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Concordant sequences and integral-valued entire functions

by
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A classic theorem of Pólya shows that the function 2z is the “smallest”
integral-valued entire transcendental function. A variant due to Gel’fond
applies to entire functions taking integral values on a geometric progression
of integers, and Bézivin has given a generalization of both results. We give a
sharp formulation of Bézivin’s result together with a further generalization.

1. Introduction. In a classic paper [15], Pólya showed that the growth
of an entire transcendental function places restrictions on its integral values.

Let f be an entire function and denote by M(f, r) the maximum of |f(z)|
for |z| ≤ r. Suppose that f(n) is an integer for each non-negative integer n.
Pólya showed in [15] that if

lim
r→∞

M(f, r)
√
r

2r
= 0

then f is a polynomial.
The obtrusive factor

√
r was removed by Hardy [11]. The result was then

further sharpened by Pólya [16] to the following. Let f be an entire function
such that f(n) is an integer for each non-negative integer n. Suppose that

lim sup
r→∞

M(f, r)
2r

< 1.

Then f is a polynomial.
Thus the function 2z is the “smallest” transcendental entire function

taking integral values on the set N = {0, 1, . . .}.
The commentary [3] by Boas in Pólya’s collected works indicates some

of the many lines of research stimulated by Pólya’s result.
A variation on Pólya’s result for geometric progressions was obtained by

Gel’fond [8] (see also [9, §2.3.4]). The result, slightly reformulated (Gel’fond
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considered geometric progressions a, a2, a3, . . . but it is more convenient for
us to begin the sequence with a0), is as follows. Let a ∈ Z, |a| ≥ 2. Let f be
an entire function taking integral values on the set Xa = {1, a, a2, . . .} and
suppose that

lim
r→∞

M(f, r)
exp((log r)2/(4 log a))

= 0.

Then f is a polynomial.
Gel’fond exhibited a function Ta that plays the role of the “smallest”

Xa-integral transcendental entire function and showed that

M(Ta, r) = O

(
exp
(

(log r)2

4 log a

))
.

Thus Gel’fond’s result is not quite as sharp at the boundary as that of
Pólya–Hardy above. We describe the construction of Ta below.

A result of Bézivin [1] generalizes both of these theorems. It is convenient
to deal with sequences rather than sets, and indeed with sequences X =
{x0, x1, . . .} that do not contain any repetitions: xi = xj if and only if i = j.
We will call such a sequence (finite or infinite) proper . Bézivin considers
sequences X = {x0, x1, . . .} ⊂ Z that are the (infinite) orbits obtained by
the iteration of a univariate polynomial P with integral coefficients:

XP,x0 = {x0, x1, . . . | x0 ∈ Z, xi+1 = P (xi), i = 0, 1, . . .}.
The case considered by Pólya arises from the choice P (x) = x+1, x0 = 0,

and the case considered by Gel’fond from P (x) = ax, |a| ≥ 2, x0 = 1. As a
further instance, the choice P (x) = xb, b ≥ 2, x0 = a ≥ 2 yields a result of
Pólya–Gel’fond type for the set

Xa,b = {abn | n = 0, 1, . . .}.
Let P be of degree d ≥ 2 and x0 ∈ Z with X = XP,x0 proper. Bézivin

exhibits a constant λ0 = λ0(P, x0) and proves the following result. Let f(z)
be an entire function that is integral-valued on X. Suppose that λ > λ0 and
that, for all sufficiently large r,

M(f, r) ≤ exp
(

log r log log r − log r log log log r
log d

− λ log r
)
.

Then f is a polynomial.
Bézivin exhibits a transcendental entire function TX that is integral-

valued on X and satisfies

M(TX , r) ≤ exp
(

log r log log r − log r log log log r
log d

+O(log r)
)

for all sufficiently large r. Thus the result is best possible in respect of the
main terms of the order of growth. The construction of TX is described
below.
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We prove a sharp version of Bézivin’s result in which the growth of
the X-integral function f is compared directly with the growth of TX . Our
result shows that TX is the “smallest” transcendental entire function that is
integral-valued on X in the sense of the above mentioned result of Pólya [16].
Our result also applies to a somewhat more general class of sequences X;
namely, to sequences that enjoy two properties that we now proceed to
describe.

The first property is of an arithmetic nature. A sequenceX = {x0, x1, . . .}
of integers will be called concordant if, for all non-negative integers i, j, d,
we have

xi ≡ xj mod d⇒ xi+1 ≡ xj+1 mod d.

