p ≤ y,

+1 for p > y,

respectively, and write

LN (y) = {λy(1), . . . , λy(N)}
and

GN (y) = {γy(1), . . . , γy(N)}.
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In this paper we restrict ourselves to the sequence LN (y) since GN (y) could
be handled similarly, and its properties studied here are also similar (on
the other hand, in Part II we will also study the sequence GN (y) since the
comparison of a certain other property of the two sequences will show an
interesting contrast).

First we prove

Theorem 4. There is a positive absolute constant c1 such that for 3 <
y ≤ N we have

(4.1) W (LN (y)) < c1
N

(log log y)1/4
.

We remark that the point of this result is the uniformity in y. On the
other hand, the upper bound in (4.1) is weak and certainly far from the
truth; this is the price paid for the uniformity.

For small values of y (for y � logN), this upper bound could easily be
improved considerably. This could be done by reducing the problem to the
estimate of the sum ∑

n≤x
λy(n)χ(n)

(as in the proof of the theorem below), then writing λy(n) as

λy(n) =
∑

d|n
hy(d)

where hy is the Möbius inverse of λy and, finally, changing the order of
summation over n and d. We leave the details of this to the reader; here we
restrict ourselves to the deeper uniform version presented above.

P r o o f (of Theorem 4). If y0 is large but fixed then (4.1) holds trivially
for 3 < y < y0 if c1 is large enough; thus we may assume that y is large.

If a ∈ Z, b ∈ N and we write d = (a, b), a = da′, b = db′ then

∣∣∣
t∑

j=1

λy(a+ jb)
∣∣∣ =

∣∣∣λy(d)
t∑

j=1

λy(a′ + jb′)
∣∣∣ =

∣∣∣
t∑

j=1

λy(a′ + jb′)
∣∣∣

since λy(n) is completely multiplicative. Here in the last sum we have
(a′, b′) = 1 and thus

W (LN (y)) = max
a,b,t

∣∣∣
t∑

j=1

λy(a+ jb)
∣∣∣ = max

a,b,t
(a,b)=1

∣∣∣
t∑

j=1

λy(a+ jb)
∣∣∣
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so that we may restrict ourselves to a, b with (a, b) = 1. Moreover, clearly
we have

∣∣∣
t∑

j=1

λy(a+ jb)
∣∣∣ =

∣∣∣
∑

n≤a+tb
n≡a (mod b)

λy(n)−
∑

n≤a
n≡a (mod b)

λy(n)
∣∣∣

≤
∣∣∣

∑

n≤a+tb
n≡a (mod b)

λy(n)
∣∣∣+
∣∣∣

∑

n≤a
n≡a (mod b)

λy(n)
∣∣∣.

Thus in order to prove (4.1), it suffices to show that

(4.2)
∣∣∣

∑

n≤x
n≡a (mod b)

λy(n)
∣∣∣ < c2

N

(log log y)1/4

for y0 < y ≤ N, x ≤ N, (a, b) = 1.

If x ≤ √N then this is trivial (since the left hand side is ≤ x), while for√
N < x ≤ N , x ≤ y we have λy(n) = λ(n) for all n ≤ x and thus (4.2)

holds by Theorem 1(i). Thus we may assume that

y0 < y ≤ x ≤ N.
Assume first that

b ≥ c3(log log y)1/4

where c3 is a positive absolute constant which will be fixed later. Then
clearly ∣∣∣

∑

n≤x
n≡a (mod b)

λy(n)
∣∣∣ ≤

∑

n≤x
n≡a (mod b)

|λy(n)| =
∑

n≤x
n≡a (mod b)

1

≤ x

b
+ 1 <

2x
b
≤ 2N
c3(log log y)1/4

so that (4.2) holds trivially in this case.
Assume now that

(4.3) b < c3(log log y)1/4.

By (a, b) = 1 we have
∑

n≤x
n≡a (mod b)

λy(n) =
1

ϕ(b)

∑

χ (mod b)

χ(a)
∑

n≤x
λy(n)χ(n).

Thus writing

(4.4) Gy(x, χ) =
∑

n≤x
λy(n)χ(n),
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we have

(4.5)
∣∣∣

∑

n≤x
n≡a (mod b)

λy(n)
∣∣∣ ≤ 1

ϕ(b)

∑

χ (mod b)

|χ(a)Gy(x, χ)|

=
1

ϕ(b)

∑

χ (mod b)

|Gy(x, χ)| ≤ max
χ (mod b)

|Gy(x, χ)|.

