The number of solutions of the Mordell equation

by
Dimitrios Poulakis (Thessaloniki)
To the memory of André Néron

1. Introduction. Let a, b be integers such that the polynomial $f(x)=$ $x^{3}+a x+b$ has discriminant $\Delta(f) \neq 0$. In [3] Evertse and Silverman proved that the number $Z(f)$ of integer solutions of the equation $y^{2}=f(x)$ satisfies

$$
Z(f) \leq 7^{[L: \mathbb{Q}](4+9 s)} h_{2}(L)^{2}+3
$$

where s is the cardinality of the set containing the usual absolute value of \mathbb{Q} and the p-adic absolute values $|\cdot|_{p}$ for which $|\Delta(f)|_{p} \neq 1, L$ the splitting field of $f(x)$ and $h_{2}(L)$ the order of the subgroup of the ideal class group of L consisting of the ideal classes $[A]$ with $[A]^{2}=1$. Using this result Schmidt [7] proved that given $\varepsilon>0$ there is a constant $c(\varepsilon)$ depending on ε such that

$$
Z(f) \leq c(\varepsilon)|\Delta(f)|^{1 / 2+\varepsilon}
$$

In the case of the Mordell equation (i.e. $a=0$), it follows that $Z(f) \leq$ $c(\varepsilon)|b|^{1+\varepsilon}$. Moreover, Schmidt conjectured that the number of solutions $x, y \in \mathbb{Z}$ of an irreducible equation $F(x, y)=0$ defining a curve of positive genus having coefficients in \mathbb{Z} and total degree N is at most

$$
c(N, \varepsilon) H(F)^{\varepsilon}
$$

where $c(N, \varepsilon)$ is a constant depending on N and ε.
In this paper we improve on the estimate of Schmidt for the Mordell equations by showing that the number of integer solutions of $y^{2}=x^{3}+$ b depends only on the prime divisors of b. More precisely, we prove the following result:

Theorem 1. Let k be a nonzero rational integer. Denote by $\omega(k)$ the number of prime divisors of k and by $P(k)$ the product of all the prime divisors p of k with $p>3$. If k has no prime divisors >3, put $P(k)=1$.

[^0]Then the number of solutions $(x, y) \in \mathbb{Z}^{2}$ of the equation $y^{2}=x^{3}+k$ is

$$
<10^{11 \omega(k)+48} P(k) .
$$

Corollary 1. Let k be a nonzero rational integer and $\Pi(k)$ be the product of the prime divisors of k. Then for every $\varepsilon>0$ there is a constant $\Omega(\varepsilon)$, independent of k, such that the number of solutions $(x, y) \in \mathbb{Z}^{2}$ of the equation $y^{2}=x^{3}+k$ is

$$
<\Omega(\varepsilon) \Pi(k)^{1+\varepsilon} .
$$

The above theorem is a consequence of the following effective version of Shafarevich's theorem ([5, p. 222], [8, p. 263]):

Theorem 2. Let S be a finite set of rational primes with $2,3 \in S$. Denote by $P(S)$ the product of all the primes p in S with $p>3$. If $S=\{2,3\}$, put $P(S)=1$. Then the number of \mathbb{Q}-isomorphism classes of elliptic curves over \mathbb{Q} with good reduction outside S is

$$
<10^{11 \sharp S+26} P(S) .
$$

In [1] there is an effective proof of Shafarevich's theorem using the estimate of [3]. Our approach is completely different and has the advantage that does not use the results of [3]. The only Diophantine approximation result we use is the estimate for the number of solutions of the S-units equation $x+y=1$ due to Evertse [2].
2. Auxiliary results. In this section we give some lemmas which will be useful for the proof of our results.

Lemma 1. Let S be a finite set of rational primes with $2 \in S$ and $f(x)=$ $x^{3}+A x+B$ be a polynomial of $\mathbb{Z}[x]$ with distinct roots. Suppose that the elliptic curve $E: y^{2}=f(x)$ has good reduction outside S. Let $L=\mathbb{Q}(\theta)$, where θ is a root of $f(x)$. Suppose that $L \neq \mathbb{Q}$. Then the discriminant D_{L} of L has the form

$$
D_{L}= \pm 2^{\alpha} 3^{\beta} \prod_{p} p^{s_{p}},
$$

where the product is taken over all the primes $p \geq 5$, with $s_{p}=0$ for p outside S and $0 \leq s_{p} \leq \operatorname{deg} L-1$ for $p \in S$. Moreover, $\alpha=0,2,3$ and $\beta \leq 1$ if $\operatorname{deg} L=2$, while $\beta=0,1,3,4,5$ if $\operatorname{deg} L=3$.