Sequences of the form XP,x0 are evidently concordant. More generally,
a concordant sequence results from the iteration (where possible) of any
pseudopolynomial as defined by Hall [10]; that is, a function T : N→ Z sat-
isfying T (n+ k) ≡ T (n) mod k for all non-negative integers n, k. (To enable
iteration one would want T : N → N or T defined on all Z.) There exist
pseudopolynomials that are not polynomials; there also exist pseudopoly-
nomials that are polynomials but that do not have integral coefficients. For
further information on pseudopolynomials see [10], [13].

Concordant sequences may be composed preserving the concordant prop-
erty. If X = {x0, x1, . . .} and Y = {y0, y1, . . .} are sequences with yn ≥ 0 for
all n we define

XY = Z = {z0, z1, . . .}, zn = xyn , n = 0, 1, . . .

The following proposition is proved in Section 5.

Proposition 1.1. Let X = {x0, x1, . . .} and Y = {y0, y1, . . .} be concor-
dant sequences of integers and suppose that 0 ≤ y0 < y1 < . . . Then XY is
concordant.

If X,Y are of the form XP,x0 with P a polynomial then XY will not in
general be of this form; for example, if X = Xa and Y = Xb,c then XY

consists of the points

ab
cn

, n = 0, 1, 2, . . .

The second property that we require is of an analytic nature and entails
that the sequence be very sparse. A sequence X = {x0, x1, . . .} of complex
numbers will be called diffuse if

lim
n→∞

|xn| =∞, lim
n→∞

|xn+1|n+1

|xn|2n =∞.

We prove in Section 3 that, if P has degree 2 or greater, then the sequence
XP,x0 , if proper, is diffuse. In Section 5 we prove that any subsequence of a
diffuse sequence is diffuse.
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Given a diffuse concordant sequence X of integers we define below an
entire function TX , following the constructions of Gel’fond and Bézivin,
that plays the role of the “smallest” transcendental entire function that is
integral-valued on X. The following theorem is proved in Section 4.

Theorem 1.2. Let X be a diffuse concordant sequence of integers. Let f
be an entire function that takes integral values on X and satisfies

lim sup
r→∞

M(f, r)
M(TX , r)

< 1.

Then f is a polynomial.

The proof of Theorem 1.2 follows the same line of proof as Pólya [15],
Gel’fond [8] and Bézivin [1]. A certain sequence of polynomials associated
with X plays a fundamental role. For Pólya, these are the polynomials

φ0(x) = 1, φj(x) =
x(x− 1) . . . (x− j + 1)

j!
, j = 1, 2, . . .

These polynomials have the following properties: φn has degree n, vanishes
at the points 0, 1, . . . , n− 1 and takes the value 1 at n. They have the addi-
tional property of taking integral values on N (indeed on Z). An analogous
sequence φX,n of polynomials may be associated with any proper (infinite)
sequence X = {x0, x1, . . .} of complex numbers. They are uniquely deter-
mined by the properties that φX,n has degree n, vanishes at x0, x1, . . . , xn−1

and satisfies φX,n(xn) = 1.
A sequence X of integers will be called a parade if each of the polynomials

φX,n has the additional property of being integral-valued on X. We will
refer to the polynomials φX,n as the attendant polynomials of the parade
X. Bézivin [1] proves that the sequences XP,x0 are parades. We prove the
following generalization in Section 2.

Proposition 1.3. Let X be a proper concordant sequence. Then X is a
parade.

Let us mention also that while concordant sequences provide many ex-
amples of parades, the sequence xn = n2, n = 0, 1, 2, . . . , is a parade but is
not concordant. This sequence is also not diffuse.

For a parade X that is sufficiently sparse the “smallest” X-integral tran-
scendental entire function is constructed by simply adding up the sequence
of attendant polynomials. One easily proves (see Section 3) the following.

Proposition 1.4. Let X be a diffuse sequence of complex numbers. Then
the series

TX(z) =
∞∑
n=0

φX,n(z)
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converges absolutely for all complex z and determines an entire func-
tion TX .

We will call TX the envelope function of X. When X = N, i.e. Pólya’s
situation, the series converges to 2z only at non-negative integers. So we will
define the envelope function of N to be the function 2z. For P = x+ k,X =
XP,x0 we can similarly define TX(z) = 2(z−x0)/k. Since a very sharp result
nevertheless obtains in the case X = N, it might be hoped that sparsity
hypotheses such as our notion of diffusity could be dispensed with in the
formulation of results of the type of Theorem 1.2. However if the sum of
attendant polynomials does not converge to an entire function it is not clear
in general how to interpolate the values on X by an entire function in an
appropriate way to define TX .

Various authors have investigated the structure of entire functions that
are integral-valued but grow faster than 2z. A result of Pólya [16] in this
direction is as follows. Let k be a positive number. Suppose that f is an
integral-valued entire function and that M(f, r)r−k/2r is bounded as r →
∞. Then there are polynomials P,Q such that f(z) = P (z)2z+Q(z). Selberg
[18] obtains the same conclusion under the weaker assumption

lim sup
r→∞

logM(f, r)
r

≤ log 2 +
1

1500
.