It remains to estimate |Gy(x, χ)| for a character χ mod b. To do this, we
will use Halász’ [Ha] mean value theorem in the slightly more general form
proved by Elliott [Ell1, p. 211]:

Lemma 2. Let g(n) be a completely multiplicative function which for
some η > 0 satisfies g(p) = 0 or η ≤ |g(p)| ≤ 2− η for each prime p. When
g(p) is non-zero let θp denote a value of its argument. Assume that there
are numbers θ0 and δ > 0 so that

(4.6) |eiθp − eiθ0 | ≥ δ
is always satisfied. Then there are positive numbers c4 and ν so that the
inequality

(4.7)
∣∣∣
∑

n≤x
g(n)

∣∣∣

≤ c4x exp
{∑

p≤x

|g(p)| − 1
p

− ν
∑

p≤x

|g(p)| − Re g(p)
p

+ 2η
∑

p≤x, g(p)=0

1
p

}

holds uniformly for x ≥ 3. Here cδ4 is bounded in terms of η alone, and
ν = c5δ

3η for a certain positive absolute constant c5.

We will use this theorem with

(4.8) g(n) = λy(n)χ(n).

Then clearly either χ(p) = 0 so that g(p) = 0, or |χ(p)| = 1 so that |g(p)| =
1. Thus η = 1 can be chosen in Lemma 2. Moreover, if g(p) 6= 0 then

(g(p))2b = ((λy(p))2)b((χ(p))b)2 = 1 · 1 = 1

so that g(p) is a 2bth root of unity. Thus choosing θ0 = 2π/(4b), by the
inequality

|1− e2πiα| ≥ 4‖α‖
(where ‖α‖ denotes the distance from α to the nearest integer: ‖α‖ =
min({α}, 1− {α})) we have

|eiθp − eiθ0 | ≥ |1− e2πi/(4b)| ≥ 4
∥∥∥∥

1
4b

∥∥∥∥ =
1
b
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so that δ = 1/b can be chosen in Lemma 2. Then there is a positive absolute
constant c6 > 1 such that in (4.7) we have cδ4 = c

1/b
4 < c6 whence

(4.9) c4 < cb6.

Moreover, we have

(4.10) ν = c5δ
3η = c5/b

3.

Let `k(x) denote the k-fold logarithm of x so that `k(x) = log `k−1(x)
for k = 2, 3, . . . Then by (4.3) and (4.10), the exponent on the right hand
side of (4.7) can be estimated in the following way:
∑

p≤x

|g(p)| − 1
p

− ν
∑

p≤x

|g(p)| − Re g(p)
p

+ 2η
∑

p≤x, g(p)=0

1
p

≤ 0− c5
b3

∑

p≤x, g(p)=−1

2
p

+ 2
∑

p≤x, g(p)=0

1
p

≤ −c5
b3

(∑

p≤y

1
p
−
∑

p|b

1
p

)
+ 2

∑

p|b

1
p

= −c5
b3

∑

p≤y

1
p

+
(
c5
b3

+ 2
)∑

p|b

1
p

≤ −c5
b3

(`2(y)− c7) + c8`3(2b) < −c5`2(y)
2b3

+ c9`5(y).

Thus it follows from (4.3)–(4.5) and (4.7)–(4.9) that

(4.11)
∣∣∣

∑

n≤x
n≡a (mod b)

λy(n)
∣∣∣

≤ max
χ (mod b)

∣∣∣
∑

n≤x
λy(n)χ(n)

∣∣∣ ≤ c4x exp
(
−c5`2(y)

2b3
+ c9`5(y)

)

< x exp
(
b log c6 − c5`2(y)

2b3
+ c9`5(y)

)

< x exp
(
c3 log c6(`2(y))1/4 − c5`2(y)

2c33(`2(y))3/4
+ c9`5(y)

)

= x exp
((

c3 log c6 − c5
2c33

)
(`2(y))1/4 + c9`5(y)

)
.

Now we fix the value of c3: we define c3 by

c3 log c6 = c5/(4c33)
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(note that c6 > 1). Then for large y it follows from (4.11) that
∣∣∣

∑

n≤x
n≡a (mod b)

λy(n)
∣∣∣ < exp

(
− c5

4c33
(`2(y))1/4 +

c5
8c33

(`2(y))1/4
)

= x exp(−c10(`2(y))1/4) <
N

(log log y)1/4

and this completes the proof of (4.2) and thus also of Theorem 4.