Proof. The nonzero points of 2-torsion of E are the points $\left(0, \theta_{i}\right)(i=$ $1,2,3)$ where $\theta_{1}, \theta_{2}, \theta_{3}$ are the roots of $f(x)$. By [5, Theorem 1, p. 113], the extension $\mathbb{Q}\left(\theta_{1}, \theta_{2}, \theta_{3}\right) / \mathbb{Q}$ is unramified outside S. Then the extension L / \mathbb{Q} is unramified outside S, whence the prime divisors of D_{L} are primes in S. Hence,

$$
D_{L}= \pm 2^{\alpha} 3^{\beta} \prod_{p} p^{s_{p}},
$$

where the product is taken over all the primes $p \geq 5$, with $s_{p}=0$ for p outside S. If L is a quadratic extension, then $\alpha=0,2$ or $3, \beta \leq 1$ and $s_{p} \leq 1$ for $p \in S$. If L is a cubic extension, [6, Theorem 2] implies that $\alpha=0,2$ or $3, \beta=0,1,3,4$ or 5 and $s_{p} \leq 2$ for $p \in S$.

Lemma 2. Let D be an integer. Then the number of cubic fields of discriminant D is at most $546|D|^{1 / 2}$.

Proof. Let K be a cubic field of discriminant D. Then [4, pp. 620-625] implies that $|D| \geq 23$. Let $\sigma_{1}, \sigma_{2}, \sigma_{3}$ be the embeddings of K into the field \mathbb{C} of complex numbers. We denote by s and $2 t$ the number of real and complex embeddings respectively. If $s=t=1$, let σ_{2}, σ_{3} be the complex embeddings. As usual denote complex conjugation by bars and define $\bar{\sigma}_{i}(x)=\overline{\sigma_{i}(x)}$. Thus $\sigma_{3}=\bar{\sigma}_{2}$. The map $\sigma: K \rightarrow \mathbb{R}^{s} \times \mathbb{C}^{t}$ given by $\sigma(x)=\left(\sigma_{1}(x), \ldots, \sigma_{3-t}(x)\right)$ defines an embedding of K into $\mathbb{R}^{s} \times \mathbb{C}^{t}$. The image $\sigma\left(O_{K}\right)$ of the ring O_{K} of algebraic integers of K is a lattice in $\mathbb{R}^{s} \times \mathbb{C}^{t}$. In [4, Chapter 28, $\S 1]$ a structure of Euclidean space is defined on $\mathbb{R}^{s} \times \mathbb{C}^{t}$. The fundamental parallelotope of the lattice $\sigma\left(O_{K}\right)$ has content $|D|^{1 / 2}$ with respect to this Euclidean metric [4, p. 538].

Let A be the convex region in $\mathbb{R}^{s} \times \mathbb{C}^{t}$ determined by the inequalities

$$
|x|+|y|+|z| \leq \varrho, \quad|x+y+z| \leq \varrho^{\prime}<\varrho \quad \text { if }(s, t)=(3,0)
$$

and

$$
|x|+|y|+|\bar{y}| \leq \varrho, \quad|x+y+\bar{y}| \leq \varrho^{\prime}<\varrho \quad \text { if }(s, t)=(1,1)
$$

By [4, p. 623], the content of the region A is

$$
\geq \frac{4}{3}\left(\frac{\pi}{4}\right)^{t} \varrho^{\prime} \varrho^{2}
$$

We choose ϱ so that

$$
\frac{4}{3}\left(\frac{\pi}{4}\right)^{t} \varrho^{\prime} \varrho^{2} \geq 8|D|^{1 / 2}
$$

Putting $\varrho^{\prime}=\varrho / 2$, we can take $\varrho=(4 / \pi)^{t / 3} 12^{1 / 3}|D|^{1 / 6}$. Hence, Minkowski's lattice point theorem [5, p. 601] implies that there exists an algebraic integer ξ of K satisfying
$\left|\xi_{1}\right|+\left|\xi_{2}\right|+\left|\xi_{3}\right| \leq\left(\frac{4}{\pi}\right)^{t / 3} 12^{1 / 3}|D|^{1 / 6}, \quad\left|\xi_{1}+\xi_{2}+\xi_{3}\right| \leq \frac{1}{2}\left(\frac{4}{\pi}\right)^{t / 3} 12^{1 / 3}|D|^{1 / 6}$, where $\xi_{1}, \xi_{2}, \xi_{3}$ are the conjugates of ξ.

