Arithmetic progressions of prime-almost-prime twins

by
D. I. Tolev (Plovdiv)

1. Introduction. In 1937 I. M. Vinogradov [17] proved that for every sufficiently large odd integer N the equation

$$
p_{1}+p_{2}+p_{3}=N
$$

has a solution in prime numbers p_{1}, p_{2}, p_{3}.
Two years later van der Corput [15] used the method of Vinogradov and established that there exist infinitely many arithmetic progressions of three different primes. A corresponding result for progressions of four or more primes has not been proved so far. In 1981, however, D. R. HeathBrown [6] proved that there exist infinitely many arithmetic progressions of four different terms, three of which are primes and the fourth is P_{2} (as usual, P_{r} denotes an integer with no more than r prime factors, counted according to multiplicity).

A famous and still unsolved problem in Number Theory is the primetwins conjecture, which states that there exist infinitely many prime numbers p such that $p+2$ is also a prime. This problem has been attacked by many mathematicians in various ways. The reader may refer to Halberstam and Richert's monograph [4] for a detailed information. One of the most important results in this direction belongs to Chen [2]. In 1973 he proved that there exist infinitely many primes p such that $p+2$ is P_{2}.

In the present paper we study the solvability of the equation $p_{1}+p_{2}=2 p_{3}$ in different primes $p_{i}, 1 \leq i \leq 3$, such that $p_{i}+2$ are almost-primes. The first step in this direction was made recently by Peneva and the author. It was proved in [13] that there exist infinitely many triples of different primes satisfying $p_{1}+p_{2}=2 p_{3}$ and such that $\left(p_{1}+2\right)\left(p_{2}+2\right)=\mathrm{P}_{9}$.

Suppose that x is a large real number and k_{1}, k_{2} are odd integers. Denote by $D_{k_{1}, k_{2}}(x)$ the number of solutions of $p_{1}+p_{2}=2 p_{3}, x<p_{1}, p_{2}, p_{3} \leq 3 x$, in primes such that $p_{i}+2 \equiv 0\left(\bmod k_{i}\right), i=1,2$. The main result of [13]

[^0]is a theorem of Bombieri-Vinogradov's type for $D_{k_{1}, k_{2}}(x)$ stating that for each $A>0$ there exists $B=B(A)>0$ such that
$$
\sum_{\substack{k_{1}, k_{2} \leq \sqrt{x} /(\log x)^{B} \\\left(k_{1} k_{2}, 2\right)=1}} \mid D_{k_{1}, k_{2}}(x)-(\text { expected main term }) \left\lvert\, \ll \frac{x^{2}}{(\log x)^{A}}\right.
$$
(see [13] for details). In [13] the Hardy-Littlewood circle method and the Bombieri-Vinogradov theorem were applied, as well as some arguments belonging to H. Mikawa. We should also mention the author's earlier paper [14] in which the same method was used.

In the present paper we apply the vector sieve, developed by Iwaniec [8] and used also by Brüdern and Fouvry in [1]. We prove the following

Theorem. There exist infinitely many arithmetic progressions of three different primes $p_{1}, p_{2}, p_{3}=\frac{1}{2}\left(p_{1}+p_{2}\right)$ such that $p_{1}+2=\mathrm{P}_{5}, p_{2}+2=\mathrm{P}_{5}^{\prime}$, $p_{3}+2=\mathrm{P}_{8}$.

By choosing the parameters in a different way we may obtain other similar results, for example $p_{1}+2=\mathrm{P}_{4}, p_{2}+2=\mathrm{P}_{5}, p_{3}+2=\mathrm{P}_{11}$. The result would be better if it were possible to prove Lemma 12 for larger K. For example, the validity of Lemma 12 for $K=x^{1 / 2-\varepsilon}, \varepsilon>0$ arbitrarily small, would imply the Theorem with $p_{i}+2=\mathrm{P}_{5}, i=1,2,3$.

Acknowledgments. The author wishes to thank Professor D. R. HeathBrown for an interesting conversation in March 1997 and for his follow-up letter. The author is also grateful to Tempus-Phare Joint European Project S-JEP-11087-96 for sponsoring his visit to England and to the Ministry of Science and Education of Bulgaria, grant MM-430, for covering some other expenses.
2. Notations and some lemmas. Let x be a sufficiently large real number and let $\mathcal{L}, \alpha_{1}, \alpha_{2}, \alpha_{3}$ be constants satisfying $\mathcal{L} \geq 1000,0<\alpha_{i}<1 / 4$, which we shall specify later. We put

$$
\begin{gather*}
z_{i}=x^{\alpha_{i}}, \quad i=1,2,3, \quad z_{0}=(\log x)^{\mathcal{L}} ; \quad D_{0}=\exp \left((\log x)^{0.6}\right) \\
D_{1}=D_{2}=x^{1 / 2} \exp \left(-2(\log x)^{0.6}\right), \quad D_{3}=x^{1 / 3} \exp \left(-2(\log x)^{0.6}\right) \tag{1}
\end{gather*}
$$

Letters $s, u, v, w, y, z, \alpha, \beta, \gamma, \nu, \varepsilon, D, M, L, K, P, H$ denote real numbers; $m, n, d, a, q, l, k, r, h, t, \delta$ are integers; p, p_{1}, p_{2}, \ldots are prime numbers. As usual $\mu(n), \varphi(n), \Lambda(n)$ denote Möbius' function, Euler's function and von Mangoldt's function, respectively; $\tau_{k}(n)$ denotes the number of solutions of the equation $m_{1} \ldots m_{k}=n$ in integers $m_{1}, \ldots, m_{k} ; \tau(n)=\tau_{2}(n)$. We denote by $\left(m_{1}, \ldots, m_{k}\right)$ and $\left[m_{1}, \ldots, m_{k}\right]$ the greatest common divisor and the least common multiple of m_{1}, \ldots, m_{k}, respectively. For real y, z, however, (y, z) denotes the open interval on the real line with endpoints y and z. The
meaning is always clear from the context. Instead of $m \equiv n(\bmod k)$ we write for simplicity $m \equiv n(k)$. As usual, $[y]$ denotes the integer part of $y,\|y\|$ the distance from y to the nearest integer, $e(y)=\exp (2 \pi i y)$. For positive A and B we write $A \asymp B$ instead of $A \ll B \ll A$. The letter c denotes some positive real number, not the same in all appearances. This convention allows us to write

$$
(\log y) e^{-c \sqrt{\log y}} \ll e^{-c \sqrt{\log y}}
$$

for example.
We put

$$
\begin{gather*}
Q=(\log x)^{10 \mathcal{L}}, \quad \tau=x Q^{-1}, \tag{2}\\
\text { (3) } \left.E_{1}=\bigcup_{\substack{q \leq Q}}^{\substack{a=0 \\
(a, q)=1}} \left\lvert\, \frac{a}{q-1}-\frac{1}{q \tau}\right., \frac{a}{q}+\frac{1}{q \tau}\right), \quad E_{2}=\left(-\frac{1}{\tau}, 1-\frac{1}{\tau}\right) \backslash E_{1},
\end{gather*}
$$

$$
\begin{equation*}
S_{k}(\alpha)=\sum_{\substack{x<p \leq 2 x \\ p+2 \equiv 0(k)}}(\log p) e(\alpha p), \quad M(\alpha)=\sum_{x<m \leq 2 x} e(\alpha m), \tag{4}
\end{equation*}
$$

(5)

$$
\begin{equation*}
I_{k_{1}, k_{2}, k_{3}}(x)=\sum_{\substack{x<p_{1}, p_{2}, p_{3} \leq 2 x \\ p_{i}+2=0 . k_{i}, j=1,2,3 \\ p_{1}+p_{2}=2 p_{3}}} \log p_{1} \log p_{2} \log p_{3} \tag{5}
\end{equation*}
$$

Clearly
(6) $I_{k_{1}, k_{2}, k_{3}}(x)=\int_{0}^{1} S_{k_{1}}(\alpha) S_{k_{2}}(\alpha) S_{k_{3}}(-2 \alpha) d \alpha=I_{k_{1}, k_{2}, k_{3}}^{(1)}(x)+I_{k_{1}, k_{2}, k_{3}}^{(2)}(x)$,
where

$$
\begin{equation*}
I_{k_{1}, k_{2}, k_{3}}^{(i)}(x)=\int_{E_{i}} S_{k_{1}}(\alpha) S_{k_{2}}(\alpha) S_{k_{3}}(-2 \alpha) d \alpha, \quad i=1,2 \tag{7}
\end{equation*}
$$

If D is a positive number we consider Rosser's weights $\lambda^{ \pm}(d)$ of order D (see Iwaniec [9], [10]). Define $\lambda^{ \pm}(1)=1, \lambda^{ \pm}(d)=0$ if d is not squarefree. If $d=p_{1} \ldots p_{r}$ with $p_{1}>\ldots>p_{r}$ we put

$$
\begin{aligned}
& \lambda^{+}(d)= \begin{cases}(-1)^{r} & \text { if } p_{1} \ldots p_{2 l} p_{2 l+1}^{3}<D \text { for all } 0 \leq l \leq(r-1) / 2, \\
0 & \text { otherwise; }\end{cases} \\
& \lambda^{-}(d)= \begin{cases}(-1)^{r} & \text { if } p_{1} \ldots p_{2 l-1} p_{2 l}^{3}<D \text { for all } 1 \leq l \leq r / 2, \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

We denote by $\lambda_{i}^{ \pm}(d)$ Rosser's weights of order $D_{i}, 0 \leq i \leq 3$. In particular, we have

$$
\begin{equation*}
\left|\lambda_{i}^{ \pm}(d)\right| \leq 1, \quad \lambda_{i}^{ \pm}(d)=0 \text { for } d \geq D_{i}, \quad 0 \leq i \leq 3 . \tag{8}
\end{equation*}
$$

Let $f(s)$ and $F(s)$ denote the functions of the linear sieve. They are continuous and satisfy

$$
\begin{aligned}
s F(s) & =2 e^{\gamma} & & \text { if } 0<s \leq 3, \\
s f(s) & =0 & & \text { if } 0<s \leq 2, \\
(s F(s))^{\prime} & =f(s-1) & & \text { if } s>3, \\
(s f(s))^{\prime} & =F(s-1) & & \text { if } s>2,
\end{aligned}
$$

where $\gamma=0.577 \ldots$ is the Euler constant.
Let \mathcal{P} denote a set of primes. We put

$$
P(w)=\prod_{\substack{p<w \\ p \in \mathcal{P}}} p, \quad P\left(w_{1}, w_{2}\right)=\frac{P\left(w_{2}\right)}{P\left(w_{1}\right)}, \quad 2 \leq w_{1} \leq w_{2}
$$

The following lemma is one of the main results in sieve theory. For the proof see [9], [10].

Lemma 1. Suppose that \mathcal{P} is any set of primes and ω is a multiplicative function satisfying

$$
\begin{gathered}
0<\omega(p)<p \quad \text { if } p \in \mathcal{P}, \quad \omega(p)=0 \quad \text { if } p \notin \mathcal{P}, \\
\prod_{w_{1} \leq p<w_{2}}\left(1-\frac{\omega(p)}{p}\right)^{-1} \leq \frac{\log w_{2}}{\log w_{1}}\left(1+\frac{\mathcal{K}}{\log w_{1}}\right)
\end{gathered}
$$

for some $\mathcal{K}>0$ and for all $2 \leq w_{1} \leq w_{2}$. Assume that $\lambda^{ \pm}(d)$ are Rosser's weights of order D and let $s=(\log D) /(\log w)$. We have

$$
\begin{aligned}
\prod_{p<w}\left(1-\frac{\omega(p)}{p}\right) & \leq \sum_{d \mid P(w)} \lambda^{+}(d) \frac{\omega(d)}{d} \\
& \leq \prod_{p<w}\left(1-\frac{\omega(p)}{p}\right)\left(F(s)+\mathcal{O}\left(e^{\sqrt{\mathcal{K}}-s}(\log D)^{-1 / 3}\right)\right)
\end{aligned}
$$

provided that $2 \leq w \leq D$, and

$$
\begin{aligned}
\prod_{p<w}\left(1-\frac{\omega(p)}{p}\right) & \geq \sum_{d \mid P(w)} \lambda^{-}(d) \frac{\omega(d)}{d} \\
& \geq \prod_{p<w}\left(1-\frac{\omega(p)}{p}\right)\left(f(s)+\mathcal{O}\left(e^{\sqrt{\mathcal{K}}-s}(\log D)^{-1 / 3}\right)\right)
\end{aligned}
$$

provided that $2 \leq w \leq D^{1 / 2}$. Moreover, for any integer n we have

$$
\sum_{d \mid\left(n, P\left(w_{1}, w_{2}\right)\right)} \lambda^{-}(d) \leq \sum_{d \mid\left(n, P\left(w_{1}, w_{2}\right)\right)} \mu(d) \leq \sum_{d \mid\left(n, P\left(w_{1}, w_{2}\right)\right)} \lambda^{+}(d) .
$$

The next statement is Lemma 11 of [1], written in a slightly different form.

Lemma 2. On the hypotheses of Lemma 1 let $\delta \mid P(w)$ and $s \geq 2$. We have

$$
\sum_{\substack{d \mid P(w) \\ d \equiv 0(\delta)}} \lambda^{ \pm}(d) \frac{\omega(d)}{d}=\sum_{\substack{d \mid P(w) \\ d \equiv 0(\delta)}} \mu(d) \frac{\omega(d)}{d}+\mathcal{O}\left(\tau(\delta)\left(s^{-s}+e^{\sqrt{\mathcal{K}}-s}(\log D)^{-1 / 3}\right)\right)
$$

The next statement is the analog of Lemma 13 of [1]. The proof is almost the same.

LEMMA 3. Suppose that $\Lambda_{i}, \Lambda_{i}^{ \pm}, 1 \leq i \leq 6$, are numbers satisfying $\Lambda_{i}=0$ or $1, \Lambda_{i}^{-} \leq \Lambda_{i} \leq \Lambda_{i}^{+}, 1 \leq i \leq 6$. Then

$$
\begin{aligned}
\Lambda_{1} \Lambda_{2} \Lambda_{3} \Lambda_{4} \Lambda_{5} \Lambda_{6} \geq & \Lambda_{1}^{-} \Lambda_{2}^{+} \Lambda_{3}^{+} \Lambda_{4}^{+} \Lambda_{5}^{+} \Lambda_{6}^{+}+\Lambda_{1}^{+} \Lambda_{2}^{-} \Lambda_{3}^{+} \Lambda_{4}^{+} \Lambda_{5}^{+} \Lambda_{6}^{+} \\
& +\Lambda_{1}^{+} \Lambda_{2}^{+} \Lambda_{3}^{-} \Lambda_{4}^{+} \Lambda_{5}^{+} \Lambda_{6}^{+}+\Lambda_{1}^{+} \Lambda_{2}^{+} \Lambda_{3}^{+} \Lambda_{4}^{-} \Lambda_{5}^{+} \Lambda_{6}^{+} \\
& +\Lambda_{1}^{+} \Lambda_{2}^{+} \Lambda_{3}^{+} \Lambda_{4}^{+} \Lambda_{5}^{-} \Lambda_{6}^{+}+\Lambda_{1}^{+} \Lambda_{2}^{+} \Lambda_{3}^{+} \Lambda_{4}^{+} \Lambda_{5}^{+} \Lambda_{6}^{-} \\
& -5 \Lambda_{1}^{+} \Lambda_{2}^{+} \Lambda_{3}^{+} \Lambda_{4}^{+} \Lambda_{5}^{+} \Lambda_{6}^{+}
\end{aligned}
$$

The next lemma is Heath-Brown's decomposition of the sum

$$
\begin{equation*}
\sum_{P<n \leq P_{1}} \Lambda(n) G(n) \tag{9}
\end{equation*}
$$

into sums of two types.
Type I sums are

$$
\sum_{\substack{M<m \leq M_{1} \\ L<l \leq L_{1} \\ P<m l \leq P_{1}}} a_{m} G(m l) \quad \text { and } \quad \sum_{\substack{M<m \leq M_{1} \\ L<l \leq L_{1} \\ P<m l \leq P_{1}}} a_{m}(\log l) G(m l),
$$

where $M_{1} \leq 2 M, L_{1} \leq 2 L,\left|a_{m}\right| \ll \tau_{5}(m) \log P$.
Type II sums are

$$
\sum_{\substack{M<m \leq M_{1} \\ L<l \leq L_{1} \\ P<m l \leq P_{1}}} a_{m} b_{l} G(m l)
$$

where $M_{1} \leq 2 M, L_{1} \leq 2 L,\left|a_{m}\right| \ll \tau_{5}(m) \log P,\left|b_{l}\right| \ll \tau_{5}(l) \log P$.
The following lemma comes from [7].
Lemma 4. Let $G(n)$ be a complex-valued function. Let P, P_{1}, u, v, z be positive numbers satisfying $P>2, P_{1} \leq 2 P, 2 \leq u<v \leq z \leq P$, $u^{2} \leq z, 128 u z^{2} \leq P_{1}, 2^{18} P_{1} \leq v^{3}$. Then the sum (9) may be decomposed into $\mathcal{O}\left((\log P)^{6}\right)$ sums, each of which is either of type I with $L \geq z$ or of type $I I$ with $u \leq L \leq v$.