5. The correlation measure of the truncated Liouville function.
We restrict ourselves to the study of correlation of order 2; higher order
correlations could be studied similarly. We prove

Theorem 5. There is a positive absolute constant c11 such that if x ≥ 2,

(5.1) 2 ≤ y ≤ (log x)2/(log log x)2

and b is a positive integer with

(5.2) b ≤ y,
then

(5.3)
∣∣∣
∑

n≤x
λy(n)λy(n+ b)

∣∣∣ < c11
(log log(b+ 1))4

(log y)4 x.

P r o o f. We derive the theorem from a result of Stepanauskas [St2] (see
also [Ell3] and [St1]). This result is too complicated and technical to present
it here in its most general form. Therefore we restrict ourselves to formulat-
ing the special case that we need here:

Lemma 3. Assume that g : N→ C is a multiplicative function, b ∈ N,

(5.4) x ≥ r ≥ 2,

(5.5) 1/2 < α < 1,

(5.6) b ≤ r,
(5.7)

∑

r<p≤x
(Re g(p)− 1)/p ≤ C,

(5.8) |g(n)| = O(1)

and

(5.9) S(r, x) :=
∑

r<p≤x+b

|g(p)− 1|2/p ≤ 1/8.

Let h(n) denote the Möbius inverse of g(n):

h(n) =
∑

d|n
g(d)µ(n/d),
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and write

wp =
∑

k,l≥0
(pk,pl)|b

h(pk)h(pl)
[pk, pl]

, P (x) =
∏

p≤x
Wp.

Then

(5.10)
∣∣∣∣
1
x

∑

n≤x
g(n)g(n+ b)− P (x)

∣∣∣∣

� x1−2α exp
(
c
rα

log r

)
+ (S(r, x))1/2 +

1
r log r

+
1

x1/2 log x

where the constant c and the constant implied by the � symbol may depend
on the constants in (5.7) and (5.8) only.

Indeed, this is the s = 2, g1 = g2 = g, a1 = a2 = 1, b1 = 0, b2 = b,
A1 = A2 = 0 special case of the theorem in [St2].

Note that Stepanauskas remarks in [St2] that (5.6) (together with other
conditions) could be relaxed considerably. This would lead to a much weaker
condition than (5.2) so that we could study long range correlation as well.

To derive Theorem 5 from Lemma 3, we use the lemma with g(n) =
λy(n), r = y, and

(5.11) α =
1
2

+
log log log x
2 log log x

.

Then (5.4)–(5.6) and (5.8) hold trivially, and
∑

r<p≤x
(Re g(p)− 1)/p =

∑

y<p≤x
(Reλy(p)− 1)/p = 0

and

(5.12) S(r, x) =
∑

y<p≤x+b

|λy(p)− 1|2/p = 0

so that (5.7) and (5.9) also hold and thus the lemma can be applied.
Moreover, h(1) = 1 and

h(pα) = λy(pα)− λy(pα−1) =
{

(−1)α − (−1)α−1 = 2(−1)α for p ≤ y,
1− 1 = 0 for p > y,

so that

wp = h(1) = 1 for p > y,
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and, defining the non-negative integer βp by pβp‖b, we get

wp =
βp∑

k=0

(h(pk))2

pk
+ 2

βp∑

k=0

h(pk)
+∞∑

l=k+1

h(pl)
pl

=
(

1 + 4
βp∑

k=1

1
pk

)
+ 4

+∞∑

l=1

(−1)l

pl
+ 8

βp∑

k=1

(−1)2k+1

pk+1

+∞∑

j=0

(−1)j

pj

= 1 +
4(pβp − 1)
pβp(p− 1)

− 4
p+ 1

− 8(pβp − 1)
pβ(p+ 1)(p− 1)

= 1− 4
1

pβ(p+ 1)
for p ≤ y.

It follows that

(5.13) P (x) =
∏

p≤x
wp

=
∏

p≤y

(
1− 4

p+ 1

) ∏

p≤y
p|b

(
1− 4

pβp(p+ 1)

)(
1− 4

p+ 1

)−1

� exp
(
−4
∑

p≤y

1
p

+ 4
∑

p≤y

1
p

)
� (log log(b+ 1))4

(log y)4 .