Pisot [14] shows that if

lim sup
r→∞

logM(f, r)
r

< 0.843 . . .

then f is of the form

αz1P1(z) + αz2P2(z) + . . .+ αzhPh(z)

where α1, . . . , αh are algebraic integers. See also related results of Buck [5]
and Robinson [17].

As remarked by Buck [5], any structure results of these kinds must be
limited to functions growing slower than the function sin(πz): if g is any
entire function then g(z) sin(πz) is integral-valued.

It would be interesting to pursue analogous results for other parades.
As far as we are aware, none are known even for the case of geometric
progressions.

For a diffuse parade X the canonical product

HX(z) =
∞∏
n=0

(
1− z

xn

)

is entire, and any investigation of the structure of X-integral entire functions
would be confined to functions whose growth rate is between those of TX
and HX .
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Bézivin [2] considers integral-valued entire functions f on very general
subsequences X of geometric progressions Xa. The sequences considered are
not in general parades. He proves under quite general hypotheses that if f
is X-integral and

lim sup
r→∞

logM(f, r)
logM(HX , r)

< 1

then f is a polynomial.
Thus any interesting integral-valued entire functions and structure of

such functions along the lines of the above mentioned results for such se-
quences X would need to occur among functions f that do not satisfy the
above condition relative to HX but that nevertheless grow slower than HX .

In view of Proposition 1.1 and the properties of diffuse sequences de-
scribed above, Theorem 1.2 applies to any concordant subsequence of proper
sequences of the form XP,x0 where the degree of P is at least 2. Hence in
particular it applies to the sequences

Xa,b,c = {abc
n

| n = 0, 1, 2, . . .}, Xa,b,c,d = {abc
dn

| n = 0, 1, 2, . . .}, etc.

The results of Bézivin [2] also apply to these sequences. Thus in these cases
one has at least the function TX in the growth-rate range of interest.

The remainder of the paper, Section 6, is devoted to establishing some
properties of envelope functions. For the functions Ta of Gel’fond we get a
combinatorial expression for the Taylor coefficients by establishing a recur-
rence relation satisfied by Ta. We also show that the envelope function of
any diffuse increasing parade shares with the function 2z the property that
all but finitely many Taylor coefficients are positive.

Acknowledgements. We are grateful to J. FitzGerald, K. Ford, B.
Poonen, I. Rivin and J. Tate for discussions and assistance at various junc-
tures. The first author thanks P. Sarnak and the Mathematics Department
of Princeton University for their hospitality during the visit that occasioned
the present collaboration. We are also most grateful to the referee for sug-
gesting several substantial improvements to this paper.

2. Concordant sequences and parades. In this section we prove
Proposition 1.3 in a general setting.

Let R be a commutative ring with 1. A sequence X = {xn} ⊂ R, n ∈
Z≥0, will be called proper if the xn’s are all distinct, and concordant if it is
proper and for every i, j ∈ Z≥0 and every ideal I ⊂ R we have

xi ≡ xj mod I ⇒ xi+1 ≡ xj+1 mod I.

The sequences XP,x0 are easily seen to be concordant sequences in Z: if
xi ≡ xj mod d then P (xi) ≡ P (xj) mod d. In Section 5 we construct some
further natural examples of concordant sequences in Z.
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Given a concordant sequence X ⊂ R and an ideal I ⊂ R consider the
sequence xn = xn mod I. Let i ∈ Z≥0 be the smallest index (if any such
indices exist) so that there exists a j′ ∈ Z≥0 such that i < j′ and xj′ = xi.
Let j be the smallest such j′ and set δ = j − i ∈ N. It is not hard to see
that xn is then of the form

x0, x1, . . . , xi−1, xi, . . . , xi+δ−1, xi, . . . , xi+δ−1, . . .

with no repetitions other than those explicitly indicated. More precisely,

xj = xj′ if and only if i ≤ j, j′ and j ≡ j′ mod δ.

From now on we assume that R is a domain and let K be its field of
fractions. Given a proper sequenceX in R and two positive integersm,n ∈ N
with m > n we define(

m

n

)

X

=
(xm − x0)(xm − x1) . . . (xm − xn−1)
(xn − x0)(xn − x1) . . . (xn − xn−1)

∈ K.

If R = Z and xn = n for all n ∈ Z≥0 then, of course, this is just the usual
binomial coefficient

(
m
n

)
, which explains our choice of notation. Our goal is

to prove the following.

Proposition 2.1. Let R be an integrally closed domain and let X be a
proper concordant sequence in R. Suppose that m,n ∈ Z with m > n. Then(

m

n

)

X

∈ R.

