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Arithmetic progressions of prime-almost-prime twins
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D. I. ToLEv (Plovdiv)

1. Introduction. In 1937 I. M. Vinogradov [17] proved that for every
sufficiently large odd integer N the equation

p1+p2+p3=N

has a solution in prime numbers p1, p2, ps.

Two years later van der Corput [15] used the method of Vinogradov
and established that there exist infinitely many arithmetic progressions of
three different primes. A corresponding result for progressions of four or
more primes has not been proved so far. In 1981, however, D. R. Heath-
Brown [6] proved that there exist infinitely many arithmetic progressions
of four different terms, three of which are primes and the fourth is Py (as
usual, P, denotes an integer with no more than r prime factors, counted
according to multiplicity).

A famous and still unsolved problem in Number Theory is the prime-
twins conjecture, which states that there exist infinitely many prime num-
bers p such that p + 2 is also a prime. This problem has been attacked by
many mathematicians in various ways. The reader may refer to Halberstam
and Richert’s monograph [4] for a detailed information. One of the most
important results in this direction belongs to Chen [2]. In 1973 he proved
that there exist infinitely many primes p such that p + 2 is Ps.

In the present paper we study the solvability of the equation p;+p2 = 2p3
in different primes p;, 1 < ¢ < 3, such that p; + 2 are almost-primes. The
first step in this direction was made recently by Peneva and the author. It
was proved in [13] that there exist infinitely many triples of different primes
satisfying p; + p2 = 2p3 and such that (p; + 2)(p2 + 2) = Py.

Suppose that x is a large real number and k1, ko are odd integers. Denote
by Dy, k,(z) the number of solutions of p; + p2 = 2ps3, * < p1, p2,ps < 3z,
in primes such that p; +2 = 0 (mod k;), ¢ = 1,2. The main result of [13]
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is a theorem of Bombieri-Vinogradov’s type for Dy, x,(z) stating that for
each A > 0 there exists B = B(A) > 0 such that
2
Z Z |Di, k() — (expected main term)| < (oga)A
ki,ka</z/(log x)”
(k1ks,2)=1
(see [13] for details). In [13] the Hardy—Littlewood circle method and the
Bombieri—-Vinogradov theorem were applied, as well as some arguments be-
longing to H. Mikawa. We should also mention the author’s earlier paper
[14] in which the same method was used.
In the present paper we apply the vector sieve, developed by Iwaniec [8]
and used also by Briidern and Fouvry in [1]. We prove the following

THEOREM. There exist infinitely many arithmetic progressions of three
different primes p1, p2, ps = +(p1 + p2) such that p1 + 2 = Ps, p2 + 2 = Pi,
p3 +2 = Psg.

By choosing the parameters in a different way we may obtain other
similar results, for example p; + 2 = Py, ps +2 = Ps, p3s + 2 = Py1. The
result would be better if it were possible to prove Lemma 12 for larger K.
For example, the validity of Lemma 12 for K = z'/27¢, ¢ > 0 arbitrarily
small, would imply the Theorem with p; +2 =P5,i=1,2,3.

Acknowledgments. The author wishes to thank Professor D. R. Heath-
Brown for an interesting conversation in March 1997 and for his follow-up
letter. The author is also grateful to Tempus-Phare Joint European Project
S-JEP-11087-96 for sponsoring his visit to England and to the Ministry of
Science and Education of Bulgaria, grant MM-430, for covering some other
expenses.

2. Notations and some lemmas. Let x be a sufficiently large real
number and let £, oy, a2, a3 be constants satisfying £ > 1000, 0 < a; < 1/4,

which we shall specify later. We put
0 zi=x%, i=1,2,3, z = (logz)*; Dy =exp((logz)®°),
Dy = Dy = 2% exp(—2(log 2)*%), D3 = z'/% exp(—2(log 2)*°).

Letters s, u, v, w, y, 2, o, 8, v, v, e, D, M, L, K, P, H denote real numbers;
m,n,d,a,q,l, k,r, h, t, § are integers; p, p1, p2, ... are prime numbers. As
usual p(n), ¢(n), A(n) denote Mébius’ function, Euler’s function and von
Mangoldt’s function, respectively; 74 (n) denotes the number of solutions of

the equation mq ... my = n in integers mq, ..., my; 7(n) = m2(n). We denote
by (mq,...,mg) and [mq, ..., mg] the greatest common divisor and the least
common multiple of my, ..., my, respectively. For real y, z, however, (y, z)

denotes the open interval on the real line with endpoints y and z. The
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meaning is always clear from the context. Instead of m = n (mod k) we
write for simplicity m = n (k). As usual, [y] denotes the integer part of
Y, ||ly|| the distance from y to the nearest integer, e(y) = exp(2miy). For
positive A and B we write A < B instead of A < B <« A. The letter ¢
denotes some positive real number, not the same in all appearances. This
convention allows us to write

(10g y)e—c\/logy < e—c\/log y’

for example.

We put
(2) = (logz)"*,  r=2Q7",
a 1 1 1
U U <_7+>7 E2:<_71_>\E17
qT q qT T T
q<Q
(a,q) 1
@) Sy = > (ogplelap), M(a)= 3 e(am),
r<p<l2x z<m<2x
p+2=0 (k)
(5) Tiy oo s () = > log p1 log p2 log ps.
x<p1,p2,p3<2x
pi+2=0(k;),i=1,2,3
p1+p2=2p3
Clearly

1

(6) Ty auks (%) = | S, (@)Sks () Sy (—20) da = Iy, 4 (@) + I, (),
0

where
(7) I, (@) = | Sk (@)Sks (@) (~20) dav, i = 1,2,
E;

If D is a positive number we consider Rosser’s weights A*(d) of order D
(see Iwaniec [9], [10]). Define A* (1) = 1, A*(d) = 0 if d is not squarefree. If
d=p1...p, with py > ... > p, we put

A(d) = (=1)" ifpr...pupy, <D forall 0 <1< (r—1)/2,
0 otherwise;

A (d) = { (=) ifpr...pyapy < Dforall 1 <1 <r/2,
0 otherwise.

We denote by )\fc(d) Rosser’s weights of order D;, 0 < i < 3. In particu-
lar, we have

(8) ANE(d) <1, X(d)=0ford>D;, 0<i<3.
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Let f(s) and F(s) denote the functions of the linear sieve. They are
continuous and satisfy

sF(s) = 2¢e” it 0<s<3,
sf(s)=0 if 0 <s<2,
(sF(s)) = f(s—1) if s> 3,

(sf(s))=F(s—1) ifs>2,
where v = 0.577... is the Euler constant.
Let P denote a set of primes. We put

P(w) = H p, Plwi,we) =
p<w
peP

P(ws)
P(wy)’

2§w1§w2.

The following lemma is one of the main results in sieve theory. For the
proof see [9], [10].

