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1. Introduction

1.1. A number α ∈ (0, 1) is said to be normal to base q if in the q-ary
expansion of α, α = .d1d2 . . . (di ∈ ∆ = {0, 1, . . . , q − 1}, i = 1, 2, . . .), each
fixed finite block of digits of length k appears with an asymptotic frequency
of q−k along the sequence (di)i≥1. Normal numbers were introduced by Borel
(1909).

1.1.1. Let (xn)n≥1 be an arbitrary sequence of real numbers. The quan-
tity

(1) D(N) = D(N, (xn)n≥1) = sup
γ∈(0,1]

|#{0 ≤ n < N | {xn} < γ}/N − γ|

is called the discrepancy of (xn)Nn=1, where {x} = x − [x] is the fractional
part of x. The sequence {xn}n≥1 is said to be uniformly distributed (u.d.)
in [0, 1) if D(N)→ 0.

1.1.2. It is known that a number α is normal to base q if and only if
the sequence {αqn}n≥0 is u.d. (Wall, 1949). Borel proved that almost every
number (in the sense of Lebesgue measure) is normal to base q. In [G], Gal
and Gal proved that

D(N, {αqn}n≥0) = O((N−1 log logN)1/2) for a.e. α.

1.2. In [K1] Korobov posed the problem of finding a function ψ with
maximum decay, such that

∃α : D(N, {αqn}n≥0) ≤ ψ(N), N = 1, 2, . . .
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He showed that ψ(N) = O(N−1/2) (see [K1]). The lower bound of the
discrepancy for the Champernowne and Davenport–Erdős normal numbers
was found by Schiffer [S]:

D(N, {αqn}n≥1) ≥ K/ logN with K > 0, N = 2, 3, . . .

For a bibliography on Korobov’s problem see [Po, L1].

1.3. In [L2] we proposed using small discrepancy sequences (van der
Corput type sequences and {nα}n≥0) to construct normal numbers, and
announced that

ψ(N) = O(N−1 log2N).
This result is proved below. The estimate of ψ(N) was previously known
to be O(N−2/3 log4/3N) (Korobov [K2] for q prime, and Levin [L1] for
arbitrary integer q). We note that the estimate obtained cannot be improved
essentially, since according to W. Schmidt, 1972 (see [N, p. 24]), for any
sequence of reals,

lim
N→∞

ND(N)/ logN > 0.

1.4. Let x = [a0(x); a1(x), a2(x), . . .] be the continued fraction expansion
of x, with partial quotients ai(x). For an integer b and Q > 1 let

∑
ai(b/Q)

denote the sum of all partial quotients of b/Q. Following [P] we prove (see
Lemma 3) that there exists an integer sequence bm and a constant K > 0
with

(2)
m∑
r=1

∑
ai({bm/qr}) ≤ Km3, m = 1, 2, . . .

Theorem 1. Let

(3) α =
∑

m≥1

1
qnm

∑

0≤k<qm

{
bmk

qm

}
1
qmk

where bm satisfy (2),

(4) n1 = 0 and nk =
∑

1≤r<k
rqr, k = 2, 3, . . .

Then the number α is normal to base q, and

D(N, {αqn}n≥0) = O(N−1 log3N).

1.5. Let (p′i,j)i,j≥1 be Pascal’s triangle:

p′i,1 = p′1,i = 1, i = 1, 2, . . . , p′i,j = p′i,j−1 + p′i−1,j , i, j = 2, 3, . . . ,

and (pi,j)i,j≥1 be Pascal’s triangle mod 2:

(5) pi,j ≡ p′i,j mod 2, i, j = 1, 2, . . .
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Every integer n ≥ 0 has a unique digit expansion in base q,

(6) n =
∑

j≥1

ej(n)qj−1 with ej(n) ∈ ∆ = {0, . . . , q − 1},

j = 1, 2, . . . , and ej(n) = 0 for all sufficiently large j.