The arithmetic-geometric inequality implies

$$
\left|\xi_{1} \xi_{2} \xi_{3}\right|<|D|^{1 / 2}
$$

For arbitrary real numbers a, b, c we have the inequality

$$
a b+b c+a c \leq \frac{1}{2}(a+b+c)^{2}
$$

Hence

$$
\left|\xi_{1} \xi_{2}+\xi_{2} \xi_{3}+\xi_{1} \xi_{3}\right|<2|D|^{1 / 3}
$$

Let $f(x)=x^{3}+A x^{2}+B x+C$ be the irreducible polynomial of ξ. Then

$$
|A|<2|D|^{1 / 6}, \quad|B|<2|D|^{1 / 3}, \quad|C|<|D|^{1 / 2} .
$$

The discriminant of $f(x)$ is

$$
\Delta=-4 A^{3} C+A^{2} B^{2}+18 A B C-4 B^{3}-27 C^{2} .
$$

Thus, the inequalities for A, B, C give $|\Delta|<179|D|$. We denote by $i(\xi)$ the index of ξ. We have $\Delta=i(\xi)^{2} D$, whence $|i(\xi)| \leq 13$.

We now consider the surface given by the equation

$$
F(X, Y, Z)=-4 X^{3} Z+X^{2} Y^{2}+18 X Y Z-4 Y^{3}-27 Z^{2}-D L^{2}=0,
$$

where L is a positive integer with $L \leq 13$. The number of triples $(u, v, w) \in$ \mathbb{Z}^{3} with $|u|<2|D|^{1 / 6},|v|<2|D|^{1 / 3}$ and $|w|<|D|^{1 / 2}$ satisfying $F(u, v, w)=$ 0 is less than $2\left(4|D|^{1 / 6}+1\right)\left(4|D|^{1 / 3}+1\right)<42|D|^{1 / 2}$ (we have used the fact that $|D| \geq 23$). Since we have at most 13 choices for L, the lemma follows.

Lemma 3. Let K be an algebraic number field of degree d and S be a finite set of places on K containing all the infinite places of K. Then the equation $x+y=1$ has at most

$$
3 \cdot 7^{d+2 \sharp S}
$$

solutions in S-units x, y of K.
Proof. See [2].
Lemma 4. Let K be an algebraic number field and L be a Galois extension of K of degree l. Then each L-isomorphism class of elliptic curves defined over K splits into at most $6^{l} K$-isomorphism classes.

Proof. Let E and A be two elliptic curves defined over K and let α : $E \rightarrow A$ be an isomorphism over L. Then we have a map $F(\alpha): \operatorname{Gal}(L / K) \rightarrow$ $\operatorname{Aut}(E)$ defined by

$$
F(\alpha)(\sigma)=\alpha^{-1} \circ \alpha^{\sigma} \quad \text { for every } \sigma \in \operatorname{Gal}(L / K) .
$$

Suppose now that B is another elliptic curve defined over K and $\beta: E \rightarrow B$ an L-isomorphism with $F(\alpha)=F(\beta)$. It follows that

$$
\alpha^{-1} \circ \alpha^{\sigma}=\beta^{-1} \circ \beta^{\sigma} \quad \text { for every } \sigma \in \operatorname{Gal}(L / K) .
$$

Setting $\lambda=\beta \circ \alpha^{-1}$, we have $\lambda^{\sigma}=\lambda$ for every $\sigma \in \operatorname{Gal}(L / K)$. So, the isomorphism λ is defined over K, whence A and B are K-isomorphic. Thus, given an L-isomorphism class C of elliptic curves defined over K, the map $\alpha \rightarrow F(\alpha)$ defines an injection from the set of pairwise distinct K-isomorphism classes belonging to C into the set of maps from $\operatorname{Gal}(L / K)$
to $\operatorname{Aut}(E)$. Since the cardinality of $\operatorname{Gal}(L / K)$ is l and that of $\operatorname{Aut}(E)$ is at most 6 , the lemma follows.
3. Proof of Theorem 2. Let $E: y^{2}=x^{3}+A x+B$, where $A, B \in \mathbb{Z}$, be an elliptic curve having good reduction outside S. We denote by L the field obtained by adjoining to \mathbb{Q} the points of order 2 of E. It is the field generated over \mathbb{Q} by the roots of $x^{3}+A x+B$. We have the following cases.