LEMMA 1. Suppose that P is any set of primes and w is a multiplicative
function satisfying

O<w(p)<p ifpeP, wp)=0 ifpgP,

-1
H (1_W(p)) Slogwg <1+ K )
P log wy log wy

w1 <p<wsz

for some K > 0 and for all 2 < wy < wo. Assume that )\i(d) are Rosser’s
weights of order D and let s = (log D)/(logw). We have

p<w d|P(w)
< H <1 _ “pf’))(F(s) + O(eV=(log D) ~1/3)),

provided that 2 < w < D, and

I(-57)= 2 vy

p<w d|P(w)
> T1 (1= 22 (569 + 0105 D)),

provided that 2 < w < DY/2. Moreover, for any integer n we have
DR () - () -~ P M ()
d|(n,P(w1,ws)) d|(n,P(w1,w2)) d|(n,P(w1,w2))

The next statement is Lemma 11 of [1], written in a slightly different
form.
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LEMMA 2. On the hypotheses of Lemma 1 let 0| P(w) and s > 2. We
have

Z )\i(d)wild) = Z ,u(d)wild) +O(T(8)(s™* + e\/E—S(log D)*l/?’)).
d|P(w) d|P(w)
d=0 (%) d=0 (9)

The next statement is the analog of Lemma 13 of [1]. The proof is almost
the same.

LEMMA 3. Suppose that A;, Azi, 1 <4 <6, are numbers satisfying A; =0
orl, Ay <A; <Af,1<i<6. Then
Ny Ao A3 Ay As g > AT AT AT AT AT AL + AT A AT AT AT A
+ AT AT A AT AT AL + AT AS AT AL AT AL
+ AT AT AT AT A AS + AT AF AT AT AT A
_ AT AT AT AT A AY
The next lemma, is Heath-Brown’s decomposition of the sum
(9) Y. Am)G(n)
P<n<P

into sums of two types.
Type I sums are

ZZ amG(ml) and ZZ am (log )G (ml),

M<m<M, M<m<M,
L<I<L, L<I<L,
P<mlI<P; P<ml<Py

where My < 2M, Ly < 2L, |ay,| < 75(m) log P.

Type II sums are
SN ambiG(m),

M<m<M,;
L<i<Ly
P<ml<P,

where My < 2M, Ly < 2L, |an,| < 75(m)log P, |b;| < 75(1) log P.
The following lemma comes from [7].

LEMMA 4. Let G(n) be a complex-valued function. Let P, Py, u, v, z
be positive numbers satisfying P > 2, P < 2P, 2 < u < v < z < P,
u? < 2z, 128uz? < Py, 218P; < v3. Then the sum (9) may be decomposed
into O((log P)%) sums, each of which is either of type I with L > z or of
type 11 with uw < L <w.

The next lemma is Bombieri-Vinogradov’s theorem (see [3], Chapter 28).
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LEMMA 5. Define

z
10 Ay, h) = max max logp — ——|.
(10) (y,h) = max max pz;z 8P~ 0

p=l(h)

For any A > 0 we have
Yoo Ak < :
) 1 A
K< V/T/ (o8 y) A+ (log )

For the proofs of the next two lemmas, see [11], Chapter 6, and [16],
Chapter 2.

LEMMA 6. If X > 1 then

|3 e(an)| < min (X, 2||1a||>'

n<X

LEMMA 7. Suppose that X,Y > 1, |a —a/q| < 1/¢*, (a,q) =1, ¢ > 1.
Then

(i) > min (Y 1) < 6(;( + 1>(Y+qlogq),

2 Y

Xy 1 1 1 q
ii min [ —, —— <<XY(++>log2Xq.
@ 2 (o o) . Ty Ty )X

Finally, in the next lemma we summarize some well-known properties of
the functions 7 (n) and p(n).

LEMMA 8. Let X > 2, k> 2, e > 0. We have
(1) Z i (n) < X(logX)k2_1, (ii) Z ™*(n) < X(logX)Qk_l,

n<X n<X
Tk(n) 2k . €
(iii) Z p < (log X)~, (iv) 7r(n) < n®,
n<X

n

p(n)

3. Outline of the proof. A reasonable approach to proving the theo-
rem would be to establish a Bombieri—Vinogradov type result for the sum
Ik, ks ks (), defined by (5). More precisely, it would be interesting to prove
that for each A > 0 there exists B = B(A) > 0 such that

, x
(11) Z Z Z [Tk ko ks () — (expected main term)| < S

log )4
k1,k2,k3<y/z/(logz)? (log )
(k1k2ks3,2)=1

(v) < loglog(10n).

2
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This estimate (or the estimate for the sum over squarefree k; only) would
imply the solvability of p; + ps = 2ps in different primes such that p; + 2,
i =1,2,3, are almost-primes.
Using (6) we see that (11) is a consequence of the estimates
2

(12) ZZ Z | ,gi),@ks( ) — (expected main term)| < LA

1
k1,ka,k3<v/z/(log x)® ( ngL‘)
(k1koks,2)=1

2

(13) ZZZ | z(cf)mk:g( )|<<(lo$7x)f4
k1,k2,ks</z/(log )" &
(k1kzks,2)=1

Proceeding as in [13] we may prove (12) provided that B and L are large
in terms of A (see the proof of Lemma 11). However, we are not able to
adapt the method of [13] in order to establish (13) and that is the reason
we cannot prove (11) at present.

It was noticed by Professor D. R. Heath-Brown that there exists some
v > 0 such that if 0y are any numbers satisfying |G| < 1 and if £ is large
in terms of A then

14
(14) max

Z BeSi (e ‘ (log z)A

k<zV

This observation enables us to find that
2

’ Z Z Z Bklﬁkzﬁkgllg?k27k3($) < (IOZET)A-
k1,ka<v/z/(logx)?  ks<a” &
(k1 kaks,2)=1
The last estimate may serve as an analog of (13).

We are able to prove (14) for any v < 1/3. A slightly different sum
is estimated in Lemma 12. Working in this way we are not able to apply
standard sieve results, as was done in [13]. In the present paper we use the
vector sieve of Iwaniec [8] and Briidern-Fouvry [1].

Suppose that P is the set of odd primes and consider the sum

I'= > log p1 log p2 log ps.
z<p1,p2,p3<2T
(pi+2,P(2:))=1,i=1,2,3
p1+p2=2p3
Any non-trivial estimate from below of I" implies the solvability of p; +ps =
2ps in primes such that p; + 2 = Py, h; = [a; '], i = 1,2,3. For technical
reasons we sieve by small primes separately. We have
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I'= Z (log p1 log p2 log p3) A1 A A3 A4 A5 A,
r<p1,p2,p3<2T
P1+p2=2p3
where
E: p(d) fori=1,2,3,
A, = d|(pi+2,P(20,2:))
Z u(d) fori=4,5,6.
d|(pi—3+2,P(20))
Set
> AE(d) fori=1,2,3,
(15) AE — d|(pi+2,P(20,2:))

' > AE(d)  for i =4,5,6.
d|(pi—3+2,P(20))

By Lemma 1 we have A; < A; < Aj, 1 < i < 6; consequently, we may
apply Lemma 3 to get

(16) I'>Ty= > (logpilogpslogps)(Ay AF AT AL AT AL
x<p1,p2,p3<2T
p1+p2=2p3
+ AT A AT AT AT AL + .+ AT AT AT AT AT AL
— AT A AT AT AT AD).

