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On additive bases
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W. GAO (Beijing) and Y. O. HAMIDOUNE (Paris)

1. Introduction. By p we shall denote a prime number. The group of
integers modulo n will be denoted by Z,. Let G be an abelian group and
let S be a subset of GG. As usual, we write

2(5):{Zx)Ac5}.
T€A

The critical number of G, denoted by ¢(G), is the smallest s such that
Y(S) = G for every subset S of G with cardinality s not containing 0.

The parameter ¢(G) was first studied by Erdés and Heilbronn in [4]. They
obtained the inequality ¢(Z,) < 34/6p. Olson proved in [13] that ¢(Z,) <
V4p — 3 + 1. The authors of [1] obtained the inequality ¢(Z,) < /4p — 7.

The evaluation of ¢(G) for groups with composite order was first consid-
ered by Mann and Olson. They obtained the inequality ¢(Z, ®7Z,) < 2p — 1
n [11]. Mann and Wou proved that ¢(Z, & Z,) = 2p — 2 in [12]. Dider-
rich proved in [2] the inequality p + ¢ — 2 < ¢(G) < p+q— 1, where
G is an abelian group of order pq and ¢ is a prime. He conjectured that
c¢(G) = |G|/p +p— 2 if |G|/p is composite, where p is the smallest prime
dividing |G|. This conjecture is proved by Diderrich and Mann in [3] for
p = 2. Peng [15] proved Diderrich’s conjecture if G is the additive group
of a finite field. Lipkin [9] obtained a proof of this conjecture in the case
of cyclic groups with large order. This conjecture is proved by one of the
present authors in [5] for p > 43 and by the authors of [8] for p = 3.

In this paper we achieve the evaluation of ¢(G), solving the above men-
tioned conjecture.

2. Some tools. Recall the following well known and easy lemma.

LEMMA 2.1 [10]. Let G be a finite group. Let X and Y be subsets of G
such that X +Y # G. Then | X|+ Y| < |G].
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We use the following result.

LEMMA 2.2 [2]. Let p, q be two primes and let G be an abelian group with
order pq. Let S be a subset of G such that 0 ¢ S and |S| =p+q—1. Then
X(S)=aG.

Let G be an abelian group. Let B C G and z € GG. As usual, we write
Ag(z) =|(B + ) \ B|. For any B, z, Olson proved in [13, 14]

(1) Ag(z) = Ap(—x)
and
(2) Ap(7) = Ag\B(7).

We use the following property which is implicit in [13]: Let G be a finite
abelian group. Let S be a subset of G such that 0 ¢ S. Put B = X(S). For
every y € S, we have

(3) (XS = [Z(S\y)| + Ap(y).
We also use the following result of Olson.

LEMMA 2.3 (Olson [14]). Let G be an abelian group and let S be a gen-
erating subset of G such that 0 € S. Let B be a subset of G such that
|B| < |G|/2. Then there is x € S such that

Ap(x) > min((|B] +1)/2, (]S U -S|+ 2)/4).

This result follows, using (1), by applying Lemma 3.1 of [14] to SU —S.
We use the following lemma which is a consequence of the main result
in [6].

LEMMA 2.4 [6]. Let S be a subset of an abelian group G such that SN —S
= 0. Then

12(8)] > 2I8].
The proof follows easily by induction. Set B = X(S). By Lemma 2.3

applied to B or G\ B and using (2), there is s € S such that Ag(s) > 2. By
(3), IBl = [2(S\z)[ +2>2[5] =

3. The main result. Let X be a subset of G with cardinality k. Let
{zi;1 < i < k} be an ordering of X. For 0 < i < k, set X; = {z; | 1 <
j <i} and B; = Y (X;). The ordering {z1,...,x;} will be called a resolving
sequence of X if for all i, Ap,(z;) = max{Ap,(x;);1 < j < i}. The critical
index of the resolving sequence is the smallest integer ¢ such that X; i
generates a proper subgroup of G.

