The number of solutions of the Mordell equation

by

DIMITRIOS POULAKIS (Thessaloniki)

To the memory of André Néron

1. Introduction. Let a, b be integers such that the polynomial $f(x) = x^3 + ax + b$ has discriminant $\Delta(f) \neq 0$. In [3] Evertse and Silverman proved that the number Z(f) of integer solutions of the equation $y^2 = f(x)$ satisfies

$$Z(f) \le 7^{[L:\mathbb{Q}](4+9s)} h_2(L)^2 + 3,$$

where s is the cardinality of the set containing the usual absolute value of \mathbb{Q} and the p-adic absolute values $|\cdot|_p$ for which $|\Delta(f)|_p \neq 1$, L the splitting field of f(x) and $h_2(L)$ the order of the subgroup of the ideal class group of L consisting of the ideal classes [A] with $[A]^2 = 1$. Using this result Schmidt [7] proved that given $\varepsilon > 0$ there is a constant $c(\varepsilon)$ depending on ε such that

$$Z(f) \le c(\varepsilon) |\Delta(f)|^{1/2+\varepsilon}.$$

In the case of the Mordell equation (i.e. a = 0), it follows that $Z(f) \leq c(\varepsilon)|b|^{1+\varepsilon}$. Moreover, Schmidt conjectured that the number of solutions $x, y \in \mathbb{Z}$ of an irreducible equation F(x, y) = 0 defining a curve of positive genus having coefficients in \mathbb{Z} and total degree N is at most

$$c(N,\varepsilon)H(F)^{\varepsilon},$$

where $c(N, \varepsilon)$ is a constant depending on N and ε .

In this paper we improve on the estimate of Schmidt for the Mordell equations by showing that the number of integer solutions of $y^2 = x^3 + b$ depends only on the prime divisors of b. More precisely, we prove the following result:

THEOREM 1. Let k be a nonzero rational integer. Denote by $\omega(k)$ the number of prime divisors of k and by P(k) the product of all the prime divisors p of k with p > 3. If k has no prime divisors > 3, put P(k) = 1.

¹⁹⁹¹ Mathematics Subject Classification: 11D25, 11G05.

^[173]

D. Poulakis

Then the number of solutions $(x, y) \in \mathbb{Z}^2$ of the equation $y^2 = x^3 + k$ is $< 10^{11\omega(k)+48} P(k).$

COROLLARY 1. Let k be a nonzero rational integer and $\Pi(k)$ be the product of the prime divisors of k. Then for every $\varepsilon > 0$ there is a constant $\Omega(\varepsilon)$, independent of k, such that the number of solutions $(x, y) \in \mathbb{Z}^2$ of the equation $y^2 = x^3 + k$ is

$$< \Omega(\varepsilon) \Pi(k)^{1+\varepsilon}.$$

The above theorem is a consequence of the following effective version of Shafarevich's theorem ([5, p. 222], [8, p. 263]):

THEOREM 2. Let S be a finite set of rational primes with $2, 3 \in S$. Denote by P(S) the product of all the primes p in S with p > 3. If $S = \{2, 3\}$, put P(S) = 1. Then the number of \mathbb{Q} -isomorphism classes of elliptic curves over \mathbb{Q} with good reduction outside S is

$$< 10^{11 \sharp S + 26} P(S).$$

In [1] there is an effective proof of Shafarevich's theorem using the estimate of [3]. Our approach is completely different and has the advantage that does not use the results of [3]. The only Diophantine approximation result we use is the estimate for the number of solutions of the S-units equation x + y = 1 due to Evertse [2].

2. Auxiliary results. In this section we give some lemmas which will be useful for the proof of our results.

LEMMA 1. Let S be a finite set of rational primes with $2 \in S$ and $f(x) = x^3 + Ax + B$ be a polynomial of $\mathbb{Z}[x]$ with distinct roots. Suppose that the elliptic curve $E : y^2 = f(x)$ has good reduction outside S. Let $L = \mathbb{Q}(\theta)$, where θ is a root of f(x). Suppose that $L \neq \mathbb{Q}$. Then the discriminant D_L of L has the form

$$D_L = \pm 2^{\alpha} 3^{\beta} \prod_p p^{s_p}$$

where the product is taken over all the primes $p \ge 5$, with $s_p = 0$ for p outside S and $0 \le s_p \le \deg L - 1$ for $p \in S$. Moreover, $\alpha = 0, 2, 3$ and $\beta \le 1$ if $\deg L = 2$, while $\beta = 0, 1, 3, 4, 5$ if $\deg L = 3$.