We use (5), (15) and change the order of summation to obtain

Iy = > K(di, d2,ds, 01,02, 03)1d,6,,d65,ds55 (%),

dilF’(Z(),Zi)7 ’L:172,3
8i|P(z0),i=1,2,3

where

(17)  k(dy,d2,ds,01,82,05) = A7 (d1)A3 (d2) A3 (d3)Ag (61)AS (2)Ag (Js)

(N (@M (d5)AE (5N (5225 (55)
— B (d1)A3 (d2) A5 (d3) A5 (81)Ag (92) A5 (03)-
Hence by (6) we get

(18) Io =17+ TI5%,
where
(19> Iy = Z R(dl’d2’d3’61’62’63)1525170!252,!1353 (1‘),

diIP(Zo,Zi), ’i=1,2,3
5¢|P(Z0), i:1,2,3

j=1,2.
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In Section 4, Lemma 10, we study I,S?k%k?) (z) for squarefree odd k1, ko, k3

< +/x and we find
I’gi?k27k3 (x) = 0'0.7329(]{?1, k27 k?’) + O(E(.’E, kl? k27 k?)))a

where the quantities on the right-hand side are defined by (30)—(32). There-
fore

(20) Iy = ogz®W + O(I3),
where
(21) W= > k(dy, da, ds, 01,02, 03)2(d101, do b2, dsds),

di|P(20,2:),i=1,2,3
5:|P(20),1=1,2,3
(22) Fg = Z ‘/{(dl,dz,dg,51,(52,(53)’5(1’;d1(51,d2(52,d3(53).
di|P(z0,2i),1=1,2,3
5:|P(20),1=1,2,3
In Section 5 we consider I3 by the method of [13] and [14]. We do not
know much about the quantity =(z; k1, k2, k3) for individual large k1, ko, k3
(unless we use some hypotheses which have not been proved so far). However,
in order to estimate I's we need an estimate for =(z; k1, k2, k3) “on average”,
so we may refer to Bombieri—Vinogradov’s theorem.
In Section 6 we treat I5 following the approach proposed by Heath-
Brown.
In Section 7 we estimate W from below using the method of Briidern
and Fouvry [1]. Suppose that the integers dy, da, ds, 01, d2, d3 satisfy the
conditions imposed in (21). From the explicit formula (31) we get

£2(d101,dg02,d3d3) = £2(d1,da, d3)§2(1, 62, 93).
Hence, by (17), (21) we obtain

6
W =Y L;H; — 5Ly Hr,
i=1
where L;, H;,1 < i <7, are defined by (75).
First we study the sums H;,1 <1i < 7. The quantity Dy, defined by (1),
is large enough with respect to 2y, so Rosser’s weights )\éc (6;) behave like the

Mobius function (see Lemma 2). Hence we may approximate H;,1 <i <7,
by

D(z0) = Yo (E)p(02)u(83) (81, 62, 53)

&AP(ZQ), i=1,2,3

- ()
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Therefore W is close to the product D(zg)W*, where

6 3
W*=> L;—5Ly =Y L;— 2Ly
=1 i=1

= > &(dy, da, ds)2(dy, da, d3)
dilp(ZQ,Zi), i=1,2,3
and where £(dy, d2, d3) is defined by (89). The summation in the last sum is
taken over integers with no small prime factors. This enables us to approx-
imate W* with the sum

£(dy,da, d3)
Z @(d1)p(d2)p(ds)’

which we may estimate from below using Lemma 1.

Let us notice that the sixfold nature of the vector sieve is merely a tech-
nical device to treat small primes separately; in essence a three-dimensional
vector sieve is being used.

In Section 8 we summarize the estimates from the previous sections and
choose the constants £, a1, as, a3 in a suitable way in order to prove that

I'> 2?/(logz)>.

The last estimate implies the proof of the Theorem.

diIP(ZQ,Zi), 121,2,3

4. Asymptotic formula for 1 ,S),Q k, (). The main result of this section

is Lemma 10 in which an asymptotic formula for 1 ,S) ko ks (%) 18 found.
Using (3) and (7) we get

(23) I @ = Z

<
=9 o
where
1/(qr) a a a
(24)  H(a,q) = S Sk, ( + a) Shs < + a> Shs <—2 — 2a> dov.
q q q
—1/(q7)
First we study the sums S, from the last expression, assuming that
(25) laf <1/(q7), ¢=<Q., (a,9) =1

Let M(a) and A(y, h) be defined by (4) and (10) and put

@ awa= > (™) dea= > o),

m=1 q m=1
(m,q)=1 (m,q)=1
m=—2((k,q)) m=-2((k,q))

We have the following
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LEMMA 9. Suppose that k < \/x is an odd integer and that (25) holds.
Then

@) = @) e
(27) sk<q+ ) DM (@) + O(QUUog ) A2e. b)),
(28) Sk<—2;‘—2a> .

We also have
(29) lek(a, @)l <1, feg(a,q)] < 2.

The proof of (27) may be found in [13], the proof of (28) is similar.
The first of the inequalities (29) is proved in [12], p. 218, where an explicit
formula for cx(a,q) is found. The second of the inequalities (29) may be
established similarly.

<a7§) M(—2a) + O(Q(log z) A(2z, [k, q))).

Suppose that ki, ko, k3 are odd squarefree integers and define

o sorall(2) T )

pln p>2
(31) Q(ky, ko, k3)
_ ©3((k1, k2, ks))p((k, k2))o((k1, ks))p((ka, ks))
(K1, ko, k3))p2((k1, ka))p2((k1, k3))pa((ka, ka))p(k1)p(ke)p(ks)’

x2 log (k1 Q)(k2 q) (k3 (J) log q
32)  E(xky, ko, ks) = I
( ) (:L', 1y 2, 3) k1k2k3 Z q2

>Q

72logx
k1,q)(k2, q)(ks,
ks q;?( 1,q)(k2,q) (K3, q)

T 2 T 3 A(va [lﬁ,Q])
+ 2Q*(log ) q;}<k2k3

A2z, [ka,q]) | A2z, [ks, q])
ks k1k23 >

We have

LEMMA 10. For any squarefree odd integers k1, ka, ks < v/ the following
asymptotic formula holds:

IV, (@) = 002 Qk1, ko, k) + O(E (s ky, ko, ks)).
Proof. Suppose that a,q, a satisfy (25). We use the trivial estimates

I
&(Zm)\«ﬂgm, M(o)] <z,
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Lemma 8(v), Lemma 9 and (29) to obtain

<q+ >5k< a 5k3<—23—2a>

¢k, (@, q)cr, (a, q)cg, (a, q)

o([k1, ) ([k2, a)e([ks, a])
+O<3:2Q(logx)3<A(2x’ [k17Q]) + A(Q.%', [k27Q]) + A(Q.%‘, [k37Q]>>)

M? (o) M (—2a)

k2 k3 k1 k3 kl kz

Using (23)—(25) and (32) we see that the contribution to I,g )k L, () arising
from the error term in (33) is O(Z(x; ky, ko, k3)). Hence by (23) (24) and
(33) we obtain

(34) (0 = 3 S ]bkl,kmg(?)