Theorem 2. Let

(7) α =
∑

m≥1

1
qnm

∑

0≤n<q2m

1
qn2m

2m∑

i=1

di(n)
qi

where

(8) di(n) ≡
∑

j≥1

pi,jej(n) mod q, di(n) ∈ ∆, i = 1, . . . , 2m, n ∈ [0, q2m),

(9) n1 = 0 and nm =
∑

1≤r<m
2rq2r , m = 2, 3, . . .

Then the number α is normal to base q and

D(N, {αqn}n≥0) = O(N−1 log2N).

Remark 1. We use here the sequence of 2m × 2m matrices of Pascal’s
triangle mod 2. A similar result is valid for the sequence of m×m matrices
of Pascal’s triangle (or m×m matrices of Pascal’s triangle mod p) but with
D(N, {αqn}n≥0) = O(N−1 log3N), where α is denoted by a concatenation
of blocks ωm:

α = .ω1 . . . ωm . . . ,

where

ωm = (d1(1) . . . dm(1) . . . d1(qm) . . . dm(qm)), m = 1, 2, . . . ,

and

di(n) ≡
∑

j≥1

pi,jej(n) mod q.

Remark 2. Let (σi)i≥1 be any sequence of substitutions of the set ∆ =
{0, 1, . . . , q − 1}. The proof of Theorem 2 does not change if in (8) we use
the functions σi(ei(n)) instead of the functions ei(n) (see [B], [N, p. 25]).

2. Proof of the theorems. Let m ≥ 1, b, i be integers, 0 ≤ i < m,
(b, q) = 1,

αm = αm(b) =
∑

0≤k<qm

{
bk

qm

}
1
qmk

,(10)

αmni = [q2m−i{αmqi+mn}]/q2m−i.(11)
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It is easy to see that {{bn/qm}qi} = {bn/qm−i}, and

{αmqi+mn} =
{{

bn

qm

}
qi +

{
b(n+ 1)
qm

}
1

qm−i
+
{
b(n+ 2)
qm

}
1

q2m−i + . . .

}

=
{

bn

qm−i

}
+
{
b(n+ 1)
qm

}
1

qm−i
+
{
b(n+ 2)
qm

}
1

q2m−i + . . .

Therefore

(12) αmni =
{

bn

qm−i

}
+
{
b(n+ 1)
qm

}
1

qm−i
.

Let N ∈ [1,mqm] be an integer, γ ∈ (0, 1],

(13) A(γ,N, (xn)) =
{

#{0 ≤ n < N | {xn} < γ} for γ > 0,
0 for γ ≤ 0,

and

(14) A(γ,Q, P, (xn)) = #{Q ≤ n < Q+ P | {xn} < γ}.
Hence and from (10) we obtain

A(γ,N, {αmqn}n≥0) = A(γ,m[N/m], {αmqn}n≥0)(15)

+A(γ,m[N/m], N −m[N/m], {αmqn}n≥0)

=
m−1∑

i=0

A(γ, [N/m], {αmqi+mn}n≥0) + θm

with θ ∈ [0, 1].
Let c = [qmγ], N1 ∈ [1, qm] and 0 ≤ i < m. From (11) and (13) we

deduce

A

(
c− 1
qm

, N1, (αmni)n≥0

)
≤ A(γ,N1, {αmqmn+i}n≥0)(16)

≤ A
(
c+ 1
qm

, N1, (αmni)n≥0

)
.

Lemma 1. Let N ∈ [1,mqm] be an integer , γ ∈ (0, 1], (b, q) = 1. Then

(17) A(γ,N, {αmqn}n≥0)

= γN + ε1

(
4m+ 3

m∑

i=1

max
1≤N≤qi

ND(N, {bn/qi}n≥0)
)
,

(18) A(γ,mqm, {αmqn}n≥0) = γmqm + 3ε2m

with |εj | < 1, j = 1, 2.
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P r o o f. Let 0 ≤ i < m, d, d1, and d2 be integers, d = d1q
i + d2, d1 ∈

[0, qm−i), d2 ∈ [0, qi). By (12) and (13) we get

A

(
d

qm
, N1, (αmni)n≥0

)

= #
{

0 ≤ n < N1

∣∣∣∣
{

bn

qm−i

}
+
{
b(n+ 1)
qm

}
1

qm−i
<

d1

qm−i
+

1
qm−i

· d2

qi

}
.