The next lemma is Bombieri-Vinogradov's theorem (see [3], Chapter 28).

Lemma 5. Define

$$
\begin{equation*}
\Delta(y, h)=\max _{z \leq y} \max _{(l, h)=1}\left|\sum_{\substack{p \leq z \\ p \equiv l(h)}} \log p-\frac{z}{\varphi(h)}\right| . \tag{10}
\end{equation*}
$$

For any $A>0$ we have

$$
\sum_{k \leq \sqrt{y} /(\log y)^{A+5}} \Delta(y, k) \ll \frac{y}{(\log y)^{A}} .
$$

For the proofs of the next two lemmas, see [11], Chapter 6, and [16], Chapter 2.

Lemma 6. If $X \geq 1$ then

$$
\left|\sum_{n \leq X} e(\alpha n)\right| \leq \min \left(X, \frac{1}{2\|\alpha\|}\right) .
$$

Lemma 7. Suppose that $X, Y \geq 1,|\alpha-a / q| \leq 1 / q^{2},(a, q)=1, q \geq 1$. Then
(i) $\sum_{n \leq X} \min \left(Y, \frac{1}{\|\alpha n\|}\right) \leq 6\left(\frac{X}{q}+1\right)(Y+q \log q)$,
(ii) $\sum_{n \leq X} \min \left(\frac{X Y}{n}, \frac{1}{\|\alpha n\|}\right) \ll X Y\left(\frac{1}{q}+\frac{1}{Y}+\frac{q}{X Y}\right) \log (2 X q)$.

Finally, in the next lemma we summarize some well-known properties of the functions $\tau_{k}(n)$ and $\varphi(n)$.

Lemma 8. Let $X \geq 2, k \geq 2, \varepsilon>0$. We have
(i) $\sum_{n \leq X} \tau_{k}^{2}(n) \ll X(\log X)^{k^{2}-1}$,
(ii) $\sum_{n \leq X} \tau^{k}(n) \ll X(\log X)^{2^{k}-1}$,
(iii) $\sum_{n \leq X} \frac{\tau^{k}(n)}{n} \ll(\log X)^{2^{k}}$,
(iv) $\tau_{k}(n) \ll n^{\varepsilon}$,
(v) $\frac{n}{\varphi(n)} \ll \log \log (10 n)$.
3. Outline of the proof. A reasonable approach to proving the theorem would be to establish a Bombieri-Vinogradov type result for the sum $I_{k_{1}, k_{2}, k_{3}}(x)$, defined by (5). More precisely, it would be interesting to prove that for each $A>0$ there exists $B=B(A)>0$ such that

$$
\begin{equation*}
\sum_{\substack{k_{1}, k_{2}, k_{3} \leq \sqrt{x} /(\log x)^{B} \\\left(k_{1} k_{2} k_{3}, 2\right)=1}} \mid I_{k_{1}, k_{2}, k_{3}}(x)-(\text { expected main term }) \left\lvert\, \ll \frac{x^{2}}{(\log x)^{A}} .\right. \tag{11}
\end{equation*}
$$

This estimate (or the estimate for the sum over squarefree k_{i} only) would imply the solvability of $p_{1}+p_{2}=2 p_{3}$ in different primes such that $p_{i}+2$, $i=1,2,3$, are almost-primes.

Using (6) we see that (11) is a consequence of the estimates

$$
\begin{equation*}
\sum_{\substack{k_{1}, k_{2}, k_{3} \leq \sqrt{x} /(\log x)^{B} \\\left(k_{1} k_{2} k_{3}, 2\right)=1}} \mid I_{k_{1}, k_{2}, k_{3}}^{(1)}(x)-(\text { expected main term }) \left\lvert\, \ll \frac{x^{2}}{(\log x)^{A}}\right. \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{k_{1}, k_{2}, k_{3} \leq \sqrt{x} /(\log x)^{B} \\\left(k_{1} k_{2} k_{3}, 2\right)=1}}\left|I_{k_{1}, k_{2}, k_{3}}^{(2)}(x)\right| \ll \frac{x^{2}}{(\log x)^{A}} . \tag{13}
\end{equation*}
$$

Proceeding as in [13] we may prove (12) provided that B and \mathcal{L} are large in terms of A (see the proof of Lemma 11). However, we are not able to adapt the method of [13] in order to establish (13) and that is the reason we cannot prove (11) at present.

It was noticed by Professor D. R. Heath-Brown that there exists some $\nu>0$ such that if β_{k} are any numbers satisfying $\left|\beta_{k}\right| \leq 1$ and if \mathcal{L} is large in terms of A then

$$
\begin{equation*}
\max _{\alpha \in E_{2}}\left|\sum_{k \leq x^{\nu}} \beta_{k} S_{k}(\alpha)\right| \ll \frac{x}{(\log x)^{A}} . \tag{14}
\end{equation*}
$$

This observation enables us to find that

$$
\left|\sum_{\substack{k_{1}, k_{2} \leq \sqrt{x} /(\log x)^{B}, k_{3} \leq x^{\nu} \\\left(k_{1} k_{2} k_{3}, 2\right)=1}} \beta_{k_{1}} \beta_{k_{2}} \beta_{k_{3}} I_{k_{1}, k_{2}, k_{3}}^{(2)}(x)\right| \ll \frac{x^{2}}{(\log x)^{A}} .
$$

The last estimate may serve as an analog of (13).
We are able to prove (14) for any $\nu<1 / 3$. A slightly different sum is estimated in Lemma 12. Working in this way we are not able to apply standard sieve results, as was done in [13]. In the present paper we use the vector sieve of Iwaniec [8] and Brüdern-Fouvry [1].

Suppose that \mathcal{P} is the set of odd primes and consider the sum

$$
\Gamma=\sum_{\substack{\left.x<p_{1}, p_{2}\right) p_{3} \leq 2 x \\\left(p_{i}+2, z_{i}\right)=1, i=1,2,3 \\ p_{1}+p_{2}=2 p_{3}}} \log p_{1} \log p_{2} \log p_{3} .
$$

Any non-trivial estimate from below of Γ implies the solvability of $p_{1}+p_{2}=$ $2 p_{3}$ in primes such that $p_{i}+2=\mathrm{P}_{h_{i}}, h_{i}=\left[\alpha_{i}^{-1}\right], i=1,2,3$. For technical reasons we sieve by small primes separately. We have

$$
\Gamma=\sum_{\substack{x<p_{1}, p_{2}, p_{3} \leq 2 x \\ p_{1}+p_{2}=2 p_{3}}}\left(\log p_{1} \log p_{2} \log p_{3}\right) \Lambda_{1} \Lambda_{2} \Lambda_{3} \Lambda_{4} \Lambda_{5} \Lambda_{6},
$$

where

$$
\Lambda_{i}=\left\{\begin{array}{cl}
\sum_{d \mid\left(p_{i}+2, P\left(z_{0}, z_{i}\right)\right)} \mu(d) & \text { for } i=1,2,3, \\
\sum_{d \mid\left(p_{i-3}+2, P\left(z_{0}\right)\right)} \mu(d) & \text { for } i=4,5,6 .
\end{array}\right.
$$

Set

$$
\Lambda_{i}^{ \pm}=\left\{\begin{array}{cl}
\sum_{d \mid\left(p_{i}+2, P\left(z_{0}, z_{i}\right)\right)} \lambda_{i}^{ \pm}(d) & \text { for } i=1,2,3, \tag{15}\\
\sum_{d \mid\left(p_{i-3}+2, P\left(z_{0}\right)\right)} \lambda_{0}^{ \pm}(d) & \text { for } i=4,5,6 .
\end{array}\right.
$$

By Lemma 1 we have $\Lambda_{i}^{-} \leq \Lambda_{i} \leq \Lambda_{i}^{+}, 1 \leq i \leq 6$; consequently, we may apply Lemma 3 to get

$$
\text { (16) } \begin{aligned}
\Gamma \geq \Gamma_{0}= & \sum_{\substack{x<p_{1}, p_{2}, p_{3} \leq 2 x \\
p_{1}+p_{2}=p_{3}}}\left(\log p_{1} \log p_{2} \log p_{3}\right)\left(\Lambda_{1}^{-} \Lambda_{2}^{+} \Lambda_{3}^{+} \Lambda_{4}^{+} \Lambda_{5}^{+} \Lambda_{6}^{+}\right. \\
& +\Lambda_{1}^{+} \Lambda_{2}^{-} \Lambda_{3}^{+} \Lambda_{4}^{+} \Lambda_{5}^{+} \Lambda_{6}^{+}+\ldots+\Lambda_{1}^{+} \Lambda_{2}^{+} \Lambda_{3}^{+} \Lambda_{4}^{+} \Lambda_{5}^{+} \Lambda_{6}^{-} \\
& \left.-5 \Lambda_{1}^{+} \Lambda_{2}^{+} \Lambda_{3}^{+} \Lambda_{4}^{+} \Lambda_{5}^{+} \Lambda_{6}^{+}\right) .
\end{aligned}
$$

We use (5), (15) and change the order of summation to obtain

$$
\Gamma_{0}=\sum_{\substack{d_{i}\left|P\left(z_{0}, z_{i}\right), i=1,2,3 \\ \delta_{i}\right| P\left(z_{0}\right), i=1,2,3}} \kappa\left(d_{1}, d_{2}, d_{3}, \delta_{1}, \delta_{2}, \delta_{3}\right) I_{d_{1} \delta_{1}, d_{2} \delta_{2}, d_{3} \delta_{3}}(x),
$$

where
(17) $\kappa\left(d_{1}, d_{2}, d_{3}, \delta_{1}, \delta_{2}, \delta_{3}\right)=\lambda_{1}^{-}\left(d_{1}\right) \lambda_{2}^{+}\left(d_{2}\right) \lambda_{3}^{+}\left(d_{3}\right) \lambda_{0}^{+}\left(\delta_{1}\right) \lambda_{0}^{+}\left(\delta_{2}\right) \lambda_{0}^{+}\left(\delta_{3}\right)$

$$
\begin{aligned}
& +\ldots \ldots \ldots \ldots \\
& +\lambda_{1}^{+}\left(d_{1}\right) \lambda_{2}^{+}\left(d_{2}\right) \lambda_{3}^{+}\left(d_{3}\right) \lambda_{0}^{+}\left(\delta_{1}\right) \lambda_{0}^{+}\left(\delta_{2}\right) \lambda_{0}^{-}\left(\delta_{3}\right) \\
& -5 \lambda_{1}^{+}\left(d_{1}\right) \lambda_{2}^{+}\left(d_{2}\right) \lambda_{3}^{+}\left(d_{3}\right) \lambda_{0}^{+}\left(\delta_{1}\right) \lambda_{0}^{+}\left(\delta_{2}\right) \lambda_{0}^{+}\left(\delta_{3}\right) .
\end{aligned}
$$

Hence by (6) we get

$$
\begin{equation*}
\Gamma_{0}=\Gamma_{1}+\Gamma_{2}, \tag{18}
\end{equation*}
$$

where

$$
\begin{array}{r}
\Gamma_{j}=\sum_{\substack{d_{i}\left|P\left(z_{0}, z_{i}\right), i=1,2,3 \\
\delta_{i}\right| P\left(z_{0}\right), i=1,2,3}} \kappa\left(d_{1}, d_{2}, d_{3}, \delta_{1}, \delta_{2}, \delta_{3}\right) I_{d_{1} \delta_{1}, d_{2} \delta_{2}, d_{3} \delta_{3}}^{(j)}(x), \tag{19}\\
j=1,2 .
\end{array}
$$

In Section 4, Lemma 10, we study $I_{k_{1}, k_{2}, k_{3}}^{(1)}(x)$ for squarefree odd k_{1}, k_{2}, k_{3} $\leq \sqrt{x}$ and we find

$$
I_{k_{1}, k_{2}, k_{3}}^{(1)}(x)=\sigma_{0} x^{2} \Omega\left(k_{1}, k_{2}, k_{3}\right)+\mathcal{O}\left(\Xi\left(x ; k_{1}, k_{2}, k_{3}\right)\right),
$$

where the quantities on the right-hand side are defined by (30)-(32). Therefore

$$
\begin{equation*}
\Gamma_{1}=\sigma_{0} x^{2} W+\mathcal{O}\left(\Gamma_{3}\right), \tag{20}
\end{equation*}
$$

where

$$
\begin{align*}
& W=\sum_{\substack{d_{i}\left|P\left(z_{0}, z_{2}\right), i=1,2,3 \\
\delta_{i}\right| P\left(z_{0}\right), i=1,2,3}} \kappa\left(d_{1}, d_{2}, d_{3}, \delta_{1}, \delta_{2}, \delta_{3}\right) \Omega\left(d_{1} \delta_{1}, d_{2} \delta_{2}, d_{3} \delta_{3}\right), \tag{21}\\
& \Gamma_{3}=\sum_{\substack{d_{i}\left|P\left(z_{0}, z_{i}\right), i=1,2,3 \\
\delta_{i}\right| P\left(z_{0}\right), i=1,2,3}}\left|\kappa\left(d_{1}, d_{2}, d_{3}, \delta_{1}, \delta_{2}, \delta_{3}\right)\right| \Xi\left(x ; d_{1} \delta_{1}, d_{2} \delta_{2}, d_{3} \delta_{3}\right) .
\end{align*}
$$

In Section 5 we consider Γ_{3} by the method of [13] and [14]. We do not know much about the quantity $\Xi\left(x ; k_{1}, k_{2}, k_{3}\right)$ for individual large k_{1}, k_{2}, k_{3} (unless we use some hypotheses which have not been proved so far). However, in order to estimate Γ_{3} we need an estimate for $\Xi\left(x ; k_{1}, k_{2}, k_{3}\right)$ "on average", so we may refer to Bombieri-Vinogradov's theorem.

In Section 6 we treat Γ_{2} following the approach proposed by HeathBrown.