2= o(lkr, Do ([2, a)) o a)
1/(q7)
X g M?(a)M(—2a) da + O(Z (x5 k1, ko, k3)),
—1/(q7)
where
q—1
(35) Dk ko ks (@) = Dk (@,0) iy (0, 9)chy (0, q).
(@1
We know that
1/(qr)
M?*(@)M(—2a) do = 2% + O(¢*7?)
—1/(qr)

(see the proof of Theorem 3.3 from [16]). Therefore by (29), (32), (34), (35)
and Lemma 8(v) we get

(36) LY (@) = 122B+ O(Z (s ky, ko, ks)),
where
bkl k2,k3 (Q)
o S R (0 50 P (i
Define
(38) hkl,kz,kg (Q) _ bk17k27k3 (q)go((kl, q))(p((k% q))@((k?n Q))

©3(q) ’

oo
(39) Nk1,k2,ks = Z hk17k27k3 (Q)
q=1



Prime-almost-prime twins 79

We apply (29), (35), (37)—(39), Lemma 8(v) and the identity

o([k,a)e((k,q)) = w(k)e(q)
to get

Mk ko ks logx (k1,q)(k2,q)(k3, q) IOgQ>
40) B = = +0 .
R CE (= mRad (v 2 ’

It remains to compute 7, k, ks It is easy to see that the function hy, i, ks (q)
is multiplicative with respect to ¢. We use (26), (35), (38) and after some
calculations we get

hkl:kz,ka (pm) =0 form>2.

Obviously Ak, iy ks (2) = 1. It is not difficult to find that for a prime
p > 2 we have: hy, gk, (p) = —1/(p — 1)? if p divides no more than one of
the numbers ki, k2, k3; hi, ko5 (p) = 1/(p — 1) if p divides exactly two of
k1, ko, k3; finally hy, g, ks (p) = p — 1 if p| k1, p| ke, p|ks. We apply Euler’s
identity (see [5], Theorem 286) and after some calculations we obtain

1 p—2)?
(41) Mher ks kg = 2 | | <1 - 2) l l ( )
p>2 (p—1) p—1
p|(k1,k2,k3)

p—1 p—1 p—1
x H -9 H -9 H —9

p p p
pl(k1,k2) pl(k1,k3) pl(k2,k3)

The proof of the lemma follows from (30)—(32), (36), (40) and (41).

5. The estimate of I'5. The main result of this section is the following
LEMMA 11. For the sum I3, defined by (22), we have
Iy < 22(log ) 10052,

Proof. Using (1), (8), (17) and (22) we get

(42) Iy Y 7(ka)r(ko)7(ks) 2 (w5 K, ko, Kes),
ki ko, ks <H
where
(43) H = z/?(log x) %<,
We find by (32) and (42) that
(44) Iy < 2% (logz) Xy + 7% (log ) Yo + 2Q*(log 7)* X3,

where
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80
7(k1)7(k2)7(k3) (k1,q)(k2,q)(ks3, q)logq
= ,
' k kzk:<H keikaks Z g2
1,k2,k3< >Q
7(k1)7(k2)7(k3)
2y = k1,q)(k2,q)(ks,q),
D DU
1,R2,R3S <Q
7(k1)7(ko)T(k
Ty= Y ( 1)k(k2) (k2) 3" AQ@z, ki, q)).
Jox sz ks <H 23 4<Q
Let us consider Y. We have
(45) =5+ 3V,
where
D= Y didedy Y Z 7(ks) log g
dy,dz,ds <H b ko ks <H ¢>Q k1k2k3q
[d1,d2,ds]>Q (ki,q)=d;,i=1,2,3
7(ks3)lo
o= Y didedy Y Z k k k 3) g4,
[d1,d2,d3]<Q k1,k2,k3<H q>Q 1h2 3q

(kirq)=di,1=1,2,3

First we estimate . We use (2) and Lemma 8(iii), (iv) to get

(46)  Zi< ) didads
di,d2,ds<H

[d1,d2,d3]>Q
T(kl)T(kQ)T(kg) lqu
X Z Z k1k2k3q2
ki1,ko,ks<H >Q
ki=0(d;),i=1,2,3 q= 0([d1,d27d3])
7(d1)7(d2)7(d3)
< (logx

( & )d dzd<H [d17d27d3]2

1,d2,d3<

[d1,d2,d3]>Q

(k1)7(k2)7(k3) i 1+loggq

-
X Z k k k 2
ki<H/d;,i=1,2,3 123 q

<(logfn)7z% SO r(da)r(da)7(ds)

h>Q [dhdg,dg]:h

< (logz)? Z TGh(Qh) (log x)7—5<.

h>Q

g=1

For the sum XY we get by (2) and Lemma 8(iii)
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(47 X< Z didads

[d1,d2,d3]<Q
7(k1)7(k2)7(k3) log q
<Y Z Eahed?
ey kg s < H

>Q
k;=0(d;),i=1,2,3 q= 0([d1 dg,ds])

7(d1)7(d2)7(d3)
Z [d1, d2, d3]?

< (logx)
[dl’d27d3]§Q
T(k1)7(k2)7(k3) log ¢

<) >

k1kok 2
ki<H/d;,i=1,2,3 1rans 4>Q/ldrda.ds] 2

7(di)7(d2)7(d3)  log@Q
Z [d1,d2, d3)? Q/[d1,ds, ds]

< (logz)”
[d1,d2,d3]<Q
(log z)" log Q 76

« loge) 1050 5~

< (logz)8710¢,
h<Q

We shall now treat Y. We use again (2) and Lemma 8(iii) to find

(48) Sy= Y didads Y Z klkzkg 7(ks)

d1,d2,d3<Q ki,ko,ks<H q<Q
(kisq)=d;i,i=1,2,3

< Z 7(d1)7(d2)7(d3)

dy,d2,d3<Q
7(k1)7 (ko) (k3)
1
> Fukaks 2
kiSH/di,Z:1,2,3 qSQ/[dl,dQ,dg]
7(d1)7(d2)7(d3)
< Q(logz)®
Q< & ) d dzd< [d17d27d3]
1,d2,d3<Q
6(h
< Qogz)® Y Th() < Qlogz)".
h<Q3

Finally, we estimate X3. By (2), (43), Lemma 5 and Lemma 8(iii) we get

(49) I3 < (logz)* Y > r(k)A(2x, [k, q])

k<H q<Q

< (logz)* > 7°(h)A(2x,h)

h<HQ

<<(loga:)4(27'(h) 2xh> (Z A2xh>

h<HQ h<HQ
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-6 1/2 1/2

< (logx)4<:c(logx) Z }(Lh)> ( Z A(Qx,h)) /
h<HQ h<HQ

< x(log )20~ L,

The assertion of the lemma follows from (44)-(49).