By (5.1), (5.11) and (5.12), the upper bound in (5.10) can be estimated
in the following way (writing again `k(x) for the k-fold logarithm):

(5.14) x1−2α exp
(
c
rα

log r

)
+ (S(r, x))1/2 +

1
r log r

+
1

x1/2 log x

� exp
(
− log x`3(x)

`2(x)
+ c

yα

log y

)
+ 0 +

1
y log y

+
1

x1/2 log x

� exp
(
− log x`3(x)

`2(x)
+ c

(
log x
`2(x)

)2α(
log

(log x)2

(`2(x))2

)−1)
+

1
y log y

= exp
(
− log x`3(x)

`2(x)
+O

(
log x
`2(x)

))
+

1
y log y

� exp
(
− log x`3(x)

2`2(x)

)
+

1
y log y

= exp
(
−
(

1
2

+ o(1)
)
y1/2`2(y)

)
+

1
y log y

� 1
y log y

.

(5.3) follows from (5.2), (5.13) and (5.14), and this completes the proof of
Theorem 5.
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6. Complexity and correlation. Another often used measure of pseu-
dorandomness of binary sequences is complexity . Consider a finite set S of
finitely many symbols, also called letters, and form a, finite or infinite, se-
quence w = s1s2 . . . of these letters; such a sequence w is also called a word.
If v = t1 . . . tk is a finite word and there is an n ∈ N such that sn = t1,
sn+1 = t2, . . . , sn+k−1 = tk, i.e., the word v occurs in w at place n, then v
is said to be a factor (of length k) of w. The complexity of the word w is
characterized by the function f(k,w) defined in the following way: for k ∈ N,
let f(k,w) denote the number of different factors of length k occurring in
w. In particular, for a “good” PR sequence EN ∈ {−1,+1}N one expects
high complexity, more exactly, one expects that f(k,EN ) = 2k for “small”
k, and f(k,EN ) is “large” for k growing not faster than logN .

In the previous parts of this series we did not study the complexity
of the given sequences. The reason is that, as Theorem 6 will show, small
correlation implies high complexity (but, clearly, it is not so the other way
round); thus if we are able to control the correlation then estimating it, we
obtain information superior to the one obtained by studying complexity. As
pointed out in Section 3, in the case of Liouville’s function it is hopeless to
give a good estimate for the correlation; on the other hand, we shall be able
to estimate the complexity at least hypothetically. Moreover, the comparison
of the complexities of the “truncated” λ and γ functions (to be carried out
in Part II) will reflect an interesting contrast in their structures.

First we prove

Theorem 6. If k,N ∈ N, and the sequence EN ∈ {−1,+1}N satisfies

(6.1) Cl(EN ) ≤ N

22k+1 for l = 1, . . . , k,

then

(6.2) f(k,EN ) = 2k

(i.e., EN contains every word of length k).

P r o o f. The proof will be based on the following lemma:

Lemma 4. If k,N ∈ N, k ≤ N and EN ∈ {−1,+1}N , then for all
(ε1, . . . , εk) ∈ {−1,+1}k we have

(6.3) ||{n : 1 ≤ n ≤ N − k + 1,

(en, en+1, . . . , en+k−1) = (ε1, . . . , εk)}| − (N − k + 1)/2k|

≤
k∑

l=1

(
k

l

)
Cl(EN ).
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P r o o f. Clearly we have

|{n : 1 ≤ n ≤ N − k + 1, (en, en+1, . . . , en+k−1) = (ε1, . . . , εk)}|

=
N−k+1∑
n=1

ε1 . . . εk
2k

(en + ε1)(en+1 + ε2) . . . (en+k−1 + εk)

=
1
2k

N−k+1∑
n=1

(ε1en + 1)(ε2en+1 + 1) . . . (εken+k−1 + 1)

=
N − k + 1

2k
+

k∑

l=1

∑

0≤d1<...<dl≤k−1

εd1+1 . . . εdl+1

N−k+1∑
n=1

en+d1 . . . en+dl ,

whence

||{n : 1 ≤ n ≤ N − k + 1, (en, en+1, . . . , en+k−1) = (ε1, . . . , εk)}|
−(N − k + 1)/2k|

=
∣∣∣
k∑

l=1

∑

0≤d1<...<dl≤k−1

εd1+1 . . . εdl+1V (EN , N − k + 1, (d1, . . . , dl))
∣∣∣

≤
k∑

l=1

∑

0≤d1<...<dl≤k−1

|V (EN , N − k + 1, (d1, . . . , dl))|

≤
k∑

l=1

∑

0≤d1<...<dl≤k−1

Cl(EN ) =
k∑

l=1

(
k

l

)
Cl(EN ),

which completes the proof of the lemma.