P r o o f. Let A be a valuation ring in K containing R. That is, A is a
subring of K containing R and equipped with a valuation v : A \ {0} → V ,
where V is a totally ordered group. Fix m,n ∈ N with m > n. For any k ∈ V
we define

N(k) = #{j | 0 ≤ j < n, v(xm − xj) ≥ k},
D(k) = #{j | 0 ≤ j < n, v(xn − xj) ≥ k}.

It is clear that N,D : V → N are decreasing step functions. More precisely,
let k1 < . . . < ks ∈ V be an ordered enumeration of the set {v(xm − xi)} ∪
{v(xn − xi)}, where i = 0, . . . , n − 1. Then N and D are constant on each
of the sets {k ∈ V | k ≤ k1}, {k ∈ V | kj−1 < k ≤ kj} for j = 2, . . . , s,
and {k ∈ V | ks < k}. To simplify the notation we will let Nj = N(kj) and
Dj = D(kj) for j = 1, . . . , s− 1. We have

N = v((xm − x0)(xm − x1) . . . (xm − xn−1)) =
s−1∑

j=1

kj(Nj −Nj+1) + ksNs

and

D = v((xn − x0)(xn − x1) . . . (xn − xn−1)) =
s−1∑

j=1

kj(Dj −Dj+1) + ksDs.
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By summation by parts,

N = k1N1 +
s∑

j=2

(kj − kj−1)Nj , D = k1N1 +
s∑

j=2

(kj − kj−1)Dj .

Fix k ∈ V and let I ⊂ A be the ideal {a ∈ A | v(a) ≥ k}. Also let, as
before, xn = xn mod I. Since xn is concordant our above description of xn
guarantees the following. Assume first that i ≤ n and let j, j′ be the unique
indices i ≤ j, j′ ≤ i+ δ − 1 such that xn = xj and xm = xj′ . Then

N(k) =
{
D(k) if j ≤ j′,
D(k) + 1 otherwise.

If i > n then N(k) = D(k) = 0.
Therefore

v

((
m

n

)

X

)
= N−D = k1(N1 −D1) +

s∑

j=2

(kj − kj−1)(Nj −Dj)

and

0 ≤ v
((

m

n

)

X

)
≤ ks.

We have proved that
(
m
n

)
X

is in A. Since the valuation ring A was arbi-
trary,

(
m
n

)
X

is also in the intersection of all such A’s. Since R is an integrally
closed domain, the intersection of all valuation rings containing R is R [4,
VI, §3, Theorem 3]. This completes the proof.

Proof of Proposition 1.3. The conclusion follows from Proposition 2.1
since

φX,n(m) =
(
m

n

)

X

.

Remark 2.2. Bézivin [1] proves a version of Proposition 2.1 for se-
quences formed by iteration of a univariate polynomial. One may extract
somewhat more information in that case. Let d be a positive integer. Let
a0, a1, . . . , ad be independent indeterminates and set R = Z[a0, a1, . . . , ad].
Let K be the quotient field of R. For a univariate polynomial P and a
non-negative integer k we will denote by P [k] the kth iteration of P , with
the convention that P [0] is the identity polynomial P [0](x) = x. We now let
P ∈ R[x] be the polynomial

P (x) =
d∑

j=0

ajx
j .

The sequence {P [0], P [1], P [2], . . .} in R[x] is concordant. Proposition 2.1
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implies that, for non-negative integers n,m with m ≥ n, the quotient

Qn,m =
n−1∏

k=0

(P [m] − P [k])
(P [n] − P [k])

∈ K(x)

is in fact in R[x]. Thus for X = XP,x0 we have φX,n(m) = Qm,n(x0).

3. Diffuse sequences and granularity. We will call a sequence X of
complex numbers semidiffuse if

lim
n→∞

|xn| =∞, lim inf
n→∞

|xn+1|
|xn| > 1, lim inf

n→∞
|xn+1|n+1|xn−1|n−1

|xn|2n > 1.

Suppose that U : Z → Z. If x0 ∈ Z then we can form the sequence of
iterates of x0 under U :

XU,x0 = {x0, x1, . . . | x0 ∈ Z, xi+1 = U(xi), i = 0, 1, . . .}.
Proposition 3.1. Suppose that U : Z→ Z satisfies

lim inf
|n|→∞

|U(n)|
n2 > 0.

Suppose that XU,x0 is proper. Then XU,x0 is diffuse.