In Section 7 we estimate W from below using the method of Brüdern and Fouvry [1]. Suppose that the integers $d_{1}, d_{2}, d_{3}, \delta_{1}, \delta_{2}, \delta_{3}$ satisfy the conditions imposed in (21). From the explicit formula (31) we get

$$
\Omega\left(d_{1} \delta_{1}, d_{2} \delta_{2}, d_{3} \delta_{3}\right)=\Omega\left(d_{1}, d_{2}, d_{3}\right) \Omega\left(\delta_{1}, \delta_{2}, \delta_{3}\right) .
$$

Hence, by (17), (21) we obtain

$$
W=\sum_{i=1}^{6} L_{i} H_{i}-5 L_{7} H_{7},
$$

where $L_{i}, H_{i}, 1 \leq i \leq 7$, are defined by (75).
First we study the sums $H_{i}, 1 \leq i \leq 7$. The quantity D_{0}, defined by (1), is large enough with respect to z_{0}, so Rosser's weights $\lambda_{0}^{ \pm}\left(\delta_{i}\right)$ behave like the Möbius function (see Lemma 2). Hence we may approximate $H_{i}, 1 \leq i \leq 7$, by

$$
\begin{aligned}
\mathcal{D}\left(z_{0}\right) & =\sum_{\delta_{i} \mid P\left(z_{0}\right), i=1,2,3} \mu\left(\delta_{1}\right) \mu\left(\delta_{2}\right) \mu\left(\delta_{3}\right) \Omega\left(\delta_{1}, \delta_{2}, \delta_{3}\right) \\
& =\prod_{2<p<z_{0}}\left(1-\frac{3 p-8}{(p-1)(p-2)}\right) .
\end{aligned}
$$

Therefore W is close to the product $\mathcal{D}\left(z_{0}\right) W^{*}$, where

$$
\begin{aligned}
W^{*} & =\sum_{i=1}^{6} L_{i}-5 L_{7}=\sum_{i=1}^{3} L_{i}-2 L_{4} \\
& =\sum_{d_{i} \mid P\left(z_{0}, z_{i}\right),, i=1,2,3} \xi\left(d_{1}, d_{2}, d_{3}\right) \Omega\left(d_{1}, d_{2}, d_{3}\right)
\end{aligned}
$$

and where $\xi\left(d_{1}, d_{2}, d_{3}\right)$ is defined by (89). The summation in the last sum is taken over integers with no small prime factors. This enables us to approximate W^{*} with the sum

$$
\sum_{d_{i} \mid P\left(z_{0}, z_{i}\right), i=1,2,3} \frac{\xi\left(d_{1}, d_{2}, d_{3}\right)}{\varphi\left(d_{1}\right) \varphi\left(d_{2}\right) \varphi\left(d_{3}\right)}
$$

which we may estimate from below using Lemma 1.
Let us notice that the sixfold nature of the vector sieve is merely a technical device to treat small primes separately; in essence a three-dimensional vector sieve is being used.

In Section 8 we summarize the estimates from the previous sections and choose the constants $\mathcal{L}, \alpha_{1}, \alpha_{2}, \alpha_{3}$ in a suitable way in order to prove that

$$
\Gamma \gg x^{2} /(\log x)^{3} .
$$

The last estimate implies the proof of the Theorem.
4. Asymptotic formula for $I_{k_{1}, k_{2}, k_{3}}^{(1)}(x)$. The main result of this section is Lemma 10 in which an asymptotic formula for $I_{k_{1}, k_{2}, k_{3}}^{(1)}(x)$ is found.

Using (3) and (7) we get

$$
\begin{equation*}
I_{k_{1}, k_{2}, k_{3}}^{(1)}(x)=\sum_{q \leq Q} \sum_{\substack{a=0 \\(a, q)=1}}^{q-1} H(a, q), \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
H(a, q)=\int_{-1 /(q \tau)}^{1 /(q \tau)} S_{k_{1}}\left(\frac{a}{q}+\alpha\right) S_{k_{2}}\left(\frac{a}{q}+\alpha\right) S_{k_{3}}\left(-2 \frac{a}{q}-2 \alpha\right) d \alpha \tag{24}
\end{equation*}
$$

First we study the sums $S_{k_{i}}$ from the last expression, assuming that

$$
\begin{equation*}
|\alpha| \leq 1 /(q \tau), \quad q \leq Q, \quad(a, q)=1 \tag{25}
\end{equation*}
$$

Let $M(\alpha)$ and $\Delta(y, h)$ be defined by (4) and (10) and put

$$
\begin{equation*}
c_{k}(a, q)=\sum_{\substack{m=1 \\(m, q)=1 \\ m \equiv-2((k, q))}}^{q} e\left(\frac{a m}{q}\right), \quad c_{k}^{*}(a, q)=\sum_{\substack{m=1 \\(m, q)=1 \\ m \equiv-2((k, q))}}^{q} e\left(\frac{-2 a m}{q}\right) . \tag{26}
\end{equation*}
$$

We have the following

Lemma 9. Suppose that $k \leq \sqrt{x}$ is an odd integer and that (25) holds. Then

$$
\begin{align*}
S_{k}\left(\frac{a}{q}+\alpha\right) & =\frac{c_{k}(a, q)}{\varphi([k, q])} M(\alpha)+\mathcal{O}(Q(\log x) \Delta(2 x,[k, q])) \tag{27}\\
(28) \quad S_{k}\left(-2 \frac{a}{q}-2 \alpha\right) & =\frac{c_{k}^{*}(a, q)}{\varphi([k, q])} M(-2 \alpha)+\mathcal{O}(Q(\log x) \Delta(2 x,[k, q]))
\end{align*}
$$

We also have

$$
\begin{equation*}
\left|c_{k}(a, q)\right| \leq 1, \quad\left|c_{k}^{*}(a, q)\right| \leq 2 \tag{29}
\end{equation*}
$$

The proof of (27) may be found in [13], the proof of (28) is similar. The first of the inequalities (29) is proved in [12], p. 218, where an explicit formula for $c_{k}(a, q)$ is found. The second of the inequalities (29) may be established similarly.

Suppose that k_{1}, k_{2}, k_{3} are odd squarefree integers and define

$$
\begin{gather*}
\varphi_{2}(n)=n \prod_{p \mid n}\left(1-\frac{2}{p}\right), \quad \sigma_{0}=\prod_{p>2}\left(1-\frac{1}{(p-1)^{2}}\right) \tag{30}\\
\begin{aligned}
& \Omega\left(k_{1}, k_{2}, k_{3}\right) \\
&= \frac{\varphi_{2}^{2}\left(\left(k_{1}, k_{2}, k_{3}\right)\right) \varphi\left(\left(k_{1}, k_{2}\right)\right) \varphi\left(\left(k_{1}, k_{3}\right)\right) \varphi\left(\left(k_{2}, k_{3}\right)\right)}{\varphi\left(\left(k_{1}, k_{2}, k_{3}\right)\right) \varphi_{2}\left(\left(k_{1}, k_{2}\right)\right) \varphi_{2}\left(\left(k_{1}, k_{3}\right)\right) \varphi_{2}\left(\left(k_{2}, k_{3}\right)\right) \varphi\left(k_{1}\right) \varphi\left(k_{2}\right) \varphi\left(k_{3}\right)}, \\
& \begin{aligned}
\Xi\left(x ; k_{1}, k_{2}, k_{3}\right)= & \frac{x^{2} \log x}{k_{1} k_{2} k_{3}} \sum_{q>Q} \frac{\left(k_{1}, q\right)\left(k_{2}, q\right)\left(k_{3}, q\right) \log q}{q^{2}} \\
& +\frac{\tau^{2} \log x}{k_{1} k_{2} k_{3}} \sum_{q \leq Q}\left(k_{1}, q\right)\left(k_{2}, q\right)\left(k_{3}, q\right) \\
& +x Q^{2}(\log x)^{3} \sum_{q \leq Q}\left(\frac{\Delta\left(2 x,\left[k_{1}, q\right]\right)}{k_{2} k_{3}}\right. \\
& \left.+\frac{\Delta\left(2 x,\left[k_{2}, q\right]\right)}{k_{1} k_{3}}+\frac{\Delta\left(2 x,\left[k_{3}, q\right]\right)}{k_{1} k_{2}}\right)
\end{aligned}
\end{aligned} . \tag{31}
\end{gather*}
$$

We have
LEMMA 10. For any squarefree odd integers $k_{1}, k_{2}, k_{3} \leq \sqrt{x}$ the following asymptotic formula holds:

$$
I_{k_{1}, k_{2}, k_{3}}^{(1)}(x)=\sigma_{0} x^{2} \Omega\left(k_{1}, k_{2}, k_{3}\right)+\mathcal{O}\left(\Xi\left(x ; k_{1}, k_{2}, k_{3}\right)\right)
$$

Proof. Suppose that a, q, α satisfy (25). We use the trivial estimates

$$
\left|S_{k}\left(\frac{a}{q}+\alpha\right)\right| \ll \frac{x \log x}{k}, \quad|M(\alpha)| \ll x
$$

Lemma 8(v), Lemma 9 and (29) to obtain

$$
\text { 3) } \begin{align*}
& S_{k_{1}}\left(\frac{a}{q}+\alpha\right) S_{k_{2}}\left(\frac{a}{q}+\alpha\right) S_{k_{3}}\left(-2 \frac{a}{q}-2 \alpha\right) \tag{33}\\
= & \frac{c_{k_{1}}(a, q) c_{k_{2}}(a, q) c_{k_{3}}^{*}(a, q)}{\varphi\left(\left[k_{1}, q\right]\right) \varphi\left(\left[k_{2}, q\right]\right) \varphi\left(\left[k_{3}, q\right]\right)} M^{2}(\alpha) M(-2 \alpha) \\
& +\mathcal{O}\left(x^{2} Q(\log x)^{3}\left(\frac{\Delta\left(2 x,\left[k_{1}, q\right]\right)}{k_{2} k_{3}}+\frac{\Delta\left(2 x,\left[k_{2}, q\right]\right)}{k_{1} k_{3}}+\frac{\Delta\left(2 x,\left[k_{3}, q\right]\right)}{k_{1} k_{2}}\right)\right) .
\end{align*}
$$

Using (23)-(25) and (32) we see that the contribution to $I_{k_{1}, k_{2}, k_{3}}^{(1)}(x)$ arising from the error term in (33) is $\mathcal{O}\left(\Xi\left(x ; k_{1}, k_{2}, k_{3}\right)\right)$. Hence by (23), (24) and (33) we obtain

$$
\begin{align*}
I_{k_{1}, k_{2}, k_{3}}^{(1)}(x)= & \sum_{q \leq Q} \frac{b_{k_{1}, k_{2}, k_{3}}(q)}{\varphi\left(\left[k_{1}, q\right]\right) \varphi\left(\left[k_{2}, q\right]\right) \varphi\left(\left[k_{3}, q\right]\right)} \tag{34}\\
& \times \int_{-1 /(q \tau)}^{1 /(q \tau)} M^{2}(\alpha) M(-2 \alpha) d \alpha+\mathcal{O}\left(\Xi\left(x ; k_{1}, k_{2}, k_{3}\right)\right),
\end{align*}
$$

where

$$
\begin{equation*}
b_{k_{1}, k_{2}, k_{3}}(q)=\sum_{\substack{a=0 \\(a, q)=1}}^{q-1} c_{k_{1}}(a, q) c_{k_{2}}(a, q) c_{k_{3}}^{*}(a, q) . \tag{35}
\end{equation*}
$$

We know that

$$
\int_{-1 /(q \tau)}^{1 /(q \tau)} M^{2}(\alpha) M(-2 \alpha) d \alpha=\frac{1}{2} x^{2}+\mathcal{O}\left(q^{2} \tau^{2}\right)
$$

(see the proof of Theorem 3.3 from [16]). Therefore by (29), (32), (34), (35) and Lemma 8(v) we get

$$
\begin{equation*}
I_{k_{1}, k_{2}, k_{3}}^{(1)}(x)=\frac{1}{2} x^{2} \mathcal{B}+\mathcal{O}\left(\Xi\left(x ; k_{1}, k_{2}, k_{3}\right)\right), \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{B}=\sum_{q \leq Q} \frac{b_{k_{1}, k_{2}, k_{3}}(q)}{\varphi\left(\left[k_{1}, q\right]\right) \varphi\left(\left[k_{2}, q\right]\right) \varphi\left(\left[k_{3}, q\right]\right)} . \tag{37}
\end{equation*}
$$

Define

$$
\begin{align*}
h_{k_{1}, k_{2}, k_{3}}(q) & =\frac{b_{k_{1}, k_{2}, k_{3}}(q) \varphi\left(\left(k_{1}, q\right)\right) \varphi\left(\left(k_{2}, q\right)\right) \varphi\left(\left(k_{3}, q\right)\right)}{\varphi^{3}(q)}, \tag{38}\\
\eta_{k_{1}, k_{2}, k_{3}} & =\sum_{q=1}^{\infty} h_{k_{1}, k_{2}, k_{3}}(q) . \tag{39}
\end{align*}
$$

We apply (29), (35), (37)-(39), Lemma 8(v) and the identity

$$
\varphi([k, q]) \varphi((k, q))=\varphi(k) \varphi(q)
$$

to get

$$
\begin{equation*}
\mathcal{B}=\frac{\eta_{k_{1}, k_{2}, k_{3}}}{\varphi\left(k_{1}\right) \varphi\left(k_{2}\right) \varphi\left(k_{3}\right)}+\mathcal{O}\left(\frac{\log x}{k_{1} k_{2} k_{3}} \sum_{q>Q} \frac{\left(k_{1}, q\right)\left(k_{2}, q\right)\left(k_{3}, q\right) \log q}{q^{2}}\right) . \tag{40}
\end{equation*}
$$

It remains to compute $\eta_{k_{1}, k_{2}, k_{3}}$. It is easy to see that the function $h_{k_{1}, k_{2}, k_{3}}(q)$ is multiplicative with respect to q. We use (26), (35), (38) and after some calculations we get

$$
h_{k_{1}, k_{2}, k_{3}}\left(p^{m}\right)=0 \quad \text { for } m \geq 2 .
$$

Obviously $h_{k_{1}, k_{2}, k_{3}}(2)=1$. It is not difficult to find that for a prime $p>2$ we have: $h_{k_{1}, k_{2}, k_{3}}(p)=-1 /(p-1)^{2}$ if p divides no more than one of the numbers $k_{1}, k_{2}, k_{3} ; h_{k_{1}, k_{2}, k_{3}}(p)=1 /(p-1)$ if p divides exactly two of k_{1}, k_{2}, k_{3}; finally $h_{k_{1}, k_{2}, k_{3}}(p)=p-1$ if $p\left|k_{1}, p\right| k_{2}, p \mid k_{3}$. We apply Euler's identity (see [5], Theorem 286) and after some calculations we obtain

$$
\begin{align*}
\eta_{k_{1}, k_{2}, k_{3}}= & 2 \prod_{p>2}\left(1-\frac{1}{(p-1)^{2}}\right) \prod_{p \mid\left(k_{1}, k_{2}, k_{3}\right)} \frac{(p-2)^{2}}{p-1} \tag{41}\\
& \times \prod_{p \mid\left(k_{1}, k_{2}\right)} \frac{p-1}{p-2} \prod_{p \mid\left(k_{1}, k_{3}\right)} \frac{p-1}{p-2} \prod_{p \mid\left(k_{2}, k_{3}\right)} \frac{p-1}{p-2} .
\end{align*}
$$

The proof of the lemma follows from (30)-(32), (36), (40) and (41).
5. The estimate of Γ_{3}. The main result of this section is the following

Lemma 11. For the sum Γ_{3}, defined by (22), we have

$$
\Gamma_{3} \ll x^{2}(\log x)^{100-5 \mathcal{L}} .
$$

Proof. Using (1), (8), (17) and (22) we get

$$
\begin{equation*}
\Gamma_{3} \ll \sum_{k_{1}, k_{2}, k_{3} \leq H} \tau\left(k_{1}\right) \tau\left(k_{2}\right) \tau\left(k_{3}\right) \Xi\left(x ; k_{1}, k_{2}, k_{3}\right), \tag{42}
\end{equation*}
$$

where

$$
\begin{equation*}
H=x^{1 / 2}(\log x)^{-60 \mathcal{L}} \tag{43}
\end{equation*}
$$