Proof. The nonzero points of 2-torsion of E are the points $(0, \theta_i)$ (i = 1, 2, 3) where $\theta_1, \theta_2, \theta_3$ are the roots of f(x). By [5, Theorem 1, p. 113], the extension $\mathbb{Q}(\theta_1, \theta_2, \theta_3)/\mathbb{Q}$ is unramified outside S. Then the extension L/\mathbb{Q} is unramified outside S, whence the prime divisors of D_L are primes in S. Hence,

$$D_L = \pm 2^{\alpha} 3^{\beta} \prod_p p^{s_p}$$

where the product is taken over all the primes $p \ge 5$, with $s_p = 0$ for p outside S. If L is a quadratic extension, then $\alpha = 0, 2$ or $3, \beta \le 1$ and $s_p \le 1$ for $p \in S$. If L is a cubic extension, [6, Theorem 2] implies that $\alpha = 0, 2$ or $3, \beta = 0, 1, 3, 4$ or 5 and $s_p \le 2$ for $p \in S$.

LEMMA 2. Let D be an integer. Then the number of cubic fields of discriminant D is at most $546|D|^{1/2}$.

Proof. Let K be a cubic field of discriminant D. Then [4, pp. 620–625] implies that $|D| \ge 23$. Let $\sigma_1, \sigma_2, \sigma_3$ be the embeddings of K into the field \mathbb{C} of complex numbers. We denote by s and 2t the number of real and complex embeddings respectively. If s = t = 1, let σ_2, σ_3 be the complex embeddings. As usual denote complex conjugation by bars and define $\overline{\sigma}_i(x) = \overline{\sigma}_i(x)$. Thus $\sigma_3 = \overline{\sigma}_2$. The map $\sigma : K \to \mathbb{R}^s \times \mathbb{C}^t$ given by $\sigma(x) = (\sigma_1(x), \ldots, \sigma_{3-t}(x))$ defines an embedding of K into $\mathbb{R}^s \times \mathbb{C}^t$. The image $\sigma(O_K)$ of the ring O_K of algebraic integers of K is a lattice in $\mathbb{R}^s \times \mathbb{C}^t$. In [4, Chapter 28, §1] a structure of Euclidean space is defined on $\mathbb{R}^s \times \mathbb{C}^t$. The fundamental parallelotope of the lattice $\sigma(O_K)$ has content $|D|^{1/2}$ with respect to this Euclidean metric [4, p. 538].

Let A be the convex region in $\mathbb{R}^s \times \mathbb{C}^t$ determined by the inequalities

$$|x| + |y| + |z| \le \varrho, \quad |x + y + z| \le \varrho' < \varrho \quad \text{if } (s, t) = (3, 0)$$

and

$$|x| + |y| + |\overline{y}| \le \varrho, \quad |x + y + \overline{y}| \le \varrho' < \varrho \quad \text{if } (s, t) = (1, 1).$$

By [4, p. 623], the content of the region A is

$$\geq \frac{4}{3} \left(\frac{\pi}{4}\right)^t \varrho' \varrho^2.$$

We choose ϱ so that

$$\frac{4}{3} \left(\frac{\pi}{4}\right)^t \varrho' \varrho^2 \ge 8|D|^{1/2}$$

Putting $\varrho' = \varrho/2$, we can take $\varrho = (4/\pi)^{t/3} 12^{1/3} |D|^{1/6}$. Hence, Minkowski's lattice point theorem [5, p. 601] implies that there exists an algebraic integer ξ of K satisfying

$$|\xi_1| + |\xi_2| + |\xi_3| \le \left(\frac{4}{\pi}\right)^{t/3} 12^{1/3} |D|^{1/6}, \quad |\xi_1 + \xi_2 + \xi_3| \le \frac{1}{2} \left(\frac{4}{\pi}\right)^{t/3} 12^{1/3} |D|^{1/6},$$

where ξ_1, ξ_2, ξ_3 are the conjugates of ξ .