P r o o f. Write X = XU,x0 = {x0, x1, . . .}. Under our hypotheses there
exist positive constants C, c such that

|U(n)|/|n| ≥ c|n|
for all |n| > C. We may assume c < 1. Now |xn| → ∞ as n → ∞ because
X is proper, hence

|xn+1|/|xn| = |U(xn)|/|xn| ≥ c|xn| ≥ 3/c

for all sufficiently large n, so that |xn| ≥ (2/c)n for all sufficiently large n.
Therefore, for sufficiently large n,

|xn+1|n+1

|xn|2n =
|U(xn)|n+1

|xn|2n ≥ cn+1|xn|2 ≥ 22n →∞

as n→∞. This completes the proof.

Corollary 3.2. Let P be a polynomial of degree 2 or greater and x0 ∈ Z.
Suppose that XP,x0 is proper. Then XP,x0 is diffuse.

Our interest in the application of Proposition 3.1 is confined to the case
where U is a pseudopolynomial. Hall [10] gives a description of the ring
of pseudopolynomials and proves that any pseudopolynomial U satisfying
U(n) = O(θn) for some θ < e − 1 is a polynomial. This result, also found
by Ruzsa and Perelli–Zannier, has been variously improved (see [13]). This
suggests the following question. Suppose U is a pseudopolynomial that is
not a polynomial, and that XU,x0 is proper. Is XU,x0 diffuse?
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Ford [7] has given a neat argument to show that if X is a proper concor-
dant sequence that is not an arithmetic progression then limn→∞ |xn+1|/|xn|
is an integer ≥ 2, or ∞. This raises the question of whether such a sequence
is always semidiffuse.

For sequences generated by linear polynomials with non-unit slope we
get the following.

Proposition 3.3. Let P ∈ Z[x] be of the form P (x) = ax+h with |a| ≥ 2
and x0 ∈ Z. Suppose that XP,x0 is proper. Then XP,x0 is semidiffuse.

P r o o f. Write X = XP,x0 = {x0, x1, . . .}. For a 6= 1 one has

xn =
h

1− a +
(
x0 − h

1− a
)
an.

Thus, with |a| ≥ 2, we see that X is proper if and only if
(
x0 − h

1−a
) 6= 0.

The semidiffusity follows from

lim
n→∞

|xn+1|n+1|xn−1|n−1

|xn|2n = lim
n→∞

|an+1|n+1|an−1|n−1

|an|2n = a2 > 1.

Lemma 3.4. Let X be a diffuse sequence of complex numbers. Then

lim
n→∞

n−1∏

k=0

(
1 +
|xk|
|xn|

)
= 1, lim

n→∞

n−1∏

k=0

(
1− |xk||xn|

)
= 1.

P r o o f. Let ε > 0. We will show that there is a non-negative integer
N = Nε such that

n−1∏

k=0

(
1 +
|xk|
|xn|

)
≤ 1 + ε for all n ≥ N .

Choose Q > 1 such that

exp
(

1
Q− 1

)
≤ √1 + ε.

Since X is diffuse we have limn→∞ |xn+1|/|xn| = ∞ and we may choose a
non-negative integer M such that |xn+1| ≥ Q|xn| for n ≥ M . Next choose
a positive integer N such that, for all n ≥ N , we have

M−1∏

k=0

(
1 +
|xk|
|xn|

)
≤ √1 + ε.

Let now n ≥ N . For positive x we have log(1 + x) < x. Hence

n−1∏

k=0

(
1 +
|xk|
|xn|

)
≤
(M−1∏

k=0

(
1 +
|xk|
|xn|

))
exp

( n−1∑

k=M

|xk|
|xn|

)
.
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The first factor on the right is less than
√

1 + ε since n ≥ N . For the second
factor we get

exp
( n−1∑

k=M

|xk|
|xn|

)
≤ exp

( ∞∑

j=1

1
Qj

)
= exp

(
1

Q− 1

)
≤ √1 + ε,

giving the required estimate.
A similar computation establishes that

n−1∏

k=0

(
1− |xk||xn|

)
≥ 1− ε

for all sufficiently large n since, for sufficiently small positive x, we have
log(1− x) ≥ −2x.

Lemma 3.5. Let X = {x0, x1, . . .} be a semidiffuse sequence of complex
numbers. Then

lim sup
n→∞

n−1∏

k=0

(
1 +
|xk|
|xn|

)
<∞, lim inf

n→∞

n−1∏

k=0

(
1− |xk||xn|

)
> 0.

P r o o f. Since X is semidiffuse we may choose an integer M and a con-
stant λ > 1 such that |xn+1|/|xn| ≥ λ for all n ≥M . Choose N such that

M∏

k=0

(
1 +
|xk|
|xn|

)
≤ 2

for all n ≥ N . For such n we have
n−1∏

k=0

(
1 +
|xk|
|xn|

)
≤

M∏

k=0

(
1 +
|xk|
|xn|

) n−1∏

k=M

(
1 +
|xk|
|xn|

)

≤ 2 exp
( ∞∑

j=1

λ−j
)
≤ 2 exp

(
1

λ− 1

)
.