Consequently,

(19) A(d/qm, N1, (αmni)n≥0) = T1(N1) + T2(N1),

where

T1(N) = #
{

0 ≤ n < N

∣∣∣∣
{

bn

qm−i

}
<

d1

qm−i

}
,(20)

T2(N) = #
{

0 ≤ n < N

∣∣∣∣
{

bn

qm−i

}
=

d1

qm−i
and

{
b(n+ 1)
qm

}
<
d2

qi

}
.(21)

Let N1 = N2q
m−i + N3 with N3 ∈ [0, qm−i) and N2 ∈ [0, qi). It is easy to

see that

T1(N1) = T1(qm−iN2) + T1(N3).

We see from (20) and (1) that

(22) T1(N2q
m−i) = N2d1,

and

T1(N3) =
d1

qm−i
N3 + εN3D

(
N3,

{
bn

qm−i

}

n≥0

)
with |ε| ≤ 1.

This yields

(23) T1(N1) =
d1

qm−i
N1 + ε max

1≤N<qm−i
ND

(
N,

{
bn

qm−i

}

n≥0

)
with |ε| ≤ 1.

Now we compute T2(N). Let d0 be an integer, d0 ≡ d1b
−1 mod qm−i

with d0 ∈ [0, qm−i), and

Y = {0 ≤ n < N1 | {bn/qm−i} = d1/q
m−i}.

Clearly if {bn/qm−i} = d1/q
m−i, then bn ≡ d1 mod qm−i, n ≡ d0 mod qm−i,

and

(24) Y = {d0 + rqm−i | 0 ≤ r < N4} with N4 =
[
N1 − d0 − 1

qm−i

]
+ 1.

Combining (21) and (1) we obtain
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T2(N1) = #
{
n ∈ Y

∣∣∣∣
{
b(n+ 1)
qm

}
<
d2

qi

}
(25)

= #
{

0 ≤ r < N4

∣∣∣∣
{
b(d0 + 1)

qm
+
br

qi

}
<
d2

qi

}

= N4
d2

qi
+ ε2N4D

(
N4,

{
bn

qi
+ θ

}

n≥0

)

with θ = b(d0 + 1)/qm, |ε2| ≤ 1.
It follows from (1) that for every real θ,

(26) D(N, {xn + θ}n≥0) ≤ 2D(N, {xn}n≥0).

By (24) and (25), this yields

T2(N1) =
[
N1 + qm−i − d0 − 1

qm−i

]
d2

qi
+ 2ε2 max

1≤N≤qi
ND(N, {bn/qi}n≥0)(27)

= N1
d2

qm
+ ε3 + 2ε2 max

1≤N≤qi
ND(N, {bn/qi}n≥0)

with |εj | ≤ 1, j = 2, 3.
If N1 = qm, then N4 = qi, and N4D(N4, {bn/qi}n≥0) = 1. Hence and

from (25) and (26) we obtain

(28) T2(qm) = d2 + 2ε4 with |ε4| ≤ 1.

Substituting (23) and (27) into (19), we obtain

A(d/qm, N1, (αmni)n≥0)

= N1d/q
m + ε5(1 + max

1≤N<qm−i
ND(N, {bn/qm−i}n≥0)

+ 2 max
1≤N≤qi

ND(N, {bn/qi}n≥0)) with |ε5| ≤ 1.