We find by (32) and (42) that

$$
\begin{equation*}
\Gamma_{3} \ll x^{2}(\log x) \Sigma_{1}+\tau^{2}(\log x) \Sigma_{2}+x Q^{2}(\log x)^{3} \Sigma_{3}, \tag{44}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Sigma_{1}=\sum_{k_{1}, k_{2}, k_{3} \leq H} \frac{\tau\left(k_{1}\right) \tau\left(k_{2}\right) \tau\left(k_{3}\right)}{k_{1} k_{2} k_{3}} \sum_{q>Q} \frac{\left(k_{1}, q\right)\left(k_{2}, q\right)\left(k_{3}, q\right) \log q}{q^{2}}, \\
& \Sigma_{2}=\sum_{k_{1}, k_{2}, k_{3} \leq H} \frac{\tau\left(k_{1}\right) \tau\left(k_{2}\right) \tau\left(k_{3}\right)}{k_{1} k_{2} k_{3}} \sum_{q \leq Q}\left(k_{1}, q\right)\left(k_{2}, q\right)\left(k_{3}, q\right), \\
& \Sigma_{3}=\sum_{k_{1}, k_{2}, k_{3} \leq H} \frac{\tau\left(k_{1}\right) \tau\left(k_{2}\right) \tau\left(k_{3}\right)}{k_{2} k_{3}} \sum_{q \leq Q} \Delta\left(2 x,\left[k_{1}, q\right]\right) .
\end{aligned}
$$

Let us consider Σ_{1}. We have

$$
\begin{equation*}
\Sigma_{1}=\Sigma_{1}^{\prime}+\Sigma_{1}^{\prime \prime} \tag{45}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Sigma_{1}^{\prime}=\sum_{\substack{d_{1}, d_{2}, d_{3} \leq H \\
\left[d_{1}, d_{2}, d_{3}\right]>Q}} d_{1} d_{2} d_{3} \sum_{\substack{k_{1}, k_{2}, k_{3} \leq H \\
\left(k_{i}, q\right)=d_{i}, i=1,2,3}} \sum_{\substack{q>Q}} \frac{\tau\left(k_{1}\right) \tau\left(k_{2}\right) \tau\left(k_{3}\right) \log q}{k_{1} k_{2} k_{3} q^{2}}, \\
& \Sigma_{1}^{\prime \prime}=\sum_{\substack{ \\
\left[d_{1}, d_{2}, d_{3}\right] \leq Q}} d_{1} d_{2} d_{3} \sum_{\substack{k_{1}, k_{2}, k_{3} \leq H \\
\left(k_{i}, q\right)=d_{i}, i=1,2,3}} \sum_{q>Q} \frac{\tau\left(k_{1}\right) \tau\left(k_{2}\right) \tau\left(k_{3}\right) \log q}{k_{1} k_{2} k_{3} q^{2}} .
\end{aligned}
$$

First we estimate Σ_{1}^{\prime}. We use (2) and Lemma 8(iii), (iv) to get
(46) $\quad \Sigma_{1}^{\prime} \ll \sum_{\substack{d_{1}, d_{2}, d_{3} \leq H \\\left[d_{1}, d_{2}, d_{3}\right]>Q}} d_{1} d_{2} d_{3}$

$$
\begin{aligned}
& \times \sum_{\substack{k_{1}, k_{2}, k_{3} \leq H \\
k_{i} \equiv 0\left(d_{i}\right), i=1,2,3}} \sum_{\substack{q>Q \\
q \equiv 0 \\
\left(\left[d_{1}, d_{2}, d_{3}\right]\right)}} \frac{\tau\left(k_{1}\right) \tau\left(k_{2}\right) \tau\left(k_{3}\right) \log q}{k_{1} k_{2} k_{3} q^{2}} \\
& \ll(\log x) \sum_{\substack{d_{1}, d_{2}, d_{3} \leq H \\
\left[d_{1}, d_{2}, d_{3}\right]>Q}} \frac{\tau\left(d_{1}\right) \tau\left(d_{2}\right) \tau\left(d_{3}\right)}{\left[d_{1}, d_{2}, d_{3}\right]^{2}} \\
& \times \sum_{k_{i} \leq H / d_{i}, i=1,2,3} \frac{\tau\left(k_{1}\right) \tau\left(k_{2}\right) \tau\left(k_{3}\right)}{k_{1} k_{2} k_{3}} \sum_{q=1}^{\infty} \frac{1+\log q}{q^{2}} \\
& \ll(\log x)^{7} \sum_{h>Q} \frac{1}{h^{2}} \sum_{\substack{\left[d_{1}, d_{2}, d_{3}\right]=h}} \tau\left(d_{1}\right) \tau\left(d_{2}\right) \tau\left(d_{3}\right) \\
& \ll(\log x)^{7} \sum_{h>Q} \frac{\tau^{6}(h)}{h^{2}} \ll(\log x)^{7-5 \mathcal{L}} .
\end{aligned}
$$

For the sum $\Sigma_{1}^{\prime \prime}$ we get by (2) and Lemma 8(iii)

$$
\begin{align*}
& \Sigma_{1}^{\prime \prime} \ll \sum_{\left[d_{1}, d_{2}, d_{3}\right] \leq Q} d_{1} d_{2} d_{3} \tag{47}\\
& \times \sum_{\substack{k_{1}, k_{2}, k_{3} \leq H \\
k_{i} \equiv 0\left(d_{i}\right), i=1,2,3}} \sum_{\substack{q>Q \\
q \equiv 0 \\
\left(\left[d_{1}, d_{2}, d_{3}\right]\right)}} \frac{\tau\left(k_{1}\right) \tau\left(k_{2}\right) \tau\left(k_{3}\right) \log q}{k_{1} k_{2} k_{3} q^{2}} \\
& \ll(\log x) \sum_{\left[d_{1}, d_{2}, d_{3}\right] \leq Q} \frac{\tau\left(d_{1}\right) \tau\left(d_{2}\right) \tau\left(d_{3}\right)}{\left[d_{1}, d_{2}, d_{3}\right]^{2}} \\
& \times \sum_{k_{i} \leq H / d_{i}, i=1,2,3} \frac{\tau\left(k_{1}\right) \tau\left(k_{2}\right) \tau\left(k_{3}\right)}{k_{1} k_{2} k_{3}} \sum_{q>Q /\left[d_{1}, d_{2}, d_{3}\right]} \frac{\log q}{q^{2}} \\
& \ll(\log x)^{7} \sum_{\left[d_{1}, d_{2}, d_{3}\right] \leq Q} \frac{\tau\left(d_{1}\right) \tau\left(d_{2}\right) \tau\left(d_{3}\right)}{\left[d_{1}, d_{2}, d_{3}\right]^{2}} \cdot \frac{\log Q}{Q /\left[d_{1}, d_{2}, d_{3}\right]} \\
& \ll \frac{(\log x)^{7} \log Q}{Q} \sum_{h \leq Q} \frac{\tau^{6}(h)}{h} \ll(\log x)^{8-10 \mathcal{L}} .
\end{align*}
$$

We shall now treat Σ_{2}. We use again (2) and Lemma 8(iii) to find

$$
\begin{align*}
\Sigma_{2} & =\sum_{d_{1}, d_{2}, d_{3} \leq Q} d_{1} d_{2} d_{3} \sum_{\substack{k_{1}, k_{2}, k_{3} \leq H \\
\left(k_{i}, q\right)=d_{i}, i=1,2,3}} \sum_{q \leq Q} \frac{\tau\left(k_{1}\right) \tau\left(k_{2}\right) \tau\left(k_{3}\right)}{k_{1} k_{2} k_{3}} \tag{48}\\
& \ll \sum_{d_{1}, d_{2}, d_{3} \leq Q} \tau\left(d_{1}\right) \tau\left(d_{2}\right) \tau\left(d_{3}\right) \\
& \times \sum_{k_{i} \leq H / d_{i}, i=1,2,3} \frac{\tau\left(k_{1}\right) \tau\left(k_{2}\right) \tau\left(k_{3}\right)}{k_{1} k_{2} k_{3}} \sum_{q \leq Q /\left[d_{1}, d_{2}, d_{3}\right]} 1 \\
& \ll Q(\log x)^{6} \sum_{d_{1}, d_{2}, d_{3} \leq Q} \frac{\tau\left(d_{1}\right) \tau\left(d_{2}\right) \tau\left(d_{3}\right)}{\left[d_{1}, d_{2}, d_{3}\right]} \\
& \ll Q(\log x)^{6} \sum_{h \leq Q^{3}} \frac{\tau^{6}(h)}{h} \ll Q(\log x)^{7} .
\end{align*}
$$

Finally, we estimate Σ_{3}. By (2), (43), Lemma 5 and Lemma 8(iii) we get

$$
\begin{align*}
\Sigma_{3} & \ll(\log x)^{4} \sum_{k \leq H} \sum_{q \leq Q} \tau(k) \Delta(2 x,[k, q]) \tag{49}\\
& \ll(\log x)^{4} \sum_{h \leq H Q} \tau^{3}(h) \Delta(2 x, h) \\
& \ll(\log x)^{4}\left(\sum_{h \leq H Q} \tau^{6}(h) \Delta(2 x, h)\right)^{1 / 2}\left(\sum_{h \leq H Q} \Delta(2 x, h)\right)^{1 / 2}
\end{align*}
$$

$$
\begin{aligned}
& \ll(\log x)^{4}\left(x(\log x) \sum_{h \leq H Q} \frac{\tau^{6}(h)}{h}\right)^{1 / 2}\left(\sum_{h \leq H Q} \Delta(2 x, h)\right)^{1 / 2} \\
& \ll x(\log x)^{50-25 \mathcal{L}} .
\end{aligned}
$$

The assertion of the lemma follows from (44)-(49).
6. The estimate of Γ_{2}. In this section we estimate the sum Γ_{2} defined by (19). Define

$$
W(K, \alpha)=\sum_{k \leq K} \gamma_{k} S_{k}(2 \alpha),
$$

where γ_{k} are any numbers such that

$$
\begin{equation*}
\left|\gamma_{k}\right| \leq \tau(k) \quad \text { and } \quad \gamma_{k}=0 \quad \text { for } \quad 2 \mid k . \tag{50}
\end{equation*}
$$

In the next lemma we estimate $W(K, \alpha)$ uniformly for $\alpha \in E_{2}$, assuming that

$$
\begin{equation*}
K \leq x^{1 / 3}(\log x)^{-5 \mathcal{L}} . \tag{51}
\end{equation*}
$$

Lemma 12. Suppose that conditions (50) and (51) hold. We have

$$
\max _{\alpha \in E_{2}}|W(K, \alpha)| \ll x(\log x)^{350-2 \mathcal{L}} .
$$

Proof. We use the definition of $S_{k}(\alpha)$ and Lemma 8(iv) to get

$$
\begin{equation*}
W(K, \alpha)=W^{*}(K, \alpha)+\mathcal{O}\left(x^{2 / 3}\right), \tag{52}
\end{equation*}
$$

where

$$
W^{*}(K, \alpha)=\sum_{x<n \leq 2 x} \Lambda(n) e(2 \alpha n) \sum_{\substack{k \leq K \\ k \leq n+2}} \gamma_{k} .
$$

We apply Lemma 4 with $P=x, P_{1}=2 x, u=x^{0.001}, v=2^{30} x^{1 / 3}, z=x^{0.498}$ to decompose $W^{*}(K, \alpha)$ into $\mathcal{O}\left((\log x)^{6}\right)$ sums of two types.

Type I sums are

$$
W_{1}=\sum_{\substack{M<m \leq M_{1} \\ x<m l \leq 2 x}} \sum_{\substack{L \leq L_{1}}} a_{m} e(2 \alpha m l) \sum_{\substack{k \leq K \\ k \mid m l+2}} \gamma_{k}
$$

and

$$
W_{1}^{\prime}=\sum_{\substack{M<m \leq M_{1} \\ x<m l \leq 2 x}} \sum_{\substack{L<l \leq L_{1}}} a_{m}(\log l) e(2 \alpha m l) \sum_{\substack{k \leq K \\ k \mid m l+2}} \gamma_{k},
$$

where

$$
\begin{gather*}
M_{1} \leq 2 M, \quad L_{1} \leq 2 L, \quad M L \asymp x, \\
L \geq x^{0.498}, \quad\left|a_{m}\right| \ll \tau_{5}(m) \log x . \tag{53}
\end{gather*}
$$

Type II sums are

$$
W_{2}=\sum_{\substack{M<m \leq M_{1} \\ x<m l \leq 2 x}} \sum_{\substack{L<l \leq L_{1}}} a_{m} b_{l} e(2 \alpha m l) \sum_{\substack{k \leq K \\ k \mid m l+2}} \gamma_{k},
$$

where

$$
\begin{gather*}
M_{1} \leq 2 M, \quad L_{1} \leq 2 L, \quad M L \asymp x, \quad x^{0.001} \leq L \leq 2^{30} x^{1 / 3} \tag{54}\\
\left|a_{m}\right| \ll \tau_{5}(m) \log x, \quad\left|b_{l}\right| \ll \tau_{5}(l) \log x
\end{gather*}
$$

Let us consider type II sums. We have

$$
\left|W_{2}\right| \ll(\log x) \sum_{M<m \leq M_{1}} \tau_{5}(m)\left|\sum_{\substack{L<l \leq L_{1} \\ x<m l \leq 2 x \\ m l+2 \equiv 0(k)}} \sum_{\substack{k \leq K \\ m l}} b_{l} \gamma_{k} e(2 \alpha m l)\right| .
$$

Using Cauchy's inequality and Lemma 8(i) we get

$$
\begin{aligned}
\left|W_{2}\right|^{2}< & <M(\log x)^{26} \sum_{M<m \leq M_{1}}\left|\sum_{\substack{L<l \leq L_{1} \\
x<m l \leq 2 x \\
m l+2 \equiv 0(k)}} \sum_{k \leq K} b_{l} \gamma_{k} e(2 \alpha m l)\right|^{2} \\
= & M(\log x)^{26} \\
& \times \sum_{M<m \leq M_{1}} \sum_{\substack{L<l_{1}, l_{2} \leq L_{1} \\
x<l_{1} m, l_{2} m \leq 2 x \\
l_{i} m+2 \equiv 0\left(k_{i}\right), i=1,2}} \sum_{k_{1}, k_{2} \leq K} b_{l_{1}} \bar{b}_{l_{2}} \gamma_{k_{1}} \bar{\gamma}_{k_{2}} e\left(2 \alpha m\left(l_{1}-l_{2}\right)\right) .
\end{aligned}
$$

Therefore, by (50) and (54),

$$
\begin{equation*}
\left|W_{2}\right|^{2} \ll M(\log x)^{28} \sum_{\substack{k_{1}, k_{2} \leq K \\\left(k_{1} k_{2}, 2\right)=\left(l_{1}, k_{1}\right)=\left(l_{2}, k_{2}\right)=1}} \sum_{\substack{L<l_{1}, l_{2} \leq L_{1}\\}} \tau\left(k_{1}\right) \tau\left(k_{2}\right) \tau_{5}\left(l_{1}\right) \tau_{5}\left(l_{2}\right)|V| \tag{55}
\end{equation*}
$$

where

$$
\begin{gathered}
V=\sum_{\substack{M^{\prime}<m \leq M_{1}^{\prime} \\
l_{i} m+2 \equiv 0\left(k_{i}\right), i=1,2}} e\left(2 \alpha m\left(l_{1}-l_{2}\right)\right), \\
M^{\prime}=\max \left(\frac{x}{l_{1}}, \frac{x}{l_{2}}, M\right), \quad M_{1}^{\prime}=\min \left(\frac{2 x}{l_{1}}, \frac{2 x}{l_{2}}, M_{1}\right) .
\end{gathered}
$$