Clearly, every nonempty subset S not containing 0 admits a resolving
sequence. Moreover, the critical index is > 1.
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We shall write A; = Ap,(z;). By induction we have, using (3), for all
1<j<k,
IZ(X)| > X+ ...+ X+ |Bj_4].
Put §(m) = 0 if m is odd and = 1 otherwise. By Lemma 2.3, \; > (i + 1+
§(4))/2 for all i > ¢. In particular, for all s > ¢,

(4) IX(X)| > (k+s+3)(k—s+1)/4—1/2+ |Bs_1].

THEOREM 3.1. Let G be a finite abelian group with odd order and let p
be the smallest prime dividing |G|. Let S be a subset of G such that 0 & S
and |S| =|G|/p+p—2. If |G|/p is composite, then X(S) = G.

Proof. Set |G| = n. One may check easily the result for n = 27. Suppose
n > 27. Set k(n) = (n/p + p — 2)/2. We shall write sometimes k instead
of k(n). Clearly we may partition S = X UY so that |[X| = |Y]| = &,
XN-X=YN-Y=0and |[X(X)| <|X(Y).

The result holds by Lemma 2.1 if |¥(X)| > n/2. Suppose the contrary.
Since n is odd, we have

() [2(X)] < (n—1)/2.

Let {z;;1 <i <k} be a resolving sequence for X with critical index t.
We first prove that

(6) t>4.
Suppose on the contrary that ¢ < 3. By (5) and (4) applied with s = 3,
(7) 4+ (k—2)(k +6)/4—n/2 < 0.

Put f(n) =4+ (k(n) —2)(k(n)+6)/4 —n/2. Observe that f’'(n) > 0. Hence
f(n) is increasing as a function of n. Since n > p3, we have by (7), f(p*) < 0.
Hence p* — 6p3 + 5p + 4p + 4 < 0. It follows that p = 3. But in this case
n > 27 and hence n > p3 + 2p? = 45. It follows that f(n) > f(45) = 5/2,
contradicting (7).

By Lemma 2.4, |B;—1| > 2(t—1). Obviously |B¢| = |Bi—1|+ |zt + Bi—1| =
2|Ba| > 4(t - 1).

By (5) and (4), applied with s =¢ 41,

(8) 4t —4+ (k—t)(k+t+4)/4—n/2 <0.
Set F(t,n) = 4t — 4 + (k(n) — t)(k(n) + t + 4)/4 — n/2. Notice that
L2 F(t,n) =3 —t/2. Let us show that
(9) t>6.
Suppose on the contrary that 4 < ¢ < 5. Clearly F(5,n) > F(4,n), and

F(4,n) is an increasing function of n. Now by (8), we have F(4,p3) < 0. It
follows that p* — 6p3 + 5p? + 4p + 52 < 0, a contradiction.
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Let us show that
(10) t>n/p®+p—1.

Assume the contrary and set G(n) = F(n/p*+p—2,n). Since n/p?*+p—2 > 6
(we recall that n > 27), we have by (8),

(11) G(n) <0.

Observe that G'(n) = 4/p? + n/(8p?) — 1/(4p) — n/(2p*) — 3/8 > 0. In
particular G(n) is an increasing function. By (11), we have p* — 6p3 — 11p? +
132p — 188 < 0, contradicting (11).

Let H be the proper subgroup generated by X;_;. Let p’ be the smallest
prime divisor of n/p. By (10), |HNS| > n/(pp’)+p’ —1. If n/p is the product
of two primes, then by Lemma 2.2, ¥ (SN H) = H. If n/p is the product of
more than two primes, then by the induction hypothesis, X(SN H) = H.

Since |H| > n/(pp’), we see easily that ¢ = |G|/|H]| is a prime. Clearly
IS\ H| > q—1. Let ay,...,aq—1 be distinct elements from S\ H. We denote
by @; the image of a; in G/H under the canonical morphism.

By the Cauchy-Davenport Theorem (cf. [10]), {0,a1}+...+{0,a,_1} =
G/H. It follows that X(aq,...,ap—1) + H = G. The theorem now follows
since Y(SNH)=H. m
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