Using (16) and (15) we get

A(γ,N1, {αmqmn+i}n≥0)

= γN1 + ε6(2 + max
1≤N<qm−i

ND(N, {bn/qm−i}n≥0)

+ 2 max
1≤N≤qi

ND(N, {bn/qi}n≥0)) with |ε6| ≤ 1,

and

A(γ,N, {αmqn}n≥0) = θm+
m∑

i=1

γ[N/m]

+ ε7

(
2m+ 3

m∑

i=1

max
1≤N≤qi

ND(N, {bn/qi}n≥0)
)

= γN + ε8

(
4m+ 3

m∑

i=1

max
1≤N≤qi

ND(N, {bn/qi}n≥0)
)
,
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where |εj | ≤ 1, j = 7, 8. Assertion (17) is proved. Assertion (18) follows
analogously from (22) and (28).

Lemma 2. Let j ≥ 1, 1 ≤ N ≤ qj , (b, q) = 1, and ai(x) be partial
quotients of {x}. Then

ND(N, {bn/qj}n≥0) ≤
∑

ai(b/qj).

For the proof of this well-known theorem, see for example [N, p. 26].

Lemma 3. There exists a constant K > 0 and integers cm ∈ [0, qm) such
that

m∑
r=1

∑
ai({cm/qr}) ≤ Km3, m = 1, 2, . . .

P r o o f. According to [P, p. 2144] there exist constants Kq such that
∑

1≤c≤qr, (c,q)=1

∑
ai(c/qr) ≤ Kqq

rr2, r = 1, 2, . . .

Therefore

(29)
∑

1≤c≤qm, (c,q)=1

m∑
r=1

∑
ai({c/qr})

=
m∑
r=1

qm−r
∑

1≤c≤qr, (c,q)=1

∑
ai(c/qr) ≤

m∑
r=1

qmKqr
2 ≤ Kqq

mm3.

Let φ(qm) = #{1 ≤ c ≤ qm | (c, q) = 1} and K = Kqq/φ(q). It is known
that φ(qm) = qm−1φ(q). Now the assertion of Lemma 3 follows from (29).

Corollary. Let 1 ≤ N ≤ mqm. Then

(30) A(γ,N, {αm(bm)qn}n≥0) = γN +O(m3).

The statement follows from (1), (2), (10), and Lemmas 1–3.

Applying (3) and (10) we get

{αqnm+n} = {αm(bm)qn}+ θqn−mq
m

with 0 < θ < 1 and 0 ≤ n < mqm.

Hence and from (13) we have, for N ∈ [1,mqm],

A(γ − 1/qm, N −m, {αm(bm)qn}n≥0) ≤ A(γ,N, {αqnm+n}n≥0)

≤ A(γ,N, {αm(bm)qn}n≥0).

By using (30) and (14), we obtain

(31) A(γ, nm, N, {αqn}n≥0) = γN +O(m3) with 1 ≤ N ≤ mqm.
Similarly, from (18) we deduce that

(32) A(γ, nm,mqm, {αqn}n≥0) = γmqm +O(m).
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End of the proof of Theorem 1. For every N ≥ 1 there exists an integer
k such that N ∈ [nk, nk+1). By (4) this yields

(33) N = nk +R with 0 ≤ R < kqk, N > (k − 1)qk−1, k ≤ 2 logq N.

Applying (4), (14) and (31)–(33) we obtain

A(γ,N, {αqn}n≥0) =
k−1∑
r=1

A(γ, nr, rqr, {αqn}n≥0) +A(γ, nk, R, {αqn}n≥0)

=
k−1∑
r=1

(γrqr +O(r)) + γR+O(k3)

= γN +O(k3) = γN +O(log3N).

Thus, by (1), the theorem is proved.

Proof of Theorem 2. In [So] Sobol’ proposed the use of Pascal’s triangle
mod 2 to construct small discrepancy sequences (see also [F], [N]). Here we
use Pascal’s triangle mod 2 to construct normal numbers.