If the system of congruences $l_{i} m+2 \equiv 0\left(k_{i}\right), i=1,2$, is not solvable, then $V=0$. If it is solvable, then there exists some $f=f\left(l_{1}, l_{2}, k_{1}, k_{2}\right)$ such that the system $l_{i} m+2 \equiv 0\left(k_{i}\right), i=1,2$, is equivalent to $m \equiv f\left(\left[k_{1}, k_{2}\right]\right)$. In this
case we have

$$
\begin{aligned}
V & =\sum_{\substack{M^{\prime}<m \leq M_{1}^{\prime} \\
m \equiv f\left(\left[k_{1}, k_{2}\right]\right)}} e\left(2 \alpha m\left(l_{1}-l_{2}\right)\right) \\
& =\sum_{\left(M^{\prime}-f\right) /\left[k_{1}, k_{2}\right]<r \leq\left(M_{1}^{\prime}-f\right) /\left[k_{1}, k_{2}\right]} e\left(2 \alpha\left(f+r\left[k_{1}, k_{2}\right]\right)\left(l_{1}-l_{2}\right)\right) .
\end{aligned}
$$

Obviously

$$
|V| \ll M /\left[k_{1}, k_{2}\right] \quad \text { for } l_{1}=l_{2}
$$

If $l_{1} \neq l_{2}$ then by Lemma 6 we get

$$
|V| \ll \min \left(\frac{M}{\left[k_{1}, k_{2}\right]}, \frac{1}{\left\|2 \alpha\left(l_{1}-l_{2}\right)\left[k_{1}, k_{2}\right]\right\|}\right) .
$$

We substitute these estimates for $|V|$ in (55) and use Lemma 8(i) to find

$$
\begin{equation*}
\left|W_{2}\right|^{2} \ll M^{2} L V_{1}(\log x)^{52}+M V_{2}(\log x)^{28} \tag{56}
\end{equation*}
$$

where

$$
\begin{aligned}
V_{1}= & \sum_{k_{1}, k_{2} \leq K} \frac{\tau\left(k_{1}\right) \tau\left(k_{2}\right)}{\left[k_{1}, k_{2}\right]}, \\
V_{2}= & \sum_{k_{1}, k_{2} \leq K} \tau\left(k_{1}\right) \tau\left(k_{2}\right) \\
& \times \sum_{\substack{L<l_{1}, l_{2} \leq L_{1} \\
l_{1} \neq l_{2}}} \tau_{5}\left(l_{1}\right) \tau_{5}\left(l_{2}\right) \min \left(\frac{M}{\left[k_{1}, k_{2}\right]}, \frac{1}{\left\|2 \alpha\left(l_{1}-l_{2}\right)\left[k_{1}, k_{2}\right]\right\|}\right)
\end{aligned}
$$

Obviously

$$
\begin{equation*}
\sum_{\left[k_{1}, k_{2}\right]=h} \tau\left(k_{1}\right) \tau\left(k_{2}\right) \leq \tau^{4}(h) \tag{57}
\end{equation*}
$$

hence using Lemma 8(iii) we get

$$
\begin{equation*}
V_{1} \ll \sum_{h \leq K^{2}} \frac{\tau^{4}(h)}{h} \ll(\log x)^{16} \tag{58}
\end{equation*}
$$

Consider V_{2}. We have
(59) $\quad V_{2} \ll \sum_{h \leq K^{2}}\left(\sum_{\left[k_{1}, k_{2}\right]=h} \tau\left(k_{1}\right) \tau\left(k_{2}\right)\right)$

$$
\times \sum_{0<|r| \leq L}\left(\sum_{\substack{L<l_{1}, l_{2} \leq L_{1} \\ l_{1}-l_{2}=r}} \tau_{5}\left(l_{1}\right) \tau_{5}\left(l_{2}\right)\right) \min \left(\frac{M}{h}, \frac{1}{\|2 \alpha r h\|}\right) .
$$

Using Cauchy's inequality and Lemma 8(i) we get

$$
\begin{aligned}
\sum_{\substack{L<l_{1}, l_{2} \leq L_{1} \\
l_{1}-l_{2}=r}} \tau_{5}\left(l_{1}\right) \tau_{5}\left(l_{2}\right) & =\sum_{L<l, l+r \leq L_{1}} \tau_{5}(l+r) \tau_{5}(l) \\
& \leq\left(\sum_{L<l, l+r \leq L_{1}} \tau_{5}^{2}(l+r)\right)^{1 / 2}\left(\sum_{L<l, l+r \leq L_{1}} \tau_{5}^{2}(l)\right)^{1 / 2} \\
& \ll L(\log x)^{24}
\end{aligned}
$$

The last estimate and (57), (59) imply

$$
\begin{align*}
V_{2} & \ll L(\log x)^{24} \sum_{h \leq K^{2}} \tau^{4}(h) \sum_{1 \leq r \leq L} \min \left(\frac{M}{h}, \frac{1}{\|2 \alpha r h\|}\right) \tag{60}\\
& \ll L(\log x)^{25} \max _{H \leq K^{2}} V_{3},
\end{align*}
$$

where

$$
V_{3}=V_{3}(H)=\sum_{h \leq H} \tau^{4}(h) \sum_{1 \leq r \leq L} \min \left(\frac{M}{H}, \frac{1}{\|2 \alpha r h\|}\right)
$$

We have

$$
\begin{aligned}
V_{3} & =\sum_{m \leq 2 H L}\left(\sum_{\substack{h \leq H \\
2 r h=m}} \sum_{\substack{\leq r \leq L}} \tau^{4}(h)\right) \min \left(\frac{M}{H}, \frac{1}{\|\alpha m\|}\right) \\
& \ll \sum_{m \leq 2 H L} \tau^{5}(m) \min \left(\frac{M}{H}, \frac{1}{\|\alpha m\|}\right) .
\end{aligned}
$$

Therefore by Cauchy's inequality and Lemma 8(ii) we get
(61) $\quad V_{3} \ll\left(\sum_{m \leq 2 H L} \tau^{10}(m) \frac{M}{H}\right)^{1 / 2} V_{4}^{1 / 2} \ll M^{1 / 2} L^{1 / 2} V_{4}^{1 / 2}(\log x)^{550}$,
where

$$
V_{4}=\sum_{m \leq 2 H L} \min \left(\frac{M}{H}, \frac{1}{\|\alpha m\|}\right)
$$

If $\alpha \in E_{2}$ then there exist a and q such that

$$
\begin{equation*}
Q<q \leq \tau, \quad(a, q)=1, \quad|\alpha-a / q| \leq 1 / q^{2} \tag{62}
\end{equation*}
$$

We apply Lemma $7(\mathrm{i})$ and $(2),(51),(54),(60)$ to get

$$
\begin{aligned}
V_{4} & \ll M L\left(\frac{1}{q}+\frac{q}{M L}+\frac{H}{M}+\frac{1}{H L}\right) \log x \\
& \ll x\left(\frac{1}{Q}+\frac{K^{2}}{M}\right) \log x \ll x(\log x)^{1-10 \mathcal{L}}
\end{aligned}
$$

The last inequality and (54), (56), (58), (60), (61) imply

$$
\begin{equation*}
\left|W_{2}\right| \ll x(\log x)^{310-2 \mathcal{L}} \tag{63}
\end{equation*}
$$

Consider now the type I sum W_{1}. By (50) and (53) we find

$$
\begin{equation*}
\left|W_{1}\right| \ll(\log x) \sum_{\substack{k \leq K \\(k, 2)=1}} \tau(k) \sum_{\substack{M<m \leq M_{1} \\(m, k)=1}} \tau_{5}(m)|U| \tag{64}
\end{equation*}
$$

where

$$
\begin{gathered}
U=\sum_{\substack{L^{\prime}<l \leq L_{1}^{\prime} \\
m l+2 \equiv 0(k)}} e(2 \alpha m l) \\
L^{\prime}=\max (L, x / m), \quad L_{1}^{\prime}=\min \left(L_{1}, 2 x / m\right)
\end{gathered}
$$

Define \bar{m} by $m \bar{m} \equiv 1(k)$. We have

$$
U=\sum_{\substack{L^{\prime}<l \leq L_{1}^{\prime} \\ l \equiv-2 \bar{m}(k)}} e(2 \alpha m l)=\sum_{\left(L^{\prime}+2 \bar{m}\right) / k<r \leq\left(L_{1}^{\prime}+2 \bar{m}\right) / k} e(2 \alpha m(-2 \bar{m}+r k))
$$

By Lemma 6 and (53), (64),

$$
|U| \ll \min \left(\frac{x}{m k}, \frac{1}{\|2 \alpha m k\|}\right)
$$

We substitute the last estimate for $|U|$ in (64), we apply Cauchy's inequality,
Lemma 7(ii), Lemma 8(iii) and also (2), (51), (53), (62) to get

$$
\begin{align*}
\left|W_{1}\right| & \ll(\log x) \sum_{k \leq K} \tau(k) \sum_{M<m \leq M_{1}} \tau_{5}(m) \min \left(\frac{x}{m k}, \frac{1}{\|2 \alpha m k\|}\right) \tag{65}\\
& \ll(\log x) \sum_{n \leq 4 M K}\left(\sum_{k \leq K} \sum_{\substack{M<m \leq M_{1} \\
2 m k=n}} \tau(k) \tau_{5}(m)\right) \min \left(\frac{x}{n}, \frac{1}{\|\alpha n\|}\right) \\
& \ll(\log x) \sum_{n \leq 4 M K} \tau^{6}(n) \min \left(\frac{x}{n}, \frac{1}{\|\alpha n\|}\right) \\
& \ll(\log x)\left(\sum_{n \leq 4 M K} \frac{\tau^{12}(n)}{n} x\right)^{1 / 2}\left(\sum_{n \leq 4 M K} \min \left(\frac{x}{n}, \frac{1}{\|\alpha n\|}\right)\right)^{1 / 2} \\
& \ll x^{1 / 2}(\log x)^{2049}\left(x\left(\frac{1}{q}+\frac{q}{x}+\frac{M K}{x}\right) \log x\right)^{1 / 2} \\
& \ll x(\log x)^{2050-5 \mathcal{L}} .
\end{align*}
$$

To estimate W_{1}^{\prime} we apply Abel's formula and proceed in the same way to find

$$
\begin{equation*}
\left|W_{1}^{\prime}\right| \ll x(\log x)^{2050-5 \mathcal{L}} \tag{66}
\end{equation*}
$$

The assertion of the lemma follows from the inequality $\mathcal{L} \geq 1000$ and from (52), (63), (65) and (66).

Now we are in a position to estimate the sum Γ_{2}, defined by (19). The following lemma holds:

Lemma 13. We have

$$
\left|\Gamma_{2}\right| \ll x^{2}(\log x)^{370-2 \mathcal{L}}
$$

Proof. By (17), (19) we get

$$
\begin{equation*}
\Gamma_{2}=F_{1}+\ldots+F_{6}-5 F_{7} \tag{67}
\end{equation*}
$$

where

$$
\begin{aligned}
F_{1}= & \sum_{\substack{d_{i}\left|P\left(z_{0}, z_{i}\right), i=1,2,3 \\
\delta_{i}\right| P\left(z_{0}\right), i=1,2,3}} \lambda_{1}^{-}\left(d_{1}\right) \lambda_{2}^{+}\left(d_{2}\right) \lambda_{3}^{+}\left(d_{3}\right) \lambda_{0}^{+}\left(\delta_{1}\right) \lambda_{0}^{+}\left(\delta_{2}\right) \lambda_{0}^{+}\left(\delta_{3}\right) \\
& \times I_{d_{1} \delta_{1}, d_{2} \delta_{2}, d_{3} \delta_{3}}^{(2)}(x)
\end{aligned}
$$

the meaning of other F_{i} is clear. Let us estimate F_{1}. Using (1) and (8) we find

$$
\begin{equation*}
F_{1}=\sum_{k_{1}, k_{2} \leq \sqrt{x}} \sum_{k_{3} \leq x^{1 / 3} /(\log x)^{5 \mathcal{L}}} a_{1}\left(k_{1}\right) a_{2}\left(k_{2}\right) a_{3}\left(k_{3}\right) I_{k_{1}, k_{2}, k_{3}}^{(2)}(x) \tag{68}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{1}(k) & =\sum_{\substack{d\left|P\left(z_{0}, z_{1}\right) \\
\delta\right| P\left(z_{0}\right) \\
d \delta=k}} \lambda_{1}^{-}(d) \lambda_{0}^{+}(\delta), \\
a_{i}(k) & \sum_{\substack{d\left|P\left(z_{0}, z_{i}\right) \\
\delta\right| P\left(z_{0}\right) \\
d \delta=k}} \lambda_{i}^{+}(d) \lambda_{0}^{+}(\delta), \quad i=2,3 .
\end{aligned}
$$

Obviously

$$
\begin{equation*}
\left|a_{i}(k)\right| \leq \tau(k), \quad i=1,2,3 ; \quad a_{i}(k)=0 \quad \text { if } 2 \mid k \text { or } \mu(k)=0 \tag{69}
\end{equation*}
$$

We use (7), (68) and change the order of summation and integration to get

$$
F_{1}=\int_{E_{2}} \mathcal{H}_{1}(\alpha) \mathcal{H}_{2}(\alpha) \mathcal{H}_{3}(\alpha) d \alpha
$$

where

$$
\begin{align*}
& \mathcal{H}_{i}(\alpha)=\sum_{k \leq \sqrt{x}} a_{i}(k) S_{k}(\alpha), \quad i=1,2, \tag{70}\\
& \mathcal{H}_{3}(\alpha)=\sum_{k \leq x^{1 / 3} /(\log x)^{5} \mathrm{c}} a_{3}(k) S_{k}(-2 \alpha) .
\end{align*}
$$

Hence

$$
\begin{align*}
\left|F_{1}\right| & \ll \max _{\alpha \in E_{2}}\left|\mathcal{H}_{3}(\alpha)\right| \cdot \int_{0}^{1}\left|\mathcal{H}_{1}(\alpha) \mathcal{H}_{2}(\alpha)\right| d \alpha \tag{71}\\
& \ll \max _{\alpha \in E_{2}}\left|\mathcal{H}_{3}(\alpha)\right| \cdot\left(\int_{0}^{1}\left|\mathcal{H}_{1}(\alpha)\right|^{2} d \alpha\right)^{1 / 2}\left(\int_{0}^{1}\left|\mathcal{H}_{2}(\alpha)\right|^{2} d \alpha\right)^{1 / 2} .
\end{align*}
$$

By Lemma 12 and (69), (70) we get

$$
\begin{equation*}
\max _{\alpha \in E_{2}}\left|\mathcal{H}_{3}(\alpha)\right| \ll x(\log x)^{350-2 \mathcal{L}} \tag{72}
\end{equation*}
$$

It remains to estimate the integrals in formula (71). We use (4), (69) and (70) to obtain
(73) $\int_{0}^{1}\left|\mathcal{H}_{j}(\alpha)\right|^{2} d \alpha=\int_{0}^{1} \sum_{k_{1}, k_{2} \leq \sqrt{x}} a_{j}\left(k_{1}\right) \overline{a_{j}\left(k_{2}\right)}$

$$
\begin{aligned}
& \times \sum_{\substack{x<p_{1}, p_{2} \leq 2 x \\
p_{i}+2 \equiv 0\left(k_{i}\right), i=1,2}}\left(\log p_{1}\right)\left(\log p_{2}\right) e\left(\alpha\left(p_{1}-p_{2}\right)\right) d \alpha \\
&= \sum_{k_{1}, k_{2} \leq \sqrt{x}} a_{j}\left(k_{1}\right) \overline{a_{j}\left(k_{2}\right)} \sum_{\substack{x<p \leq 2 x \\
p+2 \equiv 0\left(\left[k_{1}, k_{2}\right]\right)}}(\log p)^{2} \\
& \ll x(\log x)^{2} \sum_{k_{1}, k_{2} \leq \sqrt{x}} \frac{\tau\left(k_{1}\right) \tau\left(k_{2}\right)}{\left[k_{1}, k_{2}\right]} \ll x(\log x)^{18} .
\end{aligned}
$$