6. The estimate of I5. In this section we estimate the sum I5 defined
by (19). Define

W(K,a) = Z TSk (20),

k<K
where 7, are any numbers such that

(50) |ve] < 7(k) and ~, =0 for 2|k.

In the next lemma we estimate W (K, «) uniformly for o € F5, assuming
that

(51) K < z'3(logz)~~.
LEMMA 12. Suppose that conditions (50) and (51) hold. We have
max [W(K, a)| < z(logz)3972£,

acks
Proof. We use the definition of S;(«) and Lemma 8(iv) to get
(52) W(K,a) = W*(K,a) + O3,

where

W*(K,0)= Y An)e(2an) > .

r<n<2x k<K
k|n+2
We apply Lemma 4 with P = z, P} = 2z, u = 20001y = 23021/3_ » = 40498

to decompose W*(K, «) into O((log x)%) sums of two types.
Type I sums are

W, = Z Z ame(2aml) Z Vi

M<m<M; L<I<L, k<K
r<ml<2zx k|ml+2
and
Wi = Z Z am (logl)e(2aml) Z Vi
M<m<M; L<I<L; k<K
z<ml<2z k|lml+2
where
My <2M, L1 <2L, ML=z,
(53)

L>2%19 a,| < 75(m)loga.
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Type II sums are

Wy = Z Z ambie(2aml) Z Vs

M<m<M; L<I<L;y k<K
r<ml<2x k|mi+2
where
(54) M; <2M, L <2L, MLx=xgz, 2000 <[ <230,1/3

lam| < 75(m)logx, |b| < 75(1) log z.

Let us consider type II sums. We have

[Ws| < (log x) Z T5(m)‘ Z meke@aml)’.
M<m<M,; L<I<L, k<K
z<ml<2x
ml+2=0 (k)

Using Cauchy’s inequality and Lemma 8(i) we get
2
|Ws|? < M (log z)%° Z ‘ Z Z bme(Zaml)‘
M<m<M, L<I<L; k<K

z<ml<2z
ml+2=0 (k)

= M (log )¢
x>y > > bk A eam(ly — 1)
M<m<M; L<ly,la<L; ki,ka<K

z<lim,lom<2zx
l;im+2=0 (k;),1=1,2

Therefore, by (50) and (54),

(55) [Wa|* < M(logz)®® > (k)7 (k2)75 (1) 75 (12) V'],

k1,ke<K L<l1,l2<L1
(k1k2,2)=(l1,k1)=(l2,k2)=1

where

V= > e(2am(ly — 1)),

M'<m< M|
l;m+2=0 (kl), 1=1,2

2 2
M’ = max E,E,M ,  M] =min £7j7M1 :
ll lg ll 12

If the system of congruences I;m + 2 = 0 (k;), i = 1,2, is not solvable, then
V = 0. If it is solvable, then there exists some f = f(ly,l2, k1, k2) such that
the system [;m+2 = 0(k;), i = 1,2, is equivalent to m = f ([ky1, k2]). In this
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case we have

V=" > eam( —1))
M'<m< M,
m=f ([k1,k2])

_ 3 e(2a(f + 7k, ko)) (I — 12)).

(M= f)/Tk1,ka]<r <(Mj—f)/[k1,k2]
Obviously
V| < M/[k1, ko] for ly = ls.
If [; # I3 then by Lemma 6 we get

|V\<<min< M ; ! >
k1, k2] [|20(ly — o) [kq, Ko

We substitute these estimates for |V in (55) and use Lemma 8(i) to find

(56) [Wa|? < M2LV;(log 2)%% + MVy(log )8,
where
T(k1)T(k
vi= Y ([kl) k:( ]2)7
ky ko <K 1, 2
V2 = Z T(kl)T(kQ)
k1, ko <K
M 1
X T5(l1)7'5(12)min< s >
L<ZIZZ;<L1 [F1, ko] " [|20(ly — I2) [k, Ko
LAl
Obviously
(57) > T(k)7(ke) < TN,
[k1,k2]=h

hence using Lemma 8(iii) we get
4(h
(58) Vi< ) f(L ) « (log )™,
h<K?
Consider V5. We have

(59) Va< Z( > T(kl)T(k2)>

h<K?2 [ki,k2]=h

INEDS 75(z1)75(12))mm(‘7‘:,Hzalrh”).

0<|r|<L  L<lila<IL;
ll—l2:7’
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Using Cauchy’s inequality and Lemma 8(i) we get

Z 75(l1)75(l2) = Z 75(L+ 7)75(0)

L<ly,l5<Ly L<l,l+r<L,
l1—l2=1"
) 1/2 ) 1/2
<( X #ue+n)"( X o)
L<li4+r<Ly L<l,l4+r<Ly

< L(log z)*.
The last estimate and (57), (59) imply
M 1
24 4 .
(60) Vo < L(logz)* )~ 74(h) > min (hH%eth>
h< K2 1<r<L

L( 25 V-
< L(logz) Jnax. Vs,

where

Vs=V3(H)=>_ 7*h) > min (A}f’w)

h<H 1<r<L
We have

M 1
V3 = E ( E E 7'4(h)> min <,)
m<2HL h<H1<r<L H " [lam]|
2rh=m

< 3 5(m)min (A; HoalmH>

m<2HL

Therefore by Cauchy’s inequality and Lemma 8(ii) we get

M 1/2
(61) V3,<<< > Tlo(m)> VP < MLV (log 1),

H
m<2HL
where
M 1
Vy= min (, >
mgm H [lam]|
If o € E5 then there exist a and ¢ such that
(62) Q<q<rt, (a,9)=1, |a—a/q <1/

We apply Lemma 7(i) and (2), (51), (54), (60) to get

1 ¢ H 1
Vi< ML -+ -1 + = 4+ — )1
1< <q+ML+M+HL>ng

<Lz L + K—Q logz < z(log2)'~10¢,
Q M



86 D. I. Tolev

The last inequality and (54), (56), (58), (60), (61) imply

(63) [Wa| < z(log x)31072£,
Consider now the type I sum W;. By (50) and (53) we find
(64) Wil < (logz) Y 7(k) Y m(m)|U],
k<K M<m<M,
(k,2)=1 (m.,k)=1
where