Let Pn be a sequence of a 2n × 2n matrices such that

P1 =
(

1 1
1 0

)
, . . . , Pn+1 =

(
Pn Pn
Pn 0

)
, . . .

It is easy to prove by induction that Pn is the 2n×2n upper left-hand corner
of Pascal’s triangle (5), and Pn is a triangular-type matrix. The following
lemma is proved in [BH] for Pascal’s triangle, and it is clearly valid also for
Pascal’s triangle mod 2.

Lemma 4. The determinant of any n × n array taken with its first row
along a row of ones, or with its first column along a column of ones in
Pascal’s triangle, written in rectangular form, is one.

From (7) we have

(34) {αqnm+2mn+k} = .dk+1(n)dk+2(n) . . . d2m(n)d1(n+ 1) . . .

Let 1 ≤ k, i ≤ 2m and

(35) αki(n) = [{αqnm+2mn+k}qi]/qi.
It is easy to see that

(36) αki(n)

=
{
.dk+1(n) . . . dk+i(n) if k + i ≤ 2m,
.dk+1(n) . . . d2m(n)d1(n+ 1) . . . dk+i−2m(n+ 1) otherwise.

Lemma 5. Let m, k, i, B, f be integers, 1 ≤ i, k ≤ 2m, B ∈ [0, q2m−i),
f ∈ [0, qi). Then

A(f/qi, Bqi, qi, (αki(n))n≥0) = f + 2ε with |ε| < 1.



Discrepancy estimate of normal numbers 107

P r o o f. Case 1. Let k+ i ≤ 2m, cj ∈ ∆ = {0, 1, . . . , q−1} (j = 1, . . . , i).
We examine the system of equations
(37) dk+j(n) = cj , j = 1, . . . , i, n ∈ [Bqi, (B + 1)qi).
According to (8) this system is equivalent to the system of i congruences∑

1≤ν≤2m
pk+j,νeν(n+Bqi) ≡ cj mod q, j = 1, . . . , i, n ∈ [0, qi).

Applying (6) we see that eν(n+Bqi) = eν(n) + eν(Bqi), ν = 1, 2, . . . , and

(38)
∑

1≤ν≤i
pk+j,νeν(n)

≡ cj −
∑

i<ν≤2m
pk+j,νeν(Bqi) mod q, j = 1, . . . , i,

with n ∈ [0, qi). It follows from Lemma 4 that
(39) |det(pk+j,ν)1≤j,ν≤i| = 1.
For any c1, . . . , ci the system (38) has a unique solution (e1(n), . . . , ei(n)),
and consequently there exists a unique n0 ∈ [Bqi, (B+ 1)qi) satisfying (37).

From (36) and (37) we see that the set {αki(n) | n ∈ [Bqi, (B + 1)qi)}
coincides with {j/qi | j ∈ [0, qi)}. Hence and from (14) we have
(40) A(f/qi, Bqi, qi, (αki(n))n≥0) = f.

Case 2. Let k + i > 2m, l1 = 2m − k. As in (37) and (38), the system
of equations

dk+j(n) = cj , j = 1, . . . , l1,(41)
dj(n+ 1) = cj+l1 , j = 1, . . . , i− l1,(42)

with n ∈ [Bqi, (B + 1)qi), is equivalent to the systems of congruences

(43)
∑

1≤ν≤i
pk+j,νeν(n)

≡ cj −
∑

i<ν≤2m
pk+j,νeν(Bqi) mod q, j = 1, . . . , l1,

(44)
∑

1≤ν≤i
pj,νeν(n+ 1)

≡ cj+l1 −
∑

i<ν≤2m+1

pj,νeν((B + [(n+ 1)/qi])qi) mod q,

where j = 1, . . . , i− l1 and n ∈ [0, qi).
Let n = n1 + n2q

l1 with n1 ∈ [0, ql1) and n2 ∈ [0, qi−l1). It is evident
that eν(n) = eν(n1) for ν = 1, . . . , l1.