Hence by (71)-(73) we find

$$
\left|F_{1}\right| \ll x^{2}(\log x)^{370-2 \mathcal{L}}
$$

It is clear that the same estimate holds for the other F_{i} too. Using (67) we obtain the statement of the lemma.
7. The main term. In this section we consider the sum W defined by (21). Suppose that the integers $d_{1}, d_{2}, d_{3}, \delta_{1}, \delta_{2}, \delta_{3}$ satisfy the conditions imposed in (21). Using (31) we easily get

$$
\Omega\left(d_{1} \delta_{1}, d_{2} \delta_{2}, d_{3} \delta_{3}\right)=\Omega\left(d_{1}, d_{2}, d_{3}\right) \Omega\left(\delta_{1}, \delta_{2}, \delta_{3}\right)
$$

Hence, by (17) and (21) we obtain

$$
\begin{equation*}
W=\sum_{i=1}^{6} L_{i} H_{i}-5 L_{7} H_{7} \tag{74}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{1}=\sum_{d_{i} \mid P\left(z_{0}, z_{i}\right), i=1,2,3} \lambda_{1}^{-}\left(d_{1}\right) \lambda_{2}^{+}\left(d_{2}\right) \lambda_{3}^{+}\left(d_{3}\right) \Omega\left(d_{1}, d_{2}, d_{3}\right) \tag{75}
\end{equation*}
$$

$$
\begin{aligned}
L_{2} & =\sum_{d_{i} \mid P\left(z_{0}, z_{i}\right), i=1,2,3} \lambda_{1}^{+}\left(d_{1}\right) \lambda_{2}^{-}\left(d_{2}\right) \lambda_{3}^{+}\left(d_{3}\right) \Omega\left(d_{1}, d_{2}, d_{3}\right), \\
L_{3} & =\sum_{d_{i} \mid P\left(z_{0}, z_{i}\right), i=1,2,3} \lambda_{1}^{+}\left(d_{1}\right) \lambda_{2}^{+}\left(d_{2}\right) \lambda_{3}^{-}\left(d_{3}\right) \Omega\left(d_{1}, d_{2}, d_{3}\right), \\
L_{4} & =L_{5}=L_{6}=L_{7} \\
& =\sum_{d_{i} \mid P\left(z_{0}, z_{i}\right), i=1,2,3} \lambda_{1}^{+}\left(d_{1}\right) \lambda_{2}^{+}\left(d_{2}\right) \lambda_{3}^{+}\left(d_{3}\right) \Omega\left(d_{1}, d_{2}, d_{3}\right),
\end{aligned}
$$

$$
\begin{equation*}
H_{1}=H_{2}=H_{3}=H_{7} \tag{75}
\end{equation*}
$$

[cont.]

$$
\begin{aligned}
& =\sum_{\delta_{i} \mid P\left(z_{0}\right), i=1,2,3} \lambda_{0}^{+}\left(\delta_{1}\right) \lambda_{0}^{+}\left(\delta_{2}\right) \lambda_{0}^{+}\left(\delta_{3}\right) \Omega\left(\delta_{1}, \delta_{2}, \delta_{3}\right), \\
H_{4} & =\sum_{\delta_{i} \mid P\left(z_{0}\right), i=1,2,3} \lambda_{0}^{-}\left(\delta_{1}\right) \lambda_{0}^{+}\left(\delta_{2}\right) \lambda_{0}^{+}\left(\delta_{3}\right) \Omega\left(\delta_{1}, \delta_{2}, \delta_{3}\right), \\
H_{5} & =\sum_{\delta_{i} \mid P\left(z_{0}\right), i=1,2,3} \lambda_{0}^{+}\left(\delta_{1}\right) \lambda_{0}^{-}\left(\delta_{2}\right) \lambda_{0}^{+}\left(\delta_{3}\right) \Omega\left(\delta_{1}, \delta_{2}, \delta_{3}\right), \\
H_{6} & =\sum_{\delta_{i} \mid P\left(z_{0}\right), i=1,2,3} \lambda_{0}^{+}\left(\delta_{1}\right) \lambda_{0}^{+}\left(\delta_{2}\right) \lambda_{0}^{-}\left(\delta_{3}\right) \Omega\left(\delta_{1}, \delta_{2}, \delta_{3}\right) .
\end{aligned}
$$

Note that the expressions for H_{4}, H_{5}, H_{6} are equal because of the symmetry with respect to $\delta_{1}, \delta_{2}, \delta_{3}$.

In the following lemma we find asymptotic formulas for the sums H_{i}.
Lemma 14. We have

$$
\begin{equation*}
H_{i}=\mathcal{D}\left(z_{0}\right)+\mathcal{O}\left(e^{-c \sqrt{\log x}}\right), \quad 1 \leq i \leq 7, \tag{76}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{D}\left(z_{0}\right)=\prod_{2<p<z_{0}}\left(1-\frac{3 p-8}{(p-1)(p-2)}\right), \quad \mathcal{D}\left(z_{0}\right) \asymp\left(\log z_{0}\right)^{-3} . \tag{77}
\end{equation*}
$$

Proof. The estimate (77) is clear. Let us prove (76). Consider, for example, H_{1}. By (31) we have

$$
\text { (78) } \begin{aligned}
H_{1}= & \sum_{\delta \mid P\left(z_{0}\right)} \frac{\varphi_{2}^{2}(\delta)}{\varphi(\delta)} \sum_{\substack{\delta_{1}, \delta_{2}, \delta_{3} \mid P\left(z_{0}\right) \\
\left(\delta_{1}, \delta_{2}, \delta_{3}\right)=\delta}} \lambda_{0}^{+}\left(\delta_{1}\right) \lambda_{0}^{+}\left(\delta_{2}\right) \lambda_{0}^{+}\left(\delta_{3}\right) \\
& \times \frac{\varphi\left(\left(\delta_{1}, \delta_{3}\right)\right) \varphi\left(\left(\delta_{2}, \delta_{3}\right)\right)}{\left.\varphi\left(\delta_{1}\right) \varphi\left(\delta_{2}\right) \varphi\left(\delta_{3}\right) \delta_{2}\right) \varphi\left(\left(\delta_{1}, \delta_{2}\right)\right) \varphi_{2}\left(\left(\delta_{1}, \delta_{3}\right)\right) \varphi_{2}\left(\left(\delta_{2}, \delta_{3}\right)\right)} \\
= & \sum_{\delta \mid P\left(z_{0}\right)} \frac{\varphi^{2}(\delta)}{\varphi_{2}(\delta)} \sum_{\substack{\delta_{1}, \delta_{2}, \delta_{3} \mid P\left(z_{0}\right) / \delta \\
\left(\delta_{1}, \delta_{2}, \delta_{3}\right)=1}} \lambda_{0}^{+}\left(\delta_{1} \delta\right) \lambda_{0}^{+}\left(\delta_{2} \delta\right) \lambda_{0}^{+}\left(\delta_{3} \delta\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times \frac{\varphi\left(\left(\delta_{1}, \delta_{2}\right)\right) \varphi\left(\left(\delta_{1}, \delta_{3}\right)\right) \varphi\left(\left(\delta_{2}, \delta_{3}\right)\right)}{\varphi\left(\delta_{1} \delta\right) \varphi\left(\delta_{2} \delta\right) \varphi\left(\delta_{3} \delta\right) \varphi_{2}\left(\left(\delta_{1}, \delta_{2}\right)\right) \varphi_{2}\left(\left(\delta_{1}, \delta_{3}\right)\right) \varphi_{2}\left(\left(\delta_{2}, \delta_{3}\right)\right)} \\
& =\sum_{\delta \mid P\left(z_{0}\right)} \frac{\varphi^{2}(\delta)}{\varphi_{2}(\delta)} \sum_{\delta_{1}, \delta_{2}, \delta_{3} \mid P\left(z_{0}\right) / \delta} \lambda_{0}^{+}\left(\delta_{1} \delta\right) \lambda_{0}^{+}\left(\delta_{2} \delta\right) \lambda_{0}^{+}\left(\delta_{3} \delta\right) \\
& \times\left(\sum_{t \mid\left(\delta_{1}, \delta_{2}, \delta_{3}\right)} \mu(t)\right) \\
& \times \frac{\varphi\left(\left(\delta_{1}, \delta_{2}\right)\right) \varphi\left(\left(\delta_{1}, \delta_{3}\right)\right) \varphi\left(\left(\delta_{2}, \delta_{3}\right)\right)}{\varphi\left(\delta_{1} \delta\right) \varphi\left(\delta_{2} \delta\right) \varphi\left(\delta_{3} \delta\right) \varphi_{2}\left(\left(\delta_{1}, \delta_{2}\right)\right) \varphi_{2}\left(\left(\delta_{1}, \delta_{3}\right)\right) \varphi_{2}\left(\left(\delta_{2}, \delta_{3}\right)\right)} \\
& =\sum_{\delta \mid P\left(z_{0}\right)} \frac{\varphi^{2}(\delta)}{\varphi_{2}(\delta)} \sum_{t \mid P\left(z_{0}\right) / \delta} \mu(t) \sum_{\substack{\delta_{1}, \delta_{2}, \delta_{3} \mid P\left(z_{0}\right) / \delta \\
\delta_{i}=0(t), i=1,2,3}} \lambda_{0}^{+}\left(\delta_{1} \delta\right) \lambda_{0}^{+}\left(\delta_{2} \delta\right) \lambda_{0}^{+}\left(\delta_{3} \delta\right) \\
& \times \frac{\varphi\left(\left(\delta_{1}, \delta_{2}\right)\right) \varphi\left(\left(\delta_{1}, \delta_{3}\right)\right) \varphi\left(\left(\delta_{2}, \delta_{3}\right)\right)}{\varphi\left(\delta_{1} \delta\right) \varphi\left(\delta_{2} \delta\right) \varphi\left(\delta_{3} \delta\right) \varphi_{2}\left(\left(\delta_{1}, \delta_{2}\right)\right) \varphi_{2}\left(\left(\delta_{1}, \delta_{3}\right)\right) \varphi_{2}\left(\left(\delta_{2}, \delta_{3}\right)\right)} \\
& =\sum_{\delta \mid P\left(z_{0}\right)} \frac{\varphi^{2}(\delta)}{\varphi_{2}(\delta)} \sum_{t \mid P\left(z_{0}\right) / \delta} \frac{\mu(t) \varphi^{3}(t)}{\varphi_{2}^{3}(t)} \\
& \times \sum_{\delta_{1}, \delta_{2}, \delta_{3} \mid P\left(z_{0}\right) /(\delta t)} \lambda_{0}^{+}\left(\delta_{1} \delta t\right) \lambda_{0}^{+}\left(\delta_{2} \delta t\right) \lambda_{0}^{+}\left(\delta_{3} \delta t\right) \\
& \times \frac{\varphi\left(\left(\delta_{1}, \delta_{2}\right)\right) \varphi\left(\left(\delta_{1}, \delta_{3}\right)\right) \varphi\left(\left(\delta_{2}, \delta_{3}\right)\right)}{\varphi\left(\delta_{1} \delta t\right) \varphi\left(\delta_{2} \delta t\right) \varphi\left(\delta_{3} \delta t\right) \varphi_{2}\left(\left(\delta_{1}, \delta_{2}\right)\right) \varphi_{2}\left(\left(\delta_{1}, \delta_{3}\right)\right) \varphi_{2}\left(\left(\delta_{2}, \delta_{3}\right)\right)} \\
& =\sum_{\delta \mid P\left(z_{0}\right)} \frac{\varphi^{2}(\delta)}{\varphi_{2}(\delta)} \sum_{t \mid P\left(z_{0}\right) / \delta} \frac{\mu(t) \varphi^{3}(t)}{\varphi_{2}^{3}(t)} \sum_{l_{1}, l_{2}, l_{3} \mid P\left(z_{0}\right) /(\delta t)} \frac{\varphi\left(l_{1}\right) \varphi\left(l_{2}\right) \varphi\left(l_{3}\right)}{\varphi_{2}\left(l_{1}\right) \varphi_{2}\left(l_{2}\right) \varphi_{2}\left(l_{3}\right)} \\
& \times \sum_{\substack{\delta_{1}, \delta_{2}, \delta_{3} \mid P\left(z_{0}\right) /(\delta t) \\
\left(\delta_{1}, \delta_{2}==_{3}, \delta_{2}, \delta_{1}, \delta_{3}\right)=l_{2} \\
\left(\delta_{2}, \delta_{3}\right)=l_{1}}} \frac{\lambda_{0}^{+}\left(\delta_{1} \delta t\right) \lambda_{0}^{+}\left(\delta_{2} \delta t\right) \lambda_{0}^{+}\left(\delta_{3} \delta t\right)}{\varphi\left(\delta_{1} \delta t\right) \varphi\left(\delta_{2} \delta t\right) \varphi\left(\delta_{3} \delta t\right)} \\
& =\sum_{\delta \mid P\left(z_{0}\right)} \frac{\varphi^{2}(\delta)}{\varphi_{2}(\delta)} \sum_{t \mid P\left(z_{0}\right) / \delta} \frac{\mu(t) \varphi^{3}(t)}{\varphi_{2}^{3}(t)} \sum_{l_{1}, l_{2}, l_{3} \mid P\left(z_{0}\right) /(\delta t)} \frac{\varphi\left(l_{1}\right) \varphi\left(l_{2}\right) \varphi\left(l_{3}\right)}{\varphi_{2}\left(l_{1}\right) \varphi_{2}\left(l_{2}\right) \varphi_{2}\left(l_{3}\right)} \\
& \times \sum_{\substack{\left.\delta_{1}, \delta_{2}, \delta_{3} \mid P\left(z_{0}\right) /(\delta t) \\
\delta_{1}=0\left(l_{2}, l_{3}\right)\right], \delta_{2}=0\left(l_{1}\right) \\
\delta_{3}=0\left(\left[l_{1}, l_{3}\right]\right)}} \frac{\lambda_{0}^{+}\left(\delta_{1} \delta t\right) \lambda_{0}^{+}\left(\delta_{2} \delta t\right) \lambda_{0}^{+}\left(\delta_{3} \delta t\right)}{\varphi\left(\delta_{1} \delta t\right) \varphi\left(\delta_{2} \delta t\right) \varphi\left(\delta_{3} \delta t\right)} \\
& \times \sum_{\substack{t_{1}\left|\left(\delta_{2} / l_{1}, \delta_{3} / l_{1}\right) \\
t_{2}\left(1 \delta_{1} / l_{2}, \delta_{3} / l_{2}\right) \\
t_{3}\right|\left(\delta_{1} / l_{3}, \delta_{2} / l_{3}\right)}} \mu\left(t_{1}\right) \mu\left(t_{2}\right) \mu\left(t_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{\delta \mid P\left(z_{0}\right)} \frac{\varphi^{2}(\delta)}{\varphi_{2}(\delta)} \sum_{t \mid P\left(z_{0}\right) / \delta} \frac{\mu(t) \varphi^{3}(t)}{\varphi_{2}^{3}(t)} \sum_{l_{1}, l_{2}, l_{3} \mid P\left(z_{0}\right) /(\delta t)} \frac{\varphi\left(l_{1}\right) \varphi\left(l_{2}\right) \varphi\left(l_{3}\right)}{\varphi_{2}\left(l_{1}\right) \varphi_{2}\left(l_{2}\right) \varphi_{2}\left(l_{3}\right)} \\
& \times \sum_{t_{i} \mid P\left(z_{0}\right) /\left(\delta t l_{i}\right), i=1,2,3} \mu\left(t_{1}\right) \mu\left(t_{2}\right) \mu\left(t_{3}\right) \mathcal{U}_{1} \mathcal{U}_{2} \mathcal{U}_{3},
\end{aligned}
$$

where

$$
\mathcal{U}_{i}=\sum_{\substack{h \mid P\left(z_{0}\right) \\ h \equiv 0\left(\varrho_{i}\right)}} \frac{\lambda_{0}^{+}(h)}{\varphi(h)}, \quad i=1,2,3
$$

and

$$
\begin{equation*}
\varrho_{1}=\left[\delta t, l_{2} t_{2}, l_{3} t_{3}\right], \quad \varrho_{2}=\left[l_{1} t_{1}, \delta t, l_{3} t_{3}\right], \quad \varrho_{3}=\left[l_{1} t_{1}, l_{2} t_{2}, \delta t\right] . \tag{79}
\end{equation*}
$$