A similar computation establishes the non-zero lower bound for the lim inf
and completes the proof.

Let X be a sequence of complex numbers. For each non-negative integer
n we set

rn = rn(X) = max{|x0|, |x1|, . . . , |xn|}.
If X is semidiffuse then, for all sufficiently large n, we have rn = |xn| and
|xn| < |xn+1|.

Proof of Proposition 1.4. We prove that TX is entire under the weaker
assumption that X is semidiffuse. Let U be a positive number. Suppose
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z ∈ C with |z| ≤ U . Choose an integer M , a positive constant C and a
constant λ > 1 such that for all n ≥M the following inequalities hold:

rn = |xn|, |xn+1|
|xn|+ U

≥ λ,
n∏

k=0

(
1− |xk||xn|

)
≥ 1
C
.

For n ≥M we then have

|φX,n(z)| ≤ C|z − x0| · |z − x1| . . . |z − xn−1|
|xn|n ≤ C

λn
.

So the series converges uniformly for |z| ≤ U , and hence determines an entire
function in the disc of radius U (see for example [19, §2.8]). Since U was
taken arbitrarily, this proves the proposition.

Let X be a parade and suppose that the envelope function TX is an
entire function. Informally, the notion of granularity for X, defined below,
registers the property that for large n there is a radius r > xn at which φX,n
represents essentially all the mass of TX . The precise formulation is tailored
to the employment of this notion in the proofs of our main theorems in the
next section. For an entire function f we let m(f, r) denote the minimum
of |f(z)| for |z| = r. We will say that X is granular if

lim
n→∞

inf
r≥rn

r

r − rn ·
M(TX , r)
m(φX,n, r)

= 1.

We will say that X is semigranular if

inf
r≥rn

r

r − rn ·
M(TX , r)
m(φX,n, r)

has an upper bound independent of n.

Proposition 3.6. Let X be a diffuse parade. Then TX is granular.

P r o o f. Write X = {x0, x1, . . .}. Since X is diffuse we may, by Lemma
3.4, choose a non-negative integer M such that, for k ≥M , we have rk = |xk|
and

k−1∏

j=0

(
1 +
|xj |
|xk|

)
≤ 2,

k−1∏

j=0

(
1− |xj ||xk|

)
≥ 1

2
.

For each integer n we set S = Sn = rnn and choose N = Nn such that
rN ≤ S ≤ rN+1. We also set

q = qn = max
k≥n

|xk|2k
|xk+1|k+1 , h = hn = max

k≥n
|xk|
|xk+1| .

It follows from the diffusity that limn→∞ qn = limn→∞ hn = 0.
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We will show that

lim
n→∞

S

S − rn ·
M(TX , S)
m(φX,n, S)

= 1.

That S/(S − rn)→ 1 as n→∞ is clear; we prove the same for the second
factor.

We have

1 ≤ M(φX,n, S)
m(φX,n, S)

≤
∏n−1
k=0(1 + |xk|/|xn|)∏n−1
k=0(1− |xk|/|xn|)

.

It follows by Lemma 3.3 that

lim
n→∞

M(φX,n, S)
m(φX,n, S)

= 1.

We set

T ∗n = T ∗X,n = TX − φX,n.
To establish the proposition it suffices to prove that

lim
n→∞

M(T ∗n , Sn)
m(φX,n, Sn)

= 0.

We have

M(T ∗n , S) ≤
n−1∑

k=0

M(φX,k, S) +
∞∑

k=n+1

M(φX,k, S).

We split the sums on the right hand side into six sums Σ1, Σ2, . . . , Σ6 with
the following ranges:

k ≤M − 1, M ≤ k ≤ n− 2, k = n− 1, n+ 1 ≤ k ≤ N,
k = N + 1 and k ≥ N + 2.

For any positive r and non-negative integer n we have, since the differ-
ences |xi − xj | are all integers,

M(φX,k, r) ≤ (r + |x0|)(r + |x1|) . . . (r + |xk−1|)
|xk − x0| · |xk − x1| . . . |xk − xk−1| ≤ (2 max{r, rk−1})k.

However, this estimate may be improved in various circumstances. If k ≥M
then, by our assumption on M , we can improve this estimate by observing
that

|xk − x0| · |xk − x1| . . . |xk − xk−1| ≥ 1
2 |xk|k,

while if k ≥M and r ≥ |xk| then

(r + |x0|)(r + |x1|) . . . (r + |xk−1|) ≤ 2rk.
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The first range is estimated crudely by

Σ1 =
M−1∑

k=0

M(φX,k, S) ≤M(2S)M−1.