U= Z e(2aml),
L'<I<L]
ml+2=0 (k)

L' = max(L,x/m), L} =min(Ly,2z/m).
Define m by mm = 1 (k). We have

U= Z e(2aml) = Z e(2am(—2m + rk)).
L'<i<r, (L'42Mm) /k<r<(L}+2m)/k
l=-2m (k)

By Lemma 6 and (53), (64),

U] < mi T 1
min ( —, ——— .
mk’ || 2amkl|
We substitute the last estimate for |U| in (64), we apply Cauchy’s inequality,
Lemma 7(ii), Lemma 8(iii) and also (2), (51), (53), (62) to get

(65) W] < (logz) > T(k) . 75(m)min<x 1 >

mk’ || 2amk||
k<K M<m<M;

<tosn) (35 stmton)min (21

n<AMK k<K M<m<M;

2mk=n
z 1
< (log z) 75(n) min <, >
ng]\:“( n’ [an]|
712(n) 1/2 x 1 1/2
1 in (%,
<t 2 50 (2 Gon)

1 MK 1/2
< $1/2(logx)2049 (:B( + 4 + ) log:r)
qg = x

< $(10g $)205075£'

To estimate W/ we apply Abel’s formula and proceed in the same way to
find

(66) (W!| < z(log 2)2050~5¢
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The assertion of the lemma follows from the inequality £ > 1000 and from
(52), (63), (65) and (66).

Now we are in a position to estimate the sum I, defined by (19). The
following lemma holds:
LEMMA 13. We have
I < 2?(log x)37072£,
Proof. By (17), (19) we get
(67) Iy=F +...+Fs—5F,
where
k= > AT (d)AS (d2) A (d3)Ag (81)Ag (92)Ag (J3)
diIP(Zo,Zi),i:1,2,3
57;|P(ZU),’L':1,2,3
2) .
X I€(11517d252,d353 (’r)’

the meaning of other F; is clear. Let us estimate F;. Using (1) and (8) we
find

©8) F= Y Yo alk)az(kr)as(ks) I, (@),
k1,ke<yz k3<zl/3/(logx)5~
where
a(k) = > A (DA (9),
le(Zo,Zl)

5| P(z0)
ds=k

aik) =" Y A@AE@), i=23.
le(Zo,Zi)
6|P 2:0)
do=k
Obviously
(69) la; (k)| < 7(k), i=1,2,3; ai(k)=0 if 2|k or u(k)=0.
We use (7), (68) and change the order of summation and integration to get

Fy = S Hi(a)Ha () Hsz(a) do,

Eo
where
Hl(a) = Z az(k‘)Sk(Oé), = 1127
(70) kv

Hs(a) = > as(k)Sk(—2a).

k<zl/3/(log z)5£
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Hence
1
(7)) [Fi] < max [Hz(a)] - | [Hi(a)Ha(a)| do
2 0
1

< max [Ha(a)| - (S|H1(a)|2da)l/2(§|H2(a)|2da)
0 0

acFEs

1/2

By Lemma 12 and (69), (70) we get

(72) max H3(a)| < z(logz)35972£,

It remains to estimate the integrals in formula (71). We use (4), (69) and
(70) to obtain

1

(73) | [Hj(a)* da =

O by

Z k2)
b1 k2 SVE

X Z (log p1)(log p2)e(a(pr — p2)) dox

z<p1,p2<2z
p;+2=0 (k;),i=1,2

= E a;(k1)a;(k2) E (log p)®
kl,kggﬁ a:<p§2w
p+2EO ([k)l ,k:g])

ky)T(k
< z(logx)? Z 7(k1)(ks) < z(logz)'®
k1, ka<A/T [k17k2]
Hence by (71)—(73) we find
|F1| < 22(log 2)37072£,

It is clear that the same estimate holds for the other F; too. Using (67) we
obtain the statement of the lemma.

7. The main term. In this section we consider the sum W defined
by (21). Suppose that the integers dy, da, ds, 01, d2, 03 satisfy the conditions
imposed in (21). Using (31) we easily get

£2(d161,d202,d303) = §2(dy, dz, d3)§2(51, 02, 03).
Hence, by (17) and (21) we obtain

6
(74) W =) L;H; - 5L H,
=1
where
(75) L= > AL (d)AS (do) A (d3)2(dy, dg, ds),

dilp(Zo,Zi), i=1,2,3
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Ly = > A (d)AS (do)AF (d3)2(dy, dy, ds),
dilp(ZQ,Zi),i:1,2,3
Ly = > AT (d1)A3 (d2)A; (d3)$2(dy, da, d3),

dilp(ZQ,Zi),’L':LQ,:‘S
Ly=Ls=Lg=1Lr
= > AT (d1)AS (d2)Nf (ds)$2(dy, da, d3),
dz'lP(Zo,Zi),iZ].,Q,S
(75) Hy, = Hy, = Hy = H;

feont = A OO (8N (53)92(61, 85,6
> (6T (82)A (83)92(61, 62, 53),
6i|P(Zo),i:1,2,3

Hy = > Ao (81)Ag (92)Ag (03)2(81, 02, 33),
5,L'|P(Zo),i=1,2,3

Hs= > AJ(00)A5 (52)A] (63) (1,62, 83),
(5i|P(ZD),i=1,2,3

Hg = > MG (8L (82)Ag (83)92(81, 52, 53).

(57;|P(Zo), i=1,2,3

Note that the expressions for Hy, Hs, Hg are equal because of the symmetry
with respect to d1, da, d3.
In the following lemma we find asymptotic formulas for the sums H;.

LEMMA 14. We have

(76) H; = D(z) + O(e~V1ee7) 1<i<7,
where

= __3p—8 20) = (log z9) 3
™ o= T (1- 22t s) Dleo) = o)™

Proof. The estimate (77) is clear. Let us prove (76). Consider, for ex-
ample, H;. By (31) we have

2
@ = Y DS e G )
5| P(z0) ¥ 81,02,03| P (z0)
(61,62,03)=0

©((01,02)) (01, 03)) (02, 03))
©(61)p(02)(d3)p2((61,02))p2((d1, 03) ) p2((d2, d3))

=y 2 S GN8N (539)
5| P(z0)

S02

0
220) 5 s oalBeayo
(61,62,63)=1

X
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©((61,02))p((01,03))e((d2,03))
©(010)p(020)9(030)p2((61, 62))p2((d1, d3))p2((02, 03))

X

2
4 ( S AT G1)AT (5205 (60)
6|P(z0) 81,62,03|P(20)/8

< ( Z u(t))

t|(61,02,03)

©((61,02))p((1,03))¢((d2,03))
©(010)9(020)¢(030)p2((d1, 62) )2 ((d1, d3))p2((02, 03))