Define

$$
\mathcal{M}_{i}=\sum_{\substack{h \mid P\left(z_{0}\right) \\ h \equiv 0\left(\varrho_{i}\right)}} \frac{\mu(h)}{\varphi(h)}, \quad i=1,2,3
$$

Using (1), (79) and Lemma 2 we get

$$
\begin{equation*}
\left|\mathcal{U}_{i}-\mathcal{M}_{i}\right| \ll \tau\left(\varrho_{i}\right) e^{-c \sqrt{\log x}}, \quad i=1,2,3 \tag{80}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\left|\mathcal{U}_{i}\right|,\left|\mathcal{M}_{i}\right| \leq \sum_{\substack{h \mid P\left(z_{0}\right) \\ h \equiv 0\left(\varrho_{i}\right)}} \frac{\mu^{2}(h)}{\varphi(h)} \ll \frac{\log x}{\varrho_{i}}, \quad i=1,2,3 \tag{81}
\end{equation*}
$$

Hence, by (80) and (81) we obtain

$$
\begin{equation*}
\mathcal{U}_{1} \mathcal{U}_{2} \mathcal{U}_{3}=\mathcal{M}_{1} \mathcal{M}_{2} \mathcal{M}_{3}+\mathcal{O}\left(\left(\frac{\tau\left(\varrho_{1}\right)}{\varrho_{2} \varrho_{3}}+\frac{\tau\left(\varrho_{2}\right)}{\varrho_{1} \varrho_{3}}+\frac{\tau\left(\varrho_{3}\right)}{\varrho_{1} \varrho_{2}}\right) e^{-c \sqrt{\log x}}\right) \tag{82}
\end{equation*}
$$

We substitute the last formula in (78) to get

$$
\begin{equation*}
H_{1}=H^{*}+R \tag{83}
\end{equation*}
$$

where

$$
\begin{aligned}
H^{*}= & \sum_{\delta \mid P\left(z_{0}\right)} \frac{\varphi^{2}(\delta)}{\varphi_{2}(\delta)} \sum_{t \mid P\left(z_{0}\right) / \delta} \frac{\mu(t) \varphi^{3}(t)}{\varphi_{2}^{3}(t)} \sum_{l_{1}, l_{2}, l_{3} \mid P\left(z_{0}\right) /(\delta t)} \frac{\varphi\left(l_{1}\right) \varphi\left(l_{2}\right) \varphi\left(l_{3}\right)}{\varphi_{2}\left(l_{1}\right) \varphi_{2}\left(l_{2}\right) \varphi_{2}\left(l_{3}\right)} \\
& \times \sum_{t_{i} \mid P\left(z_{0}\right) /\left(\delta t l_{i}\right), i=1,2,3} \mu\left(t_{1}\right) \mu\left(t_{2}\right) \mu\left(t_{3}\right) \mathcal{M}_{1} \mathcal{M}_{2} \mathcal{M}_{3}
\end{aligned}
$$

and where R is the contribution to (78) arising from the error term in (82).
We use (1), (78), (79), (82), Lemma 8(iii), and also the estimate

$$
\begin{equation*}
\varphi_{2}(n) \gg n(\log \log 10 n)^{-2} \quad \text { for } n \not \equiv 0(2) \tag{84}
\end{equation*}
$$

(which is an easy consequence of Lemma $8(\mathrm{v})$) to get

$$
\begin{align*}
& |R| \ll e^{-c \sqrt{\log x}} \sum_{\delta \mid P\left(z_{0}\right)} \delta \tag{85}\\
& \times \sum_{t \mid P\left(z_{0}\right) / \delta} \sum_{\substack{l_{1}, l_{2}, l_{3} \mid P\left(z_{0}\right) /(\delta t)}} \frac{\tau\left(\left[\delta t, l_{2} t_{2}, l_{3} t_{3}\right]\right)}{\sum_{\substack{\left.t_{i} \mid z_{0}\right) /\left(\delta t l_{i}\right)}} \frac{\tau\left(\delta t, l_{1} t_{1}, l_{3} t_{3}\right]\left[\delta t, l_{1} t_{1}, l_{2} t_{2}\right]}{}} \\
& \ll e^{-c \sqrt{\log x}} \sum_{d \mid P\left(z_{0}\right)} d \tau(d) \sum_{h_{1}, h_{2}, h_{3} \mid P\left(z_{0}\right) / d} \frac{\tau\left(h_{1}\right) \tau\left(h_{2}\right) \tau\left(h_{3}\right) \tau\left(\left[d, h_{2}, h_{3}\right]\right)}{\left[d, h_{1}, h_{3}\right]\left[d, h_{1}, h_{2}\right]} \\
& \ll e^{-c \sqrt{\log x}} \sum_{d \mid P\left(z_{0}\right)} \frac{\tau^{2}(d)}{d} \\
& \times \sum_{h_{1}, h_{2}, h_{3} \mid P\left(z_{0}\right) / d} \frac{\tau\left(h_{1}\right) \tau^{2}\left(h_{2}\right) \tau^{2}\left(h_{3}\right)\left(h_{1}, h_{3}\right)\left(h_{1}, h_{2}\right)}{h_{1}^{2} h_{2} h_{3}} \\
& \ll e^{-c \sqrt{\log x}} \sum_{d \mid P\left(z_{0}\right)} \frac{\tau^{2}(d)}{d} \\
& \times \sum_{h_{2}, h_{3} \mid P\left(z_{0}\right) / d} \frac{\tau^{2}\left(h_{2}\right) \tau^{2}\left(h_{3}\right)}{h_{2} h_{3}} \prod_{\substack{p \mid P\left(z_{0}\right) \\
p \nmid d}}\left(1+\frac{2\left(h_{2}, p\right)\left(h_{3}, p\right)}{p^{2}}\right) \\
& \ll e^{-c \sqrt{\log x}} \sum_{d \mid P\left(z_{0}\right)} \frac{\tau^{2}(d)}{d} \sum_{h_{2}, h_{3} \mid P\left(z_{0}\right) / d} \frac{\tau^{2}\left(h_{2}\right) \tau^{2}\left(h_{3}\right) \tau^{2}\left(\left(h_{2}, h_{3}\right)\right)}{h_{2} h_{3}} \\
& \ll e^{-c \sqrt{\log x}} \sum_{d \mid P\left(z_{0}\right)} \frac{\tau^{2}(d)}{d} \sum_{h_{2}, h_{3} \mid P\left(z_{0}\right) / d} \frac{\tau^{3}\left(h_{2}\right) \tau^{3}\left(h_{3}\right)}{h_{2} h_{3}} \ll e^{-c \sqrt{\log x}} .
\end{align*}
$$

Let us consider H^{*}. The calculations we did to obtain (78) are valid not only for $\lambda_{0}^{ \pm}$but for any functions, including Möbius' function. Therefore

$$
\begin{aligned}
H^{*}= & \sum_{\delta_{1}, \delta_{2}, \delta_{3} \mid P\left(z_{0}\right)} \mu\left(\delta_{1}\right) \mu\left(\delta_{2}\right) \mu\left(\delta_{3}\right) \Omega\left(\delta_{1}, \delta_{2}, \delta_{3}\right) \\
= & \sum_{\delta_{1}, \delta_{2} \mid P\left(z_{0}\right)} \frac{\mu\left(\delta_{1}\right) \mu\left(\delta_{2}\right) \varphi\left(\left(\delta_{1}, \delta_{2}\right)\right)}{\varphi\left(\delta_{1}\right) \varphi\left(\delta_{2}\right) \varphi_{2}\left(\left(\delta_{1}, \delta_{2}\right)\right)} \\
& \times \prod_{2<p<z_{0}}\left(1-\frac{\varphi_{2}^{2}\left(\left(\delta_{1}, \delta_{2}, p\right)\right) \varphi\left(\left(\delta_{1}, p\right)\right) \varphi\left(\left(\delta_{2}, p\right)\right)}{(p-1) \varphi\left(\left(\delta_{1}, \delta_{2}, p\right)\right) \varphi_{2}\left(\left(\delta_{1}, p\right)\right) \varphi_{2}\left(\left(\delta_{2}, p\right)\right)}\right) \\
= & \sum_{\substack{\delta_{1}, \delta_{2} \mid P\left(z_{0}\right) \\
\left(\delta_{1}, \delta_{2}\right)=1}} \frac{\mu\left(\delta_{1}\right) \mu\left(\delta_{2}\right)}{\varphi\left(\delta_{1}\right) \varphi\left(\delta_{2}\right)} \prod_{\substack{2<p<z_{0} \\
p \nmid \delta_{1} \delta_{2}}} \frac{p-2}{p-1} \prod_{p \mid \delta_{1}} \frac{p-3}{p-2} \prod_{p \mid \delta_{2}} \frac{p-3}{p-2}
\end{aligned}
$$

$$
=\prod_{2<p<z_{0}} \frac{p-2}{p-1} \cdot \sum_{\substack{\delta_{1}, \delta_{2} \mid P\left(z_{0}\right) \\\left(\delta_{1}, \delta_{2}\right)=1}} \frac{\mu\left(\delta_{1}\right) \mu\left(\delta_{2}\right) \varphi_{3}\left(\delta_{1}\right) \varphi_{3}\left(\delta_{2}\right)}{\varphi_{2}^{2}\left(\delta_{1}\right) \varphi_{2}^{2}\left(\delta_{2}\right)}
$$

where we have set

$$
\varphi_{3}(n)=n \prod_{p \mid n}\left(1-\frac{3}{p}\right)
$$

Hence, using (77) we find

$$
\begin{aligned}
H^{*}= & \prod_{2<p<z_{0}} \frac{p-2}{p-1} \cdot \sum_{\delta_{1} \mid P\left(z_{0}\right)} \frac{\mu\left(\delta_{1}\right) \varphi_{3}\left(\delta_{1}\right)}{\varphi_{2}^{2}\left(\delta_{1}\right)} \prod_{\substack{2<p<z_{0} \\
p \nmid \delta_{1}}}\left(1-\frac{p-3}{(p-2)^{2}}\right) \\
= & \prod_{2<p<z_{0}} \frac{p-2}{p-1} \prod_{2<p<z_{0}} \frac{p^{2}-5 p+7}{(p-2)^{2}} \\
& \times \sum_{\delta_{1} \mid P\left(z_{0}\right)} \mu\left(\delta_{1}\right) \varphi_{3}\left(\delta_{1}\right) \prod_{p \mid \delta_{1}}\left(p^{2}-5 p+7\right)^{-1} \\
= & \mathcal{D}\left(z_{0}\right) .
\end{aligned}
$$

From the last formula and (83), (85) we obtain

$$
H_{1}=\mathcal{D}\left(z_{0}\right)+\mathcal{O}\left(e^{-c \sqrt{\log x}}\right)
$$

We consider the other H_{i} in the same way, so Lemma 14 is proved.
In the next lemma we estimate from below the quantity W defined by (21). We put

$$
\begin{equation*}
\mathcal{F}\left(z_{0}, z_{i}\right)=\prod_{z_{0} \leq p<z_{i}}\left(1-\frac{1}{p-1}\right), \quad s_{i}=\frac{\log D_{i}}{\log z_{i}}, \quad i=1,2,3 \tag{86}
\end{equation*}
$$

Suppose that $c^{*}>0$ is an absolute constant and let $\theta_{i}, s_{i}, i=1,2,3$, satisfy

$$
\begin{equation*}
\theta_{1}+\theta_{2}+\theta_{3}=1, \quad \theta_{i}>0, \quad f\left(s_{i}\right)-2 \theta_{i} F\left(s_{i}\right)>c^{*}, \quad i=1,2,3 \tag{87}
\end{equation*}
$$

Lemma 15. On the hypotheses above we have

$$
W \geq \mathcal{D}\left(z_{0}\right) \prod_{j=1}^{3} \mathcal{F}\left(z_{0}, z_{j}\right)\left(\sum_{i=1}^{3}\left(f\left(s_{i}\right)-2 \theta_{i} F\left(s_{i}\right)\right)+\mathcal{O}\left((\log x)^{-1 / 3}\right)\right)
$$

Proof. Using (8), (31), (75), (84) and Lemma 8(iii), (v) we see that

$$
\left|L_{i}\right| \ll(\log x) \sum_{d_{1}, d_{2}, d_{3} \leq x} \frac{\left(d_{1}, d_{2}, d_{3}\right)}{d_{1} d_{2} d_{3}} \ll(\log x)^{5}, \quad 1 \leq i \leq 7
$$

By (74), (75), Lemma 14 and the last estimate we obtain

$$
\begin{equation*}
W=\mathcal{D}\left(z_{0}\right) W^{*}+\mathcal{O}\left(e^{-c \sqrt{\log x}}\right) \tag{88}
\end{equation*}
$$

where

$$
\begin{align*}
W^{*}= & \sum_{d_{i} \mid P\left(z_{0}, z_{i}\right), i=1,2,3} \xi\left(d_{1}, d_{2}, d_{3}\right) \Omega\left(d_{1}, d_{2}, d_{3}\right) \\
\xi\left(d_{1}, d_{2}, d_{3}\right)= & \lambda_{1}^{-}\left(d_{1}\right) \lambda_{2}^{+}\left(d_{2}\right) \lambda_{3}^{+}\left(d_{3}\right)+\lambda_{1}^{+}\left(d_{1}\right) \lambda_{2}^{-}\left(d_{2}\right) \lambda_{3}^{+}\left(d_{3}\right) \tag{89}\\
& +\lambda_{1}^{+}\left(d_{1}\right) \lambda_{2}^{+}\left(d_{2}\right) \lambda_{3}^{-}\left(d_{3}\right)-2 \lambda_{1}^{+}\left(d_{1}\right) \lambda_{2}^{+}\left(d_{2}\right) \lambda_{3}^{+}\left(d_{3}\right) .
\end{align*}
$$

We have

$$
\begin{equation*}
W^{*}=W_{1}+W_{1}^{\prime} \tag{90}
\end{equation*}
$$

where

$$
W_{1}=\sum_{\substack{d_{i} \mid P\left(z_{0}, z_{i}\right), i=1,2,3 \\\left(d_{1}, d_{2}\right)=\left(d_{1}, d_{3}\right)=\left(d_{2}, d_{3}\right)=1}} \xi\left(d_{1}, d_{2}, d_{3}\right) \Omega\left(d_{1}, d_{2}, d_{3}\right)
$$

and where W_{1}^{\prime} is the sum over $d_{i} \mid P\left(z_{0}, z_{i}\right), i=1,2,3$, such that $\left(d_{i}, d_{j}\right)>1$ for some $i \neq j$. For these d_{i}, d_{j} we certainly have $\left(d_{i}, d_{j}\right) \geq z_{0}$. Hence, by (31), (84), Lemma 8(iv), (v) we get

$$
\begin{align*}
\left|W_{1}^{\prime}\right| & \ll \sum_{\substack{d_{1}, d_{2}, d_{3} \leq x \\
\left(d_{1}, d_{2}\right) \geq z_{0}}} \Omega\left(d_{1}, d_{2}, d_{3}\right) \ll(\log x) \sum_{\substack{d_{1}, d_{2}, d_{3} \leq x \\
\left(d_{1}, d_{2}\right) \geq z_{0}}} \frac{\left(d_{1}, d_{2}, d_{3}\right)}{d_{1} d_{2} d_{3}} \tag{91}\\
& =(\log x) \sum_{z_{0} \leq t \leq x} \sum_{\substack{d_{1}, d_{2}, d_{3} \leq x \\
\left(d_{1}, d_{2}\right)=t}} \frac{\left(t, d_{3}\right)}{d_{1} d_{2} d_{3}} \\
& \ll(\log x) \sum_{z_{0} \leq t \leq x} \frac{1}{t^{2}} \sum_{d_{1}, d_{2} \leq x / t} \frac{1}{d_{1} d_{2}} \sum_{d_{3} \leq x} \frac{\left(t, d_{3}\right)}{d_{3}} \\
& \ll(\log x)^{3} \sum_{z_{0} \leq t \leq x} \frac{1}{t^{2}} \sum_{d \mid t} d \sum_{\substack{d_{3} \leq x \\
\left(d_{3}, t\right)=d}} \frac{1}{d_{3}} \\
& \ll(\log x)^{4} \sum_{z_{0} \leq t} \frac{\tau(t)}{t^{2}} \ll \frac{(\log x)^{4}}{z_{0}^{1 / 2}} .
\end{align*}
$$