The matrix Pm is triangular. Hence
pk+j,ν = 0 with ν > 2m − k − j = l1 − j.

The system (43) is equivalent to the following system of congruences:
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(45)
∑

1≤ν≤l1
pk+j,νeν(n1)

≡ cj −
∑

i<ν≤2m
pk+j,νeν(Bqi) mod q, j = 1, . . . , l1,

where n1 ∈ [0, ql1) and n2 ∈ [0, qi−l1).
Applying (39) with i = l1 shows that this system has a unique solution

with (e1(n1), . . . , el1(n1)). Consequently, there exists a unique solution n1 =
n′1 ∈ [0, ql1) satisfying (45).

By (41) and (43) we obtain

(46) {(dk+1(n1+n2q
l1 +Bqi), . . . , dk+l1(n1+n2q

l1 +Bqi)) | 0 ≤ n1 < ql1}
= {(c1, . . . , cl1) | cj ∈ ∆, j = 1, . . . , l1}.

Now we examine the system (44) with n1 = n′1 the solution of (45).

Case 2.1. Let n′1 ≤ ql1 − 2. Bearing in mind that

eν(n+ 1) = eν(n′1 + 1 + ql1n2) = eν(n′1 + 1) + eν(ql1n2),

we deduce from (44) that∑

l1<ν≤i
pj,νeν(ql1n2)

≡ cj+l1 −
∑

1≤ν≤l1
pj,νeν(n′1 + 1)−

∑

i<ν≤2m
pj,νeν(Bqi) mod q

with j = 1, . . . , i− l1 and 0 ≤ n2 < qi−l1 .
Applying Lemma 4 we obtain a unique solution for this system with

(el1+1(ql1n2), . . . , ei(ql1n2)).
By (42) and (44) we get

(47) {(d1(n′1 + n2q
l1 +Bqi + 1), . . . , di−l1(n′1 + n2q

l1 +Bqi + 1)) |
0 ≤ n2 < qi−l1} = {(cl1+1, . . . , ci) | cl1+j ∈ ∆, j = 1, . . . , i− l1}.

Let

(48) F = {dk+1(n) . . . d2m(n)d1(n+ 1) . . . dk+i−2m(n+ 1) |
0 ≤ n1 < ql1 − 1, 0 ≤ n2 < qi−l1 , n = n1 + n2q

l1 +Bqi},
and

(49) gν = dk+ν(ql1 − 1 +Bqi), ν = 1, . . . , l1.

From (46) and (47) we have

(50) F = {(c1, . . . , ci) | cj ∈ ∆, j = 1, . . . , i, (c1, . . . , cl1) 6= (g1, . . . , gl1)}
and

(51) #F = qi − qi−l1 .
Case 2.2. Let n′1 = ql1 − 1, n2 ∈ [0, qi−l1 − 2] and n = n′1 + n2q

l1 . Then
eν(n′1 + 1) = 0 for 1 ≤ ν ≤ l1 and eν(n+ 1) = eν((n2 + 1)ql1) for l1 < ν ≤ i.
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The system (44) is equivalent to the following system of congruences:

(52)
∑

l1<ν≤i
pj,νeν((n2 + 1)ql1)

≡ cj+l1 −
∑

i<ν≤2m
pj,νeν(Bqi) mod q, j = 1, . . . , i− l1,

with 0 ≤ n2 ≤ qi−l1 − 2.
For n2 ∈ [0, qi−l1 − 2] we have the qi−l1 − 1 distinct vectors of

(el1+1((n2 + 1)ql1), . . . , ei((n2 + 1)ql1)).

Using Lemma 4 and by (52) we obtain for n2 ∈ [0, qi−l1 − 2] the qi−l1 − 1
distinct vectors of (cl1+1, . . . , ci).

Let

G = {(g1, . . . , gl1 , d1((n2 + 1)ql1 +Bqi), . . . , di−l1((n2 + 1)ql1 +Bqi)) |
0 ≤ n2 ≤ qi−l1 − 2}.