The arithmetic-geometric inequality implies

$$|\xi_1\xi_2\xi_3| < |D|^{1/2}$$

For arbitrary real numbers a, b, c we have the inequality

$$ab + bc + ac \le \frac{1}{2}(a + b + c)^2.$$

Hence

$$|\xi_1\xi_2 + \xi_2\xi_3 + \xi_1\xi_3| < 2|D|^{1/3}$$

Let $f(x) = x^3 + Ax^2 + Bx + C$ be the irreducible polynomial of ξ . Then

$$|A| < 2|D|^{1/6}, \quad |B| < 2|D|^{1/3}, \quad |C| < |D|^{1/2}.$$

The discriminant of f(x) is

$$\Delta = -4A^3C + A^2B^2 + 18ABC - 4B^3 - 27C^2.$$

Thus, the inequalities for A, B, C give $|\Delta| < 179|D|$. We denote by $i(\xi)$ the index of ξ . We have $\Delta = i(\xi)^2 D$, whence $|i(\xi)| \leq 13$.

We now consider the surface given by the equation

$$F(X, Y, Z) = -4X^{3}Z + X^{2}Y^{2} + 18XYZ - 4Y^{3} - 27Z^{2} - DL^{2} = 0,$$

where L is a positive integer with $L \leq 13$. The number of triples $(u, v, w) \in \mathbb{Z}^3$ with $|u| < 2|D|^{1/6}$, $|v| < 2|D|^{1/3}$ and $|w| < |D|^{1/2}$ satisfying F(u, v, w) = 0 is less than $2(4|D|^{1/6} + 1)(4|D|^{1/3} + 1) < 42|D|^{1/2}$ (we have used the fact that $|D| \geq 23$). Since we have at most 13 choices for L, the lemma follows.

LEMMA 3. Let K be an algebraic number field of degree d and S be a finite set of places on K containing all the infinite places of K. Then the equation x + y = 1 has at most

$$3 \cdot 7^{d+2\sharp S}$$

solutions in S-units x, y of K.

Proof. See [2].

LEMMA 4. Let K be an algebraic number field and L be a Galois extension of K of degree l. Then each L-isomorphism class of elliptic curves defined over K splits into at most 6^l K-isomorphism classes.

Proof. Let E and A be two elliptic curves defined over K and let α : $E \to A$ be an isomorphism over L. Then we have a map $F(\alpha) : \operatorname{Gal}(L/K) \to \operatorname{Aut}(E)$ defined by

$$F(\alpha)(\sigma) = \alpha^{-1} \circ \alpha^{\sigma}$$
 for every $\sigma \in \operatorname{Gal}(L/K)$.

Suppose now that B is another elliptic curve defined over K and $\beta : E \to B$ an L-isomorphism with $F(\alpha) = F(\beta)$. It follows that

$$\alpha^{-1} \circ \alpha^{\sigma} = \beta^{-1} \circ \beta^{\sigma}$$
 for every $\sigma \in \operatorname{Gal}(L/K)$.

Setting $\lambda = \beta \circ \alpha^{-1}$, we have $\lambda^{\sigma} = \lambda$ for every $\sigma \in \operatorname{Gal}(L/K)$. So, the isomorphism λ is defined over K, whence A and B are K-isomorphic. Thus, given an L-isomorphism class C of elliptic curves defined over K, the map $\alpha \to F(\alpha)$ defines an injection from the set of pairwise distinct K-isomorphism classes belonging to C into the set of maps from $\operatorname{Gal}(L/K)$

176

to $\operatorname{Aut}(E)$. Since the cardinality of $\operatorname{Gal}(L/K)$ is l and that of $\operatorname{Aut}(E)$ is at most 6, the lemma follows.

3. Proof of Theorem 2. Let $E: y^2 = x^3 + Ax + B$, where $A, B \in \mathbb{Z}$, be an elliptic curve having good reduction outside S. We denote by L the field obtained by adjoining to \mathbb{Q} the points of order 2 of E. It is the field generated over \mathbb{Q} by the roots of $x^3 + Ax + B$. We have the following cases.