25

@Eé Sty Y AG10)AT (620)A (89)
t|P(20)/6 01,02,03|P(z0)/6

8;=0(t),i=1,2,3

©((61,02))p((01,03))p((d2,63))
©(616)p(620)0(030)p2((01, 02)) 2 ((01, 03) ) p2((2, 03))

X

~—

6| P(zo0)

¢*(9) p(t)e*(t)
5170 #2(0) t|P<Z>/6 #3(t)
X > AL (8100)AS (8200) AT (8301)
81,02,03|P(z0)/(5t)
y ¢((01,02))¢((01,3)) (02, 3))
©(616t)p(626t) (836t )p2((d1,62))p2((d1,63))p2((d2, J3))
©*(9) (1) (t) 3 p(l)p(l2)p(ls)
©2(0) P3(t pa2(l1)p2(l2)pa(ls)

) l1,l2,l3| P(20)/(6t)
§10t)AG (020t) A (036t)

>\+
: Z ¢! 010t)p(926t) (630t
81,02,03|P(20)/(5t) ©(6101)¢(020t)p(d301)
(81,62)=ls, (61,63)=l2
(52 53) I

0*( 1()®(t) p(l)e(lz)e(ls)
2 902() 2 o3t 2 pa(l1)p2(l2)p2(l3)
51P(z0) t|P(20)/6 11,02,13] P(20)/(5¢)

Mg (6160 AT (826t) AS (8361)
Z ©(610t)p(d26t)p(036t)

X
81,02,05|P(20)/ (1)

6150 ([lg,lg}), 5250 ([ll,lg])
5350 ([l1:l2D

Xy () p(t)p(ts)

t1|(62/11,85/11)
t2|(61/12,85/12)
t3](61/13,82/13)
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B ©2(0) ,u,t)?’ e(l1)p(l2)e(ls)
a Z p2(6) Z () Z

5P (20) 1P (20)/6 bt el Loy o1y £2 (1) P2(12)2(15)
x > pu(t1) p(t) (s )UhlsUs,

ti|P(z0)/(5tli), i:1,2,3

‘G

where
A (h
U= > 0(%)), i=1,2,3
WPGo) ¥
h=0 (¢:)
and

(79) 01 = [0t lata, Ists], 02 = [lit1, 0L, l3ts], 03 = [lit1, late, Ot].
Define

Mi= Y wh) a3

e P
h=0 (¢:)
Using (1), (79) and Lemma 2 we get
(80) Uy — M| < 1(0s)e cVIe® =123
It is easy to see that
2(h 1
(81) M) < 3 )) <L i-123
h[P(z0) Y 0i
h=0 (i)

Hence, by (80) and (81) we obtain
(82)  Uslholds = My MM + O<<T(91) L Tler) | 7(93)>e—6\/@)_

0203 0103 0102
We substitute the last formula in (78) to get

(83) H, = H*+R,

where

290521“5)3 Z e(l)e(l2)e(ls)
2(0) 5(t)

5170y ¥ WGy P2 s o 1 [P Ce0) /(88) a(l1)p2(l2)pa(l3)

X > p(t)p(te) pts) MaMaMs,

ti|P(zo)/(§tli), i=1,2,3

and where R is the contribution to (78) arising from the error term in (82).
We use (1), (78), (79), (82), Lemma 8(iii), and also the estimate

(84) wa(n) > n(loglog10n)™2  for n # 0(2)

(which is an easy consequence of Lemma 8(v)) to get
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(85) |R|<e VT 3" 5

8P (z0)
’7'([(515, l2t2, l3t3])
x> ) >
Ot, l1tq, Ists]|ot, l1t1, Iot
UPGO)/8 batautsl PGo) /(50) 4l PGo)/ (3t ot i, Lsts][0t, hi, Lot
—cy/logx dr(d T<h1)7'<h2)7'(h3)7'([d, h27h3])
¢ 2 drd) 3 [, o, ][, o, o)
d|P(z0) hi,h2,h3|P(20)/d
2
—cq/logx T (d)
eV > y
d|P(zo)
" 3 7(h1)7%(ha)7%(h3)(h1, h3) (P, ho)
h2hsh
176213
hl,hz,h‘glP(ZU)/d
<e—c\/logx Z
d|P(zo)
72(ha)7%(h3) 2(ha,p)(hs3,p)
X Z _— H l+ —5F—
hah3 D
hg,thP(ZO)/d pIP(Zo)
ptd
2 2 2 2
—cqy/logx T (d) T (hQ)T (h3)7- ((h27h3))
<€ 2. g 2 hohs
d|P(z0) ha,h3|P(z0)/d
3 3
—c\/@ T (hQ)T (h3) —cy/logx
Le Z Z 7h2h3 Ke .
d|P(z0) ha,h3|P(z0)/d

Let us consider H*. The calculations we did to obtain (78) are valid not
only for /\aE but for any functions, including Mébius’ function. Therefore

H* = Z (1) p(02) p(03)£2(01, 62, 83)
51,6203 | P(20)

Z 1(61)p1(62)p((01, 02))
51 621 oy P(01)#(02)02((01, 02))

G615 0)el(01, p)0((52.1))
< 11 <1 b~ Dpl(61. 02, >> (1, >> (62, >>>

_ 1(81)p(02) p—
5 5Z|1;( ) ( )#(02) 2<1p_£ H H
1,02 zZ0 20 P|5 P|5
(61,62)=1 p1616s
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H p—2 Z (1) 11(62)p3(01)p3(02)

— 2 9
2<p<zo p 51,62|P(20) @2(51)@2(52)
(61,62)=1
where we have set
()
pln

Hence, using (77) we find

. p-2 11(61)sp3(61) _ p-3
=11 p—1 2 5(01) 11 <1 (p—2)2>

2<p<zo 51|P(20) ©2

2<p<zo
P+51
2<p<zg 2<p<zo
X Z 1(61)p3(61) H(p f5p+7)_1
61|P(20) p|d1

From the last formula and (83), (85) we obtain
H; = D(z) + Oe~ Vo8 ),
We consider the other H; in the same way, so Lemma 14 is proved.