1. $L=\mathbb{Q}$. Then E is isomorphic over \mathbb{Q} to an elliptic curve in Legendre form

$$
E_{\lambda}: \quad y^{2}=x(x-1)(x-\lambda),
$$

where $\lambda \in \mathbb{Q}$. The j-invariant of E_{λ} is

$$
j=2^{8} \frac{\left(\lambda^{2}-\lambda+1\right)^{3}}{\lambda^{2}(\lambda-1)^{2}} .
$$

Since E has good reduction outside S, j is a S-integer of \mathbb{Q}. Let $|\cdot|_{p}$ be a p-adic absolute value with p outside S. If $|\lambda|_{p} \neq 1$, then $|j|_{p}>1$ from the equation for j, contradicting the fact that j is a S-integer. It follows that λ is a S-unit. Similarly for $1-\lambda$. Thus, λ and $\mu=1-\lambda$ are two S-units satisfying $\lambda+\mu=1$. By Lemma 3 , the number of S-units x, y of \mathbb{Q} with $x+y=1$ is at most $3 \cdot 7^{3+2 \sharp S}$, whence there are at most $3 \cdot 7^{3+2 \sharp S}$ choices for λ. Hence, there are at most $3 \cdot 7^{3+2 \sharp S} \mathbb{Q}$-isomorphism classes of elliptic curves E over \mathbb{Q} with good reduction outside S such that the points of order 2 of E are defined over \mathbb{Q}.
2. $[L: \mathbb{Q}]=2$. Let Σ be the set of prime ideals of L lying above the elements of S. The curve E is isomorphic over L to an elliptic curve in Legendre form

$$
E_{\lambda}: \quad y^{2}=x(x-1)(x-\lambda),
$$

where $\lambda \in L$. Then we deduce as in case 1 that there are at most $3 \cdot 7^{4+2 \sharp \Sigma}$ choices for λ. Hence, there are at most $3 \cdot 7^{4+4 \sharp S} L$-isomorphism classes of elliptic curves E over \mathbb{Q} with good reduction outside S. Let $L=\mathbb{Q}(\sqrt{d})$, where d is a squarefree rational integer. Then the discriminant D_{L} of L is d or $4 d$. On the other hand, Lemma 1 yields

$$
D_{L}= \pm 2^{\alpha} 3^{\beta} \prod_{p} p^{s_{p}},
$$

where the product is taken over all the primes $p \geq 5$, with $s_{p}=0$ for p outside $S, 0 \leq s_{p} \leq 1$ for $p \in S$ and $\alpha \leq 3, \beta \leq 1$. It follows that there exist $2^{4+\sharp S}$ choices for L. Furthermore, Lemma 4 implies that every L-isomorphism class of elliptic curves over \mathbb{Q} is divided into at most 36 pairwise distinct \mathbb{Q}-isomorphism classes of elliptic curves over \mathbb{Q}. Thus, we
conclude that there are less than

$$
108 \cdot 7^{4+4 \sharp S} \cdot 2^{4+\sharp S}
$$

\mathbb{Q}-isomorphism classes of elliptic curves E over \mathbb{Q} with good reduction outside S with exactly one nonzero point of order 2 defined over \mathbb{Q}.
3. $[L: \mathbb{Q}]=3$ or 6 . Let $K=\mathbb{Q}(\theta)$, where θ is a root of the polynomial $x^{3}+A x+B$. By Lemma 1 , the discriminant of K is

$$
D_{K}= \pm 2^{\alpha} 3^{\beta} \prod_{p} p^{s_{p}},
$$

where $\alpha=0,2$ or $3, \beta=0,1,3,4$ or 5 and the product is over all primes $p \geq$ 5 , with $s_{p}=0$ for p outside S and $0 \leq s_{p} \leq 2$ for $p \in S$. If $S \neq\{2,3\}$, then we denote by $P(S)$ the product of the primes of $S-\{2,3\}$ and if $S=\{2,3\}$, we put $P(S)=1$. By Lemma 2, there are at most $24570 P(S)$ cubic fields of given discriminant D_{K}. On the other hand, there are at most $10 \cdot 3^{\sharp S-1}$ choices for D_{K}. Hence, the number of choices for K and therefore for L is