1. $L=\mathbb{Q}.$ Then E is isomorphic over \mathbb{Q} to an elliptic curve in Legendre form

$$E_{\lambda}: \quad y^2 = x(x-1)(x-\lambda),$$

where $\lambda \in \mathbb{Q}$. The *j*-invariant of E_{λ} is

$$j = 2^8 \frac{(\lambda^2 - \lambda + 1)^3}{\lambda^2 (\lambda - 1)^2}$$

Since *E* has good reduction outside *S*, *j* is a *S*-integer of \mathbb{Q} . Let $|\cdot|_p$ be a *p*-adic absolute value with *p* outside *S*. If $|\lambda|_p \neq 1$, then $|j|_p > 1$ from the equation for *j*, contradicting the fact that *j* is a *S*-integer. It follows that λ is a *S*-unit. Similarly for $1 - \lambda$. Thus, λ and $\mu = 1 - \lambda$ are two *S*-units satisfying $\lambda + \mu = 1$. By Lemma 3, the number of *S*-units *x*, *y* of \mathbb{Q} with x + y = 1 is at most $3 \cdot 7^{3+2\sharp S}$, whence there are at most $3 \cdot 7^{3+2\sharp S}$ choices for λ . Hence, there are at most $3 \cdot 7^{3+2\sharp S}$ \mathbb{Q} -isomorphism classes of elliptic curves *E* over \mathbb{Q} with good reduction outside *S* such that the points of order 2 of *E* are defined over \mathbb{Q} .

2. $[L : \mathbb{Q}] = 2$. Let Σ be the set of prime ideals of L lying above the elements of S. The curve E is isomorphic over L to an elliptic curve in Legendre form

$$E_{\lambda}: \quad y^2 = x(x-1)(x-\lambda),$$

where $\lambda \in L$. Then we deduce as in case 1 that there are at most $3 \cdot 7^{4+2\sharp\Sigma}$ choices for λ . Hence, there are at most $3 \cdot 7^{4+4\sharp S}$ *L*-isomorphism classes of elliptic curves *E* over \mathbb{Q} with good reduction outside *S*. Let $L = \mathbb{Q}(\sqrt{d})$, where *d* is a squarefree rational integer. Then the discriminant D_L of *L* is *d* or 4*d*. On the other hand, Lemma 1 yields

$$D_L = \pm 2^{\alpha} 3^{\beta} \prod_p p^{s_p},$$

where the product is taken over all the primes $p \geq 5$, with $s_p = 0$ for p outside $S, 0 \leq s_p \leq 1$ for $p \in S$ and $\alpha \leq 3, \beta \leq 1$. It follows that there exist $2^{4+\sharp S}$ choices for L. Furthermore, Lemma 4 implies that every L-isomorphism class of elliptic curves over \mathbb{Q} is divided into at most 36 pairwise distinct \mathbb{Q} -isomorphism classes of elliptic curves over \mathbb{Q} . Thus, we

conclude that there are less than

$$108\cdot 7^{4+4\sharp S}\cdot 2^{4+\sharp S}$$

 \mathbb{Q} -isomorphism classes of elliptic curves E over \mathbb{Q} with good reduction outside S with exactly one nonzero point of order 2 defined over \mathbb{Q} .

3. $[L:\mathbb{Q}] = 3$ or 6. Let $K = \mathbb{Q}(\theta)$, where θ is a root of the polynomial $x^3 + Ax + B$. By Lemma 1, the discriminant of K is

$$D_K = \pm 2^{\alpha} 3^{\beta} \prod_p p^{s_p},$$

where $\alpha = 0, 2 \text{ or } 3, \beta = 0, 1, 3, 4 \text{ or } 5$ and the product is over all primes $p \geq 5$, with $s_p = 0$ for p outside S and $0 \leq s_p \leq 2$ for $p \in S$. If $S \neq \{2,3\}$, then we denote by P(S) the product of the primes of $S - \{2,3\}$ and if $S = \{2,3\}$, we put P(S) = 1. By Lemma 2, there are at most 24570P(S) cubic fields of given discriminant D_K . On the other hand, there are at most $10 \cdot 3^{\sharp S-1}$ choices for D_K . Hence, the number of choices for K and therefore for L is