In the second range, where M ≤ k ≤ n− 2, we have

Σ2 =
n−2∑

k=M

M(φX,k, S) ≤
n−2∑

k=M

2Sk ≤ 2nSn−2.

In the third range k = n− 1 so that

Σ3 = M(φX,n−1, S) ≤ 4Sn−1/rn−1
n−1.

To estimate the sum over the fourth range n+ 1 ≤ k ≤ N , we observe that,
for j non-negative,

S

rn+j+1
n+j+1

=
(rn+j
n+j )

2

rn+j+1
n+j+1

(
S

rn+j
n+j

)2 1
S
≤ q
(

S

rn+j
n+j

)2

.

Since S/rn+1
n+1 ≤ q it follows that S/rn+j

n+j ≤ q2j−1. Thus

Sn+j+1

rn+j+1
n+j+1

· r
n+j
n+j

Sn+j =
(rn+j
n+j )

2

rn+j+1
n+j+1

· S

rn+j
n+j

≤ qq2j−1 ≤ q2j .

Hence

Σ4 =
N∑

k=n+1

M(φX,k, S) ≤ 4
∞∑

j=0

Sn+j+1

rn+j+1
n+j+1

≤ 4
Sn

rnn

∞∑

j=0

q2j+1−1 ≤ 4q
1− q ·

Sn

rnn
.

The fifth range is estimated by observing that

(S + |x0|)(S + |x1|) . . . (S + |xN−1|)(S + |xN |) ≤ 2SN2S

while

|xN+1 − x0| . . . |xN+1 − xN | ≥ 1
2r
N+1
N+1 ≥ 1

2S
N+1.

Therefore

Σ5 = M(φX,N+1, S) ≤ 8.

In the last range we have k ≥ N + 2 so that S ≤ rk−1. We have
∞∏

k=N+2

(
1 +

S

|xk|
)
≤ exp

( ∞∑

j=1

hj
)
≤ exp

(
h

1− h
)
.

Therefore

(S + |x0|) . . . (S + |xN |)(S + |xN+1|)(S + |xN+2|) . . . (S + |xk−1|)
≤ 2 exp

(
h

1− h
)
SN+1(2|xN+1|)|xN+2| · |xN+3| . . . |xk−1|,
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and so

M(φX,k, S) ≤ 8 exp
(

h

1− h
)
SN+1|xN+1|rN+2 . . . rk−1

rkk

≤ 8hk exp
(

h

1− h
)
.

Thus

Σ6 =
∞∑

k=N+2

M(φX,k, S) ≤ 8 exp
(

h

1− h
) ∞∑

k=n+2

hk ≤ 8h
1− h exp

(
h

1− h
)
.

Now

m(φX,n, S) ≥ (rn+1 − |x0|)(rn+1 − |x1|) . . . (rn+1 − |xn−1|)
|xn − x0| · |xn − x1| . . . |xn − xn−1|

≥ Sn

4rnn
=
Sn−1

4
.

Since X is diffuse we have qn, hn → 0 as n→∞. We have also S = rnn ≥ 2n

for all sufficiently large n. Therefore the sums Σ1, Σ2, Σ3, Σ4, Σ5, Σ6 are all
o(Sn−1) as n→∞.

Remark 3.7. Under the conditions of Proposition 3.6 we have
M(TX , rnn)/rn

2−n
n → 1 as n→∞.

For a sequence X of complex numbers we define

Rn(X) =

√
rn+1
n+1(X)

rn−1
n−1(X)

.

Proposition 3.8. Let X be a semidiffuse parade. Then TX is semigran-
ular.

P r o o f. We set Rn = Rn(X) and establish an upper bound independent
of n for

Rn
Rn − rn ·

M(TX , Rn)
m(φX,n, Rn)

.

Such a bound obtains for the first factor by the semidiffusity of X. Indeed
as n→∞ we have

rn
Rn

=
rnr

n−1
n−1√

rn+1
n+1r

n−1
n−1

=
(
rn−1

rn

)n−1
rnn√

rn+1
n+1r

n−1
n−1

→ 0.

By Lemma 3.5 there is a non-negative integer M and a positive constant
C such that, for all n ≥M , we have

n−1∏

k=0

(
1 +
|xk|
|xn|

)
< C,

n−1∏

k=0

(
1− |xk||xn|

)
>

1
C
.
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By the semidiffusity we can assume that there are constants λ > 1 and δ > 1
such that (increasing M if necessary)

|xn+1|
|xn| ≥ λ,

|xn+1|n+1|xn−1|n−1

|xn|2n ≥ δ

also hold for all n ≥M , and further that rn = |xn| for all n ≥M .
Thus for n ≥M we have

m(φX,n, Rn) ≥ C2Rnn/r
n
n.