From (42), (44) and (52) we find that #G = qi−l1 − 1, and from (46) and
(48)–(51) that #(F ∪ G) = qi − 1. Hence and from (36) the set {αki(n) |
n ∈ [Bqi, (B + 1)qi − 2]} coincides with qi − 1 distinct values of j/qi with
j ∈ [0, qi). By (14) we get

A(f/qi, Bqi, qi, (αki(n))n≥0) = f + 2ε with |ε| < 1.

Hence and from (40) we have the assertion of Lemma 5.

Corollary 1.

(53) A(γ,Bqi, qi, {αqnm+2mn+k}n≥0) = γqi + 4ε with |ε| < 1.

P r o o f. Analogously to (16), from (14) and (35) we have

A

(
f − 1
qi

, Bqi, qi, (αki(n))n≥0

)
≤ A(γ,Bqi, qi, {αqnm+2mn+k}n≥0)

≤ A((f + 1)/qi, Bqi, qi, (αki(n))n≥0)

with f = [γqi]. By using Lemma 5 we obtain (53).

Corollary 2. Let 1 ≤ N < 2mq2m . Then

A(γ, nm, N, {αqn}n≥0) = γN + 5qε22m with |ε| < 1,(54)

A(γ, nm, 2mq2m , {αqn}n≥0) = γ2mq2m + 5ε2m with |ε| < 1.(55)

P r o o f. Let N ′ = [N/2m], N ′′ = N − 2mN ′, N ′ =
∑2m−1
i=0 biq

i with
bi ∈ ∆,

(56) N0 = 0, Nj =
j−1∑

i=0

b2m−iq2m−i, j = 1, 2, . . . , Bi = N2m−i−1/q
i.
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It is evident that Bi (i = 1, 2, . . .) are integers, and N ′′ ∈ [0, 2m). As in (15)
we see from (14) that

A(γ, nm, N, {αqn}n≥0) = εN2 +
2m∑

k=1

A(γ,N ′, {αqnm+2mn+k}n≥0),

and

A(γ,N ′, {αqnm+2mn+k}n≥0)

=
2m∑

i=1

A(γ,Ni−1, b2m−iq2m−i, {αqnm+2mn+k}n≥0)

=
2m−1∑

i=0

A(γ,N2m−i−1, biq
i, {αqnm+2mn+k}n≥0)

=
2m−1∑

i=0

bi−1∑

B=0

A(γ,N2m−i−1 +Bqi, qi, {αqnm+2mn+k}n≥0).

Using (56) we have

A(γ, nm, N, {αqn}n≥0)

= ε2m +
2m∑

k=1

2m−1∑

i=0

bi−1∑

B=0

A(γ, (Bi +B)qi, qi, {αqnm+2mn+k}n≥0).

Applying (53) we obtain

A(γ, nm, N, {αqn}n≥0) = ε2m +
2m∑

k=1

2m−1∑

i=0

bi−1∑

B=0

(γqi + 4εi) = γN + 5qε122m

with |ε1| ≤ 1.
Assertion (54) is proved. We prove (55) analogously.

End of the proof of Theorem 2. For every N ≥ q there exists an integer k
such thatN ∈ [nk, nk+1). By (9), this yieldsN = nk+R with 0 ≤ R < 2kq2k ,
N ≥ 2(k−1)q2k−1

, 2k ≤ 2 logq N. Applying (9), (13), (14), (54) and (55) we
obtain

A(γ,N, {αqn}n≥0) =
k−1∑
m=1

A(γ, nm, 2mq2m , {αqn}n≥0)

+A(γ, nk, R, {αqn}n≥0)

=
k−1∑
m=1

(γ2mq2m +O(2m)) + γR+O(22k)

= γN +O(22k) = γN +O(log2N).

Thus, by (1), the theorem is proved.
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