$$< 81900 \cdot 3^{\sharp S} P(S).$$

If $[L : \mathbb{Q}] = 3$, we conclude, as in the previous cases, that there are less than $3 \cdot 7^{9+6 \sharp S}$ choices for the *L*-isomorphism class of *E* and Lemma 4 implies that every such class splits into 6^3 *L*-isomorphism classes of elliptic curves over \mathbb{Q} . It follows that the number of \mathbb{Q} -isomorphism classes of elliptic curves *E* over \mathbb{Q} with good reduction outside *S* such that their 2-torsion points generate over \mathbb{Q} a cubic extension is

$$< 3 \cdot 10^{15} \cdot 3^{\sharp S} \cdot 7^{6 \sharp S} P(S).$$

If $[L:\mathbb{Q}] = 6$, we deduce that there are less than $3 \cdot 7^{18+12\sharp S}$ choices for the *L*-isomorphism class of *E* and Lemma 4 yields that every such class splits into 6^6 *L*-isomorphism classes of elliptic curves over \mathbb{Q} . Thus, the number of \mathbb{Q} -isomorphism classes of elliptic curves *E* over \mathbb{Q} with good reduction outside *S* such that their 2-torsion points generates over \mathbb{Q} an extension of degree 6 is

$$< 2 \cdot 10^{25} \cdot 3^{\sharp S} \cdot 7^{12\sharp S} P(S).$$

Summarizing our estimates, we deduce that the number of \mathbb{Q} -isomorphism classes of elliptic curves E over \mathbb{Q} with good reduction outside S is

$$< 10^{11 \sharp S + 26} P(S).$$

4. Proof of Theorem 1. We shall follow the idea of [8, Remark 6.5, p. 265]. Let $(u, v) \in \mathbb{Z}^2$ be a solution of the Mordell equation $y^2 = x^3 + k$. We associate with this solution the elliptic curve E(u, v) defined by the equation

$$Y^2 = X^3 - 3uX + 2v_1$$

The discriminant of E(u, v) is

$$16(4(3u)^3 - 27(2v)^2) = -2^6 3^3 k.$$

It follows that E(u, v) has good reduction outside 2, 3 and the primes dividing k. Suppose now that $(w, z) \in \mathbb{Z}^2$ is another solution such that the curves E(w, z) and E(u, v) are isomorphic over \mathbb{Q} . Then there is $a \in \mathbb{Q}$ such that $u = a^4 w$ and $v = a^6 z$, whence we get

$$k = v^{2} - u^{3} = a^{12}(y^{2} - x^{3}) = a^{12}k.$$

Since $a \in \mathbb{Q}$, we obtain $a = \pm 1$. So (u, v) = (w, z). Hence, distinct solutions (u, v) of the Mordell equation correspond to distinct \mathbb{Q} -isomorphism classes of elliptic curves with good reduction outside 2, 3 and the primes dividing k. Let $\omega(k)$ be the number of prime divisors of k and P(k) be the product of the prime divisors p of k with p > 3. If the divisors of k are among 2 and 3, we put P(k) = 1. Thus, Theorem 2 implies that the number of solutions $(x, y) \in \mathbb{Z}^2$ to the equation $y^2 = x^3 + k$ is $< 10^{11\omega(k)+48}P(k)$.

Acknowledgements. The author wishes to thank the referee for several helpful suggestions and comments.

References

- A. Brumer and J. Silverman, The number of elliptic curves over Q with conductor N, Manuscripta Math. 91 (1996), 95–102.
- [2] J. H. Evertse, On equations in S-units and the Thue-Mahler equation, Invent. Math. 75 (1984), 561-584.
- [3] J. H. Evertse and J. H. Silverman, Uniform bounds for the number of solutions to $Y^m = f(X)$, Math. Proc. Cambridge Philos. Soc. 100 (1986), 237–248.
- [4] H. Hasse, Number Theory, Springer, Berlin, 1980.
- [5] S. Lang, *Elliptic Functions*, Addison-Wesley, 1973.
- [6] P. Llorente and E. Nart, Effective determination of the decomposition of the rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579–585.
- [7] W. M. Schmidt, Integer points on curves of genus 1, Compositio Math. 81 (1992), 33-59.
- [8] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer, New York, 1986.

Department of Mathematics Aristotle University of Thessaloniki 54006 Thessaloniki, Greece E-mail: poulakis@ccf.auth.gr

> Received on 20.4.1998 and in revised form on 19.10.1998

(3364)