To derive the theorem from the lemma, first observe that by (6.1) we
have

k ≤ 1
2 · 22k+1 ≤ 1

2 · 22k+1Cl(EN ) ≤ N/2.
By (6.1) and (6.3), it follows from Lemma 4 that for all (ε1, . . . , εk) ∈
{−1,+1}k we have

|{n : 1 ≤ n ≤ N − k + 1, (en, en+1, . . . , en+k−1) = (ε1, . . . , εk)}|

≥ N − k + 1
2k

−
k∑

l=1

(
k

l

)
Cl(EN )

≥ N −N/2 + 1
2k

−
k∑

l=1

(
k

l

)
· N

22k+1 >
N

2k+1 −
N

22k+1

k∑

l=1

(
k

l

)
= 0

so that, indeed, EN contains every word (ε1, . . . , εk) ∈ {−1,+1}k, which
proves (6.2).



386 J. Cassaigne et al .

7. Complexity of the Liouville function. To estimate the complex-
ity of the sequence LN (Liouville function) seems to be as hopeless as the
estimate of the correlation of it. Chowla [Ch, p. 95] formulates the following
related conjecture: “Let ε1, ε2, . . . , εg be arbitrary numbers each equal to +1
or −1, where g is a fixed (but arbitrary) number. Then the equations (in n)

λ(n+m) = εm (1 ≤ m ≤ g)

have infinitely many solutions. For g ≥ 3 this seems an extremely hard
conjecture.” The g = 3 special case of this conjecture has been proved by
Hildebrand [Hi2].

Unlike in the case of correlation, here we shall be able to establish at
least a hypothetical result, more exactly, we derive Chowla’s conjecture from
a very well-known and widely used hypothesis. This hypothesis is Schinzel’s
“Hypothesis H” [Sc], [ScSi] (see also [HR, p. 2]) which generalizes the twin
prime conjecture:

Hypothesis H. If k ∈ N, F1, . . . , Fk are distinct irreducible polynomials
in Z[x] (with positive leading coefficients) and the product polynomial F =
F1 . . . Fk has no fixed prime divisor , then there exist infinitely many integers
n such that each Fi(n) (i = 1, . . . , k) is a prime.

We prove

Theorem 7. Assuming Hypothesis H, for all k ∈ N and {ε1, . . . , εk} ∈
{−1,+1}k there are infinitely many positive integers m such that

(7.1) λ(m+ 1) = ε1, λ(m+ 2) = ε2, . . . , λ(m+ k) = εk.

(We remark that the analogous result with γ in place of λ could be
proved similarly.)

It follows trivially from this theorem that

Corollary 3. Assuming Hypothesis H, for all k ∈ N there is a number
N0 = N0(k) such that for N > N0 we have

f(k, LN ) = 2k.

P r o o f (of Theorem 7). If p is a prime and i ∈ N, then define αp(i) by
pαp(i)‖i so that

(7.2) i =
∏

p|i
pαp(i)

(and αp(i) = 0 for p - i). For i = 1, . . . , k, define the number δi by δi ∈ {0, 1}
and

(7.3) δi ≡
{∑

p≤k αp(i)− 1 (mod 2) for εi = +1,
∑
p≤k αp(i) (mod 2) for εi = −1.
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Let q1, . . . , qk be k distinct primes greater than k (e.g., we may choose the
first k primes greater than k), and write

hi = qδii =
{
qi if δi = 1,
1 if δi = 0.

Write M = [1, . . . , k] (= the least common multiple of 1, . . . , k). Consider
the linear congruence system

(7.4)
M

i
x+ 1 ≡ 0 (mod hi), i = 1, . . . , k.

Here (M/i, hi) = 1 for i = 1, . . . , k, and thus each of these congruences can
be solved. Moreover, the moduli h1, . . . , hk are pairwise coprime and thus
by the Chinese remainder theorem, the system (7.4) can be solved, and the
solutions form a residue class modulo

H :=
k∏

i=1

hi,

i.e., there is an x0 ∈ Z such that all the solutions are

x ≡ x0 (mod H).

In other words, x is of the form

x = Hn+ x0 with n ∈ Z.
For i = 1, . . . , k, write

(7.5) ai =
M

i
· H
hi
, bi =

1
hi

(
M

i
x0 + 1

)

and

(7.6) Fi(n) = ain+ bi.