$$
<81900 \cdot 3^{\sharp S} P(S) .
$$

If $[L: \mathbb{Q}]=3$, we conclude, as in the previous cases, that there are less than $3 \cdot 7^{9+6 \sharp S}$ choices for the L-isomorphism class of E and Lemma 4 implies that every such class splits into $6^{3} L$-isomorphism classes of elliptic curves over \mathbb{Q}. It follows that the number of \mathbb{Q}-isomorphism classes of elliptic curves E over \mathbb{Q} with good reduction outside S such that their 2-torsion points generate over \mathbb{Q} a cubic extension is

$$
<3 \cdot 10^{15} \cdot 3^{\sharp S} \cdot 7^{6 \sharp S} P(S) .
$$

If $[L: \mathbb{Q}]=6$, we deduce that there are less than $3 \cdot 7^{18+12 \sharp S}$ choices for the L-isomorphism class of E and Lemma 4 yields that every such class splits into $6^{6} L$-isomorphism classes of elliptic curves over \mathbb{Q}. Thus, the number of \mathbb{Q}-isomorphism classes of elliptic curves E over \mathbb{Q} with good reduction outside S such that their 2-torsion points generates over \mathbb{Q} an extension of degree 6 is

$$
<2 \cdot 10^{25} \cdot 3^{\sharp S} \cdot 7^{12 \sharp S} P(S) .
$$

Summarizing our estimates, we deduce that the number of \mathbb{Q}-isomorphism classes of elliptic curves E over \mathbb{Q} with good reduction outside S is

$$
<10^{11 \sharp S+26} P(S) .
$$

4. Proof of Theorem 1. We shall follow the idea of [8, Remark 6.5, p. 265]. Let $(u, v) \in \mathbb{Z}^{2}$ be a solution of the Mordell equation $y^{2}=x^{3}+k$. We associate with this solution the elliptic curve $E(u, v)$ defined by the equation

$$
Y^{2}=X^{3}-3 u X+2 v .
$$

The discriminant of $E(u, v)$ is

$$
16\left(4(3 u)^{3}-27(2 v)^{2}\right)=-2^{6} 3^{3} k
$$

It follows that $E(u, v)$ has good reduction outside 2,3 and the primes dividing k. Suppose now that $(w, z) \in \mathbb{Z}^{2}$ is another solution such that the curves $E(w, z)$ and $E(u, v)$ are isomorphic over \mathbb{Q}. Then there is $a \in \mathbb{Q}$ such that $u=a^{4} w$ and $v=a^{6} z$, whence we get

$$
k=v^{2}-u^{3}=a^{12}\left(y^{2}-x^{3}\right)=a^{12} k
$$

Since $a \in \mathbb{Q}$, we obtain $a= \pm 1$. So $(u, v)=(w, z)$. Hence, distinct solutions (u, v) of the Mordell equation correspond to distinct \mathbb{Q}-isomorphism classes of elliptic curves with good reduction outside 2,3 and the primes dividing k. Let $\omega(k)$ be the number of prime divisors of k and $P(k)$ be the product of the prime divisors p of k with $p>3$. If the divisors of k are among 2 and 3 , we put $P(k)=1$. Thus, Theorem 2 implies that the number of solutions $(x, y) \in \mathbb{Z}^{2}$ to the equation $y^{2}=x^{3}+k$ is $<10^{11 \omega(k)+48} P(k)$.

Acknowledgements. The author wishes to thank the referee for several helpful suggestions and comments.

References

[1] A. Brumer and J. Silverman, The number of elliptic curves over \mathbb{Q} with conductor N, Manuscripta Math. 91 (1996), 95-102.
[2] J. H. Evertse, On equations in S-units and the Thue-Mahler equation, Invent. Math. 75 (1984), 561-584.
[3] J. H. Evertse and J. H. Silverman, Uniform bounds for the number of solutions to $Y^{m}=f(X)$, Math. Proc. Cambridge Philos. Soc. 100 (1986), 237-248.
[4] H. Hasse, Number Theory, Springer, Berlin, 1980.
[5] S. Lang, Elliptic Functions, Addison-Wesley, 1973.
[6] P. Llorente and E. Nart, Effective determination of the decomposition of the rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579-585.
[7] W. M. Schmidt, Integer points on curves of genus 1, Compositio Math. 81 (1992), 33-59.
[8] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer, New York, 1986.

Department of Mathematics
Aristotle University of Thessaloniki
54006 Thessaloniki, Greece
E-mail: poulakis@ccf.auth.gr

[^0]: 1991 Mathematics Subject Classification: 11D25, 11G05.