In the next lemma we estimate from below the quantity W defined by
(21). We put

1 logD; .
86)  Flaoz)= ][] (1-), 5= BT 1,23

p—1 log z;

z20<p<z;
Suppose that ¢* > 0 is an absolute constant and let 6;, s;, i = 1, 2, 3, satisfy
(87) 91 + 92 + 93 = 1, 91 > 0, f(SZ) — 29iF(Si) > C*, 1= 1, 2, 3.
LEMMA 15. On the hypotheses above we have
3 3
W > D(z0) [T Fz0,20) ( 3o(F(s) = 26:F (s0)) + O((log ) ~11)).
j=1 i=1
Proof. Using (8), (31), (75), (84) and Lemma 8(iii), (v) we see that

di,do, d
|Li| < (logz) Z M«(logw)‘r’, 1<i<T.
di,dz,d3 <z didzd;

By (74), (75), Lemma 14 and the last estimate we obtain
(88) W =D(2)W* + O(e~cVIoe),
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where
W = > &(dy, dy, d3)$2(dy, dy, ds),
(89) di‘P(Zo,Zi),i=1,2,3
&(dy, da, d3) = A7 (d1)AF (d2) A3 (ds) 4+ AT (d1) A5 (d2)AF (ds)
+ A (d1) AT (d2) A3 (d3) — 20T (d1) A3 (d2) AF (ds).
We have
(90) W* =W; + Wll,
where

Wy = E §(dy, da,d3)82(dy, d2, d3)
di‘P(Zo,Zi), i=1,2,3
(d1,d2)=(d1,d3)=(d2,d3)=1

and where W1 is the sum over d; | P(zo, 2;), i = 1,2, 3, such that (d;,d;) > 1
for some i # j. For these d;,d; we certainly have (d;,d;) > zy. Hence, by
(31), (84), Lemma 8(iv), (v) we get

, di,ds, d
O) W< 3 0 dods) < (logz) 3 \Hd2ds)

d1,ds,ds <z di,dz,ds<x d1dad3
(d1,d2)>20 (d1,d2)>z0
(tvd?))
= (1
Zogtgm dl,dz,dggx
(d1,d2)=t
1 1 (t,ds)
1 il
<logz) }, 5 D T2 o
zo<t<z di,do<z/t ds<z
1 1
3
<omap Y Ay ¥ L
zo<t<z d|t ds<z
(d37t):d
7(t) _ (logz)*
<<(1°g”f>42 S Tap o
zo<t 20
Consider W;. We have
§(d17d27d3>
Wy = > > pl)ullz)udls)
G| P 0z i=1.2,3 @(d1)p(d2)p(ds) s |(dods)
l2](d1,d3)
l3](d1,d2)

= Z p(l)p(l2)p(ls)
ly,12,l3|P(20,2%)
y Z §(dy, da, ds3) 7
di|P(z0 2] 12,3 p(di)p(d2)p(ds)
dl =0 ([lz,lg,}), dzEO ([ll,lg])
d3£0 ([lhlz])
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where z* = max(z1, 22, 23). We have

(92) Wy =Wy + Wy,
where

B &(di,da, d3)
(93) W = Z o(dy)p(d2)e(ds)

di|P(207zi)7 i:1,2,3

and where W is the sum over [y, l2, I3 | P(29, 2*) such that {; > 1 for some j.
Obviously, such [; satisfies [; > zp.
We use (1), (8), (89) and Lemma 8(v) to find

(94) Wil < (logz) > pP(l)p(l2)p’(ls)

l1,l2,l3<x
z0<ly
X Z 1
dy,dg,ds<z dydyds
d1=0 ([l2,13]), d2=0 ([l1,I3])
d3= 0([11712])
2
< (logw)* Z e U2)p (l;2)l(2[l127 I2)(l1,13)(l2, Is)
1tal3
zo<l1 <z
lg,l3§$
2 2
e 12 (o) (11, 12
< (log x)* Z l(2 ) Z ( > )
zo<l1 <z 1 o<z 2
(l1,p)(l2,
X H <1+ ! g ))
p<wz

< (log z)° Z w2 ( Z,u (I2) 51,52 7((l1,12))

20<l1 <z 1 la<a

ll, T ll,
< (logz)® 3 MZZ H<1+( p)p(Q( p))>

z0<l1<z p<z

(log x
< (logx) Z ,u < & )
20<l %0

Consider W,. We find by (89) and (93) that
Wy =Gy GSGT + GG, G + GTGF G5 —2GTGSGY,

where

+
Gt = Z A (d) i=1,2,3.
d‘P(Z(),Zi)
Assume that (87) holds. We have

(95) Wy = WiV + Wi+ wi®,
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where
Wi = (67 - 20,GH)GGE, W = (Gy — 20.G3)GF G,
W = (G5 - 20;G)GT G
Consider, for example, VV2 D, Applying Lemma 1 and using (1), (86), (87)
we get
(G —20.GT) = F (20, 21)(f(s1) — 201F (s1) + O((log z)/*)),
Gf > Flz0,2), =23

Hence

3
W2(1) > H (20,25) - (f(s1) —201F(s1)+ O((logz)~1/3)).

We find the corresponding estimates for Wz(i), i = 2,3, similarly and we use
(95) to get
3

(96) W > [ F(z0,2) - (D(r(s0) = 20:F (5:)) + O((log ) ™/%)).

i=1
It remains to notice that

]
(97) Flz0,2) = 820

log z;
and the conclusion of the lemma follows from (1), (77), (88), (90)—(92), (94),
(96) and (97).

8. Proof of the Theorem. Consider the sum

I'= > log p1 log p2 log ps.

x<p1,p2,p3<2x
(pi+2,P(2))=1,i=1,2,3
p1+p2=2p3

We find (see (16), (18))
(98) >0+,

where I, i = 1,2, are defined by (19).
In Section 6, Lemma 13, we prove that

(99) || < 22 (log x)%7072£,
For It we have (see (20))
(100) I = oox*W + O(I3),

where W, I's, oy are defined by (21), (22), (30).

In Section 5, Lemma 11, we estimate I3 to get
(101) I3 < 22 (log )05~
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In Section 7, Lemma 15, we consider W. On the conditions (86) and (87)
we find

3
(102) W > D(zg H]—" 20, %)
7j=1

3
% (D(f(si) = 26:F (51)) + O((1og ) /%)),

i=1
where f(s) and F'(s) are the functions of the linear sieve. Hence, using (1),
(77), (97)—(102) and assuming that £ = 1000 we obtain

(103) I > (To.%'QD(ZQ) H .7:(20, Zj)

3
% (Do (f(50) = 20:F(50)) + O((log ) ™/%) ).
=1
For 2 < s < 3 we have
2e7 log(s — 1 2e”
f(s):#’ F(s) = —
S s
(v denotes Euler’s constant). We choose
a1 = Qg = 0167, 3 = 0116, 91 = 92 = 0345, 93 =0.31.
Then, by (1) and (86),
s1= 59 = (0.334) "1 + O((logz)~Y/3), 53 = (0.348) "1 + O((log z)~/3).
It is not difficult to compute that for sufficiently large = we have
(104) f(s;) —20;F(s;) >107°, i=1,2,3.
Therefore, using (1), (77), (97), (103) and (104) we get
I'> 2?/(logz).

By the last inequality and the definition of I" we conclude that for some
constant co > 0 there are at least cox?(logz)~C triples of primes p1,p2, p3
satisfying = < p1,p2,p3 < 2z, p1 + p2 = 2p3 and such that for any prime
factor p of py + 2 or ps + 2 we have p > 29167 and for any prime factor
p of p3 + 2 we have p > 2116, Obviously, the number of trivial triples
p1 =p2 =p3is O(z).

The proof of the Theorem is complete.
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