Now we show that the polynomials (7.6) satisfy the assumptions in Hy-
pothesis H. ai ∈ Z holds trivially, and since x0 is a solution of (7.4), bi ∈ Z
also holds. The polynomials (7.6) are clearly distinct since ai 6= aj for i 6= j,
and they are irreducible since they are linear. It remains to show that the
product polynomial

F (n) = F1(n) . . . Fk(n)
has no fixed prime divisor. We prove this by contradiction: assume that
there is a prime p such that

(7.7) F (n) = F1(n) . . . Fk(n) ≡ 0 (mod p) for all n ∈ Z.
We have to distinguish three cases.

Case 1. Assume first that p > k and p /∈ {q1, . . . , qk}. It follows that
p -H and thus, since the prime factors of M do not exceed k, we have p - ai
for i = 1, . . . , k. Then F (n) ∈ Z[n] is a polynomial of degree k which is less
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than p, and its leading coefficient is 6≡ 0 (mod p); these facts imply that
(7.7) cannot hold.

Case 2. Assume now that p = qi for some 1 ≤ i ≤ k. If p - (aj , bj)
for j = 1, . . . , k, then again f(n) is not the zero polynomial modulo p and
its degree is ≤ k < qi = p so that (7.7) cannot hold. Thus there is a j
with p | (aj , bj). Since clearly p = qi - Mi · Hhi = ai, we have j 6= i. Then
p = qi | aj = (M/j)

∏
l 6=j hl implies that hi = qi. Since hi = qi and x0

satisfies (7.4), we have

(7.8) Mx0 + i = i

(
M

i
x0 + 1

)
≡ 0 (mod qi),

and as p = qi | bj ,
(7.9) Mx0 + j = jhjbj ≡ 0 (mod qi).

It follows from (7.8) and (7.9) that

i− j = (Mx0 + i)− (Mx0 + j) ≡ 0 (mod qi)

but this is impossible since i 6= j, 1 ≤ i, j ≤ k and qi > k.

Case 3. Assume finally that p ≤ k. Then it follows from (7.7) that p is
also a fixed prime divisor of the polynomial

Q(n) :=
( k∏

i=1

hi

)
F (n) =

k∏

i=1

hiFi(n) =
k∏

i=1

Qi(n)

where

Qi(n) = hiFi(n) =
M

i
Hn+

(
M

i
x0 + 1

)
for i = 1, . . . , k.

Clearly,

p

∣∣∣∣
M

i

implies that
Qi(n) ≡ 1 (mod p) for all n ∈ N.

Thus p is also a fixed prime divisor of the polynomial

(7.10) Q∗(n) :=
∏

1≤i≤k
(p,M/i)=1

Qi(n).

It follows from p ≤ k, 1 ≤ i ≤ k and (p,M/i) = (p, [1, . . . , k]/i) = 1 that,
defining βp by

(7.11) pβp ≤ k < pβp+1

(so that βp = αp(M)), we have pβp | i so that i is of the form

i = jpp with j ∈ N, j ≤ k/pβp .
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Thus i in (7.10) may assume at most k/pβp values, so that the degree of
the polynomial Q∗(n) is, by (7.11), at most k/pβp < p. Moreover, it follows
from (p,M/i) = 1 that the leading coefficient of Qi(n) is also coprime to p:

(hiai, p) =
(
M

i
H, p

)
= 1.

Thus the leading coefficient of Q∗(n) is also coprime to p. Then the poly-
nomial Q∗(n) is not identically zero modulo p and its degree is less than p,
which contradicts the fact that p is a fixed prime divisor of it.

This completes the proof that there is no prime p satisfying (7.7) so that,
indeed, the polynomials (7.6) satisfy the assumptions in Hypothesis H. Since
now this hypothesis is assumed, there are infinitely many integers n such that
each Fi(n) (i = 1, . . . , k) is a prime. For such an integer n define m = m(n)
by

m = MHn+Mx0.

It remains to show that m satisfies (7.1).
For i = 1, . . . , k we have

m+ i = MHn+ (Mx0 + i) = ihi

(
M

i
· H
hi
n+

1
hi

(
M

i
x0 + 1

))
= ihiFi(n).

By (7.2) and (7.3), it follows that

Ω(m+ i) = Ω(i) +Ω(hi) +Ω(Fi(n)) =
∑

p | i
αp(i) + δi + 1

=
∑

p≤k
αp(i) + δi + 1 ≡

{
0 (mod 2) for εi = +1,
1 (mod 2) for εi = −1,

whence λ(m + i) = (−1)Ω(m+i) = εi for i = 1, . . . , k, which completes the
proof of the theorem.
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