Consider W_{1}. We have

$$
\begin{aligned}
W_{1}= & \sum_{\substack{d_{i} \mid P\left(z_{0}, z_{i}\right), i=1,2,3}} \frac{\xi\left(d_{1}, d_{2}, d_{3}\right)}{\varphi\left(d_{1}\right) \varphi\left(d_{2}\right) \varphi\left(d_{3}\right)} \sum_{\substack{l_{1}| |\left(d_{2}, d_{3}\right) \\
l_{2}\left|\left(d_{1}, d_{3}\right) \\
l_{3}\right|\left(d_{1}, d_{2}\right)}} \mu\left(l_{1}\right) \mu\left(l_{2}\right) \mu\left(l_{3}\right) \\
= & \sum_{\substack{l_{1}, l_{2}, l_{3} \mid P\left(z_{0}, z^{*}\right)}} \mu\left(l_{1}\right) \mu\left(l_{2}\right) \mu\left(l_{3}\right) \\
& \times \sum_{\substack{d_{i} \mid P\left(z_{0}, z_{i}\right), i=1,2,3 \\
d_{1} \equiv 0\left(\left[l_{2}, l_{3}\right]\right), d_{2} \equiv 0\left(\left[l_{1}, l_{3}\right]\right) \\
d_{3} \equiv 0\left(\left[l_{1}, l_{2}\right]\right)}} \frac{\xi\left(d_{1}, d_{2}, d_{3}\right)}{\varphi\left(d_{1}\right) \varphi\left(d_{2}\right) \varphi\left(d_{3}\right)}
\end{aligned}
$$

where $z^{*}=\max \left(z_{1}, z_{2}, z_{3}\right)$. We have

$$
\begin{equation*}
W_{1}=W_{2}+W_{2}^{\prime} \tag{92}
\end{equation*}
$$

where

$$
\begin{equation*}
W_{2}=\sum_{d_{i} \mid P\left(z_{0}, z_{i}\right), i=1,2,3} \frac{\xi\left(d_{1}, d_{2}, d_{3}\right)}{\varphi\left(d_{1}\right) \varphi\left(d_{2}\right) \varphi\left(d_{3}\right)} \tag{93}
\end{equation*}
$$

and where W_{2}^{\prime} is the sum over $l_{1}, l_{2}, l_{3} \mid P\left(z_{0}, z^{*}\right)$ such that $l_{j}>1$ for some j.
Obviously, such l_{j} satisfies $l_{j} \geq z_{0}$.
We use (1), (8), (89) and Lemma 8(v) to find

$$
\begin{align*}
&\left|W_{2}^{\prime}\right|<<(\log x) \sum_{\substack{l_{1}, l_{2}, l_{3} \leq x \\
z_{0} \leq l_{1}}} \mu^{2}\left(l_{1}\right) \mu^{2}\left(l_{2}\right) \mu^{2}\left(l_{3}\right) \tag{94}\\
& \times \sum_{\substack{\left.d_{1}, d_{2}, d_{3} \leq x \\
d_{1} \equiv 0 \\
\left(l_{2}, l_{3}\right]\right), d_{2} \equiv 0 \\
d_{3} \equiv 0\left(\left[l_{1}, l_{2}\right]\right)}} \frac{1}{d_{1} d_{2} d_{3}} \\
& \ll(\log x)^{4} \sum_{\substack{z_{0} \leq l_{1} \leq x \\
l_{2}, l_{3} \leq x}} \frac{\mu^{2}\left(l_{1}\right) \mu^{2}\left(l_{2}\right) \mu^{2}\left(l_{3}\right)\left(l_{1}, l_{2}\right)\left(l_{1}, l_{3}\right)\left(l_{2}, l_{3}\right)}{l_{1}^{2} l_{2}^{2} l_{3}^{2}} \\
& \ll(\log x)^{4} \sum_{\substack{z_{0} \leq l_{1} \leq x}} \frac{\mu^{2}\left(l_{1}\right)}{l_{1}^{2}} \sum_{l_{2} \leq x} \frac{\mu^{2}\left(l_{2}\right)\left(l_{1}, l_{2}\right)}{l_{2}^{2}} \\
& \times \prod_{p \leq x}\left(1+\frac{\left(l_{1}, p\right)\left(l_{2}, p\right)}{p^{2}}\right) \\
& \ll(\log x)^{5} \sum_{\substack{z_{0} \leq l_{1} \leq x}} \frac{\mu^{2}\left(l_{1}\right)}{l_{1}^{2}} \sum_{l_{2} \leq x} \frac{\mu^{2}\left(l_{2}\right)\left(l_{1}, l_{2}\right) \tau\left(\left(l_{1}, l_{2}\right)\right)}{l_{2}^{2}} \\
& \ll(\log x)^{5} \sum_{\substack{l_{0} \leq l_{1} \leq x}} \frac{\mu^{2}\left(l_{1}\right)}{l_{1}^{2}} \prod_{p \leq x}\left(1+\frac{\left(l_{1}, p\right) \tau\left(\left(l_{1}, p\right)\right)}{p^{2}}\right) \\
&<<(\log x)^{7} \sum_{z_{0} \leq l} \frac{\mu^{2}(l)}{l^{2}} \ll \frac{(\log x)^{7}}{z_{0}} .
\end{align*}
$$

Consider W_{2}. We find by (89) and (93) that

$$
W_{2}=G_{1}^{-} G_{2}^{+} G_{3}^{+}+G_{1}^{+} G_{2}^{-} G_{3}^{+}+G_{1}^{+} G_{2}^{+} G_{3}^{-}-2 G_{1}^{+} G_{2}^{+} G_{3}^{+}
$$

where

$$
G_{i}^{ \pm}=\sum_{d \mid P\left(z_{0}, z_{i}\right)} \frac{\lambda_{i}^{ \pm}(d)}{\varphi(d)}, \quad i=1,2,3
$$

Assume that (87) holds. We have

$$
\begin{equation*}
W_{2}=W_{2}^{(1)}+W_{2}^{(2)}+W_{2}^{(3)} \tag{95}
\end{equation*}
$$

where

$$
\begin{gathered}
W_{2}^{(1)}=\left(G_{1}^{-}-2 \theta_{1} G_{1}^{+}\right) G_{2}^{+} G_{3}^{+}, \quad W_{2}^{(2)}=\left(G_{2}^{-}-2 \theta_{2} G_{2}^{+}\right) G_{1}^{+} G_{3}^{+} \\
W_{2}^{(3)}=\left(G_{3}^{-}-2 \theta_{3} G_{3}^{+}\right) G_{1}^{+} G_{2}^{+}
\end{gathered}
$$

Consider, for example, $W_{2}^{(1)}$. Applying Lemma 1 and using (1), (86), (87) we get

$$
\begin{gathered}
\left(G_{1}^{-}-2 \theta_{1} G_{1}^{+}\right) \geq \mathcal{F}\left(z_{0}, z_{1}\right)\left(f\left(s_{1}\right)-2 \theta_{1} F\left(s_{1}\right)+\mathcal{O}\left((\log x)^{-1 / 3}\right)\right) \\
G_{i}^{+} \geq \mathcal{F}\left(z_{0}, z_{i}\right), \quad i=2,3
\end{gathered}
$$

Hence

$$
W_{2}^{(1)} \geq \prod_{j=1}^{3} \mathcal{F}\left(z_{0}, z_{j}\right) \cdot\left(f\left(s_{1}\right)-2 \theta_{1} F\left(s_{1}\right)+\mathcal{O}\left((\log x)^{-1 / 3}\right)\right)
$$

We find the corresponding estimates for $W_{2}^{(i)}, i=2,3$, similarly and we use (95) to get

$$
\begin{equation*}
W_{2} \geq \prod_{j=1}^{3} \mathcal{F}\left(z_{0}, z_{j}\right) \cdot\left(\sum_{i=1}^{3}\left(f\left(s_{i}\right)-2 \theta_{i} F\left(s_{i}\right)\right)+\mathcal{O}\left((\log x)^{-1 / 3}\right)\right) \tag{96}
\end{equation*}
$$

It remains to notice that

$$
\begin{equation*}
\mathcal{F}\left(z_{0}, z_{i}\right) \asymp \frac{\log z_{0}}{\log z_{i}} \tag{97}
\end{equation*}
$$

and the conclusion of the lemma follows from (1), (77), (88), (90)-(92), (94), (96) and (97).
8. Proof of the Theorem. Consider the sum

$$
\Gamma=\sum_{\substack{x<p_{1}, p_{2}, p_{3} \leq 2 x \\\left(p_{i}+2, P\left(z_{i}\right)\right)=1, i=1,2,3 \\ p_{1}+p_{2}=2 p_{3}}} \log p_{1} \log p_{2} \log p_{3} .
$$

We find (see (16), (18))

$$
\begin{equation*}
\Gamma \geq \Gamma_{1}+\Gamma_{2} \tag{98}
\end{equation*}
$$

where $\Gamma_{i}, i=1,2$, are defined by (19).
In Section 6, Lemma 13, we prove that

$$
\begin{equation*}
\left|\Gamma_{2}\right| \ll x^{2}(\log x)^{370-2 \mathcal{L}} \tag{99}
\end{equation*}
$$

For Γ_{1} we have (see (20))

$$
\begin{equation*}
\Gamma_{1}=\sigma_{0} x^{2} W+\mathcal{O}\left(\Gamma_{3}\right) \tag{100}
\end{equation*}
$$

where $W, \Gamma_{3}, \sigma_{0}$ are defined by (21), (22), (30).
In Section 5, Lemma 11, we estimate Γ_{3} to get

$$
\begin{equation*}
\Gamma_{3} \ll x^{2}(\log x)^{100-5 \mathcal{L}} . \tag{101}
\end{equation*}
$$

In Section 7, Lemma 15, we consider W. On the conditions (86) and (87) we find

$$
\begin{align*}
W \geq & \mathcal{D}\left(z_{0}\right) \prod_{j=1}^{3} \mathcal{F}\left(z_{0}, z_{j}\right) \tag{102}\\
& \times\left(\sum_{i=1}^{3}\left(f\left(s_{i}\right)-2 \theta_{i} F\left(s_{i}\right)\right)+\mathcal{O}\left((\log x)^{-1 / 3}\right)\right)
\end{align*}
$$

where $f(s)$ and $F(s)$ are the functions of the linear sieve. Hence, using (1), (77), (97)-(102) and assuming that $\mathcal{L}=1000$ we obtain

$$
\begin{align*}
\Gamma \geq & \sigma_{0} x^{2} \mathcal{D}\left(z_{0}\right) \prod_{j=1}^{3} \mathcal{F}\left(z_{0}, z_{j}\right) \tag{103}\\
& \times\left(\sum_{i=1}^{3}\left(f\left(s_{i}\right)-2 \theta_{i} F\left(s_{i}\right)\right)+\mathcal{O}\left((\log x)^{-1 / 3}\right)\right) .
\end{align*}
$$

For $2 \leq s \leq 3$ we have

$$
f(s)=\frac{2 e^{\gamma} \log (s-1)}{s}, \quad F(s)=\frac{2 e^{\gamma}}{s}
$$

(γ denotes Euler's constant). We choose

$$
\alpha_{1}=\alpha_{2}=0.167, \quad \alpha_{3}=0.116, \quad \theta_{1}=\theta_{2}=0.345, \quad \theta_{3}=0.31 .
$$

Then, by (1) and (86),

$$
s_{1}=s_{2}=(0.334)^{-1}+\mathcal{O}\left((\log x)^{-1 / 3}\right), \quad s_{3}=(0.348)^{-1}+\mathcal{O}\left((\log x)^{-1 / 3}\right)
$$

It is not difficult to compute that for sufficiently large x we have

$$
\begin{equation*}
f\left(s_{i}\right)-2 \theta_{i} F\left(s_{i}\right)>10^{-5}, \quad i=1,2,3 . \tag{104}
\end{equation*}
$$

Therefore, using (1), (77), (97), (103) and (104) we get

$$
\Gamma \gg x^{2} /(\log x)^{3} .
$$

By the last inequality and the definition of Γ we conclude that for some constant $c_{0}>0$ there are at least $c_{0} x^{2}(\log x)^{-6}$ triples of primes p_{1}, p_{2}, p_{3} satisfying $x<p_{1}, p_{2}, p_{3} \leq 2 x, p_{1}+p_{2}=2 p_{3}$ and such that for any prime factor p of $p_{1}+2$ or $p_{2}+2$ we have $p \geq x^{0.167}$ and for any prime factor p of $p_{3}+2$ we have $p \geq x^{0.116}$. Obviously, the number of trivial triples $p_{1}=p_{2}=p_{3}$ is $\mathcal{O}(x)$.

The proof of the Theorem is complete.

References

[1] J. Brüdern and E. Fouvry, Lagrange's Four Squares Theorem with almost prime variables, J. Reine Angew. Math. 454 (1994), 59-96.
[2] J. Chen, On the representation of a large even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973), 157-176.
[3] H. Davenport, Multiplicative Number Theory (revised by H. Montgomery), 2nd ed., Springer, 1980.
[4] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974.
[5] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
[6] D. R. Heath-Brown, Three primes and an almost-prime in arithmetic progression, J. London Math. Soc. (2) 23 (1981), 396-414.
[7] -, Prime numbers in short intervals and a generalized Vaughan identity, Canad. J. Math. 34 (1982), 1365-1377.
[8] H. Iwaniec, On sums of two norms from cubic fields, in: Journées de théorie additive des nombres, Université de Bordeaux I, 1977, 71-89.
[9] -, Rosser's sieve, Acta Arith. 36 (1980), 171-202.
[10] -, A new form of the error term in the linear sieve, ibid. 37 (1980), 307-320.
[11] A. A. Karatsuba, Principles of the Analytic Number Theory, Nauka, Moscow, 1983 (in Russian).
[12] H. Maier and C. Pomerance, Unusually large gaps between consecutive primes, Trans. Amer. Math. Soc. 322 (1990), 201-237.
[13] T. P. Peneva and D. I. Tolev, An additive problem with primes and almost-primes, Acta Arith. 83 (1998), 155-169.
[14] D. I. Tolev, On the number of representations of an odd integer as a sum of three primes, one of which belongs to an arithmetic progression, Proc. Steklov. Inst. Math. 218 (1997).
[15] J. G. van der Corput, Über Summen von Primzahlen und Primzahlquadraten, Math. Ann. 116 (1939), 1-50.
[16] R. C. Vaughan, The Hardy-Littlewood Method, Cambridge Univ. Press, 1981.
[17] I. M. Vinogradov, Representation of an odd number as a sum of three primes, Dokl. Akad. Nauk SSSR 15 (1937), 169-172 (in Russian).

Department of Mathematics
Plovdiv University "P. Hilendarski"
"Tsar Asen" 24
Plovdiv 4000, Bulgaria
E-mail: dtolev@ulcc.uni-plovdiv.bg

[^0]: 1991 Mathematics Subject Classification: 11N36, 11P32.