Now suppose that n is so large that

δ(n−M−1)(n−M−2)/2 ≥M(2rM )M .

We begin with the estimate

M(TX , Rn) ≤
∞∑

k=0

M(φX,k, Rn)

and split the sum on the right into three sums over the ranges

k ≤M − 1, M ≤ k ≤ n, k > n.

To estimate the sum over the range k > n we note that, for j non-
negative,

Rnr
n+j
n+j

rn+j+1
n+j+1

=
r

2(n+j)
n+j

rn+j+1
n+j+1r

n+j−1
n+j−1

· Rnr
n+j−1
n+j−1

rn+j
n+j

≤ δ−1Rnr
n+j−1
n+j−1

rn+j
n+j

≤ . . . ≤ δ−jRnr
n
n

rn+1
n+1

≤ δ−j .

Therefore
Rn+j+1
n

rn+j+1
n+j+1

· r
n
n

Rnn
≤ δ−j(j−1)/2,

so that
∞∑

k=n+1

M(φX,k, Rn) ≤ Rnn
rnn

∞∑

j=1

δ−j(j−1)/2 ≤ Rnn
rnn
· δ

δ − 1
.

For the sum over the second range we proceed similarly, noting that for
non-negative j with n− j ≥M we have

rn−jn−j
Rnr

n−j−1
n−j−1

=
r

2(n−j)
n−j

rn−j−1
n−j−1r

n−j+1
n−j+1

· r
n−j+1
n−j+1

Rnr
n−j
n−j
≤ δ−1 r

n−j+1
n−j+1

Rnr
n−j
n−j

≤ . . . ≤ δ−jRnr
n
n

rn−1
n−1

≤ δ−j ,
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so that
Rn−j−1
n

rn−j−1
n−j−1

· r
n
n

Rnn
≤ δ−j(j−1)/2,

yielding
n−1∑

k=M

M(φX,k, Rn) ≤ Rnn
rnn

∞∑

j=1

δ−j(j−1)/2 ≤ Rnn
rnn
· δ

δ − 1
.

For the range k ≤M − 1 we have
M−1∑

k=0

M(φX,k, Rn) ≤M(2Rn)M .

From the discussion of the second range it follows that

RMn
rMM
· r

n
n

Rnn
≤ δ−(n−M−1)(n−M−2)/2.

Hence ∑M−1
k=0 M(φX,k, Rn)
m(φX,n, Rn)

≤ C2 M(2rM )M

δ(n−M−1)(n−M−2)/2
≤ C2.

Thus
M(TX , Rn)
m(φX,n, Rn)

≤ C2
(

1 +
2δ
δ − 1

)

and this completes the proof.

Corollary 3.9. Let X be a semidiffuse parade. Then M(TX , Rn)rnn/R
n
n

is bounded independently of n.

P r o o f. This follows from the proof of Proposition 3.8.

4. Proof of Theorem 1.2. In this section we prove Theorem 1.2. In
fact we prove the following.

Theorem 4.1. Let X be a parade with TX entire. Suppose that TX is
granular. Let f be an entire function that takes integral values on X and
satisfies

lim sup
r→∞

M(f, r)
M(TX , r)

< 1.

Then f is a polynomial.

We also prove the following version that, in view of Proposition 3.3,
applies to semidiffuse parades. However, we do not know of any examples
of parades that are semidiffuse but not diffuse that are essentially different
from the case treated by Gel’fond; that is, sequences generated by iteration
of a linear polynomial with non-unit slope.
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Theorem 4.2. Let X be a parade with TX entire. Suppose that TX is
semigranular. Let f be an entire function that takes integral values on X
and satisfies

lim sup
r→∞

M(f, r)
M(TX , r)

= 0.

Then f is a polynomial.

Suppose that f is an entire X-integral function in the hypothesis of
Theorem 4.1 or 4.2. The strategy of the proof of Theorems 4.1 and 4.2,
following the strategies of Pólya [15, 16], is as follows. First, construct a
polynomial Q that takes the same values as f on X. Second, prove that
f and Q are identically equal. The approach used by Gel’fond [8, 9] and
Bézivin [1, 2] is slightly different. They show that f can be represented by
an interpolation series with respect to X, and then show that this series
terminates after finitely many terms so that it is a polynomial.

We begin with four propositions. The first three evaluate the coefficients
that will be used to construct Q out of the polynomials φX,n. The fourth
gives the requisite uniqueness of interpolation and is analogous to a Hilfssatz
[15, §4] of Pólya.

We denote by V (x0, . . . , xn) the Vandermonde determinant on x0, . . .
. . . , xn. If X = {x0, x1, . . .} is a sequence of complex numbers containing at
least n+ 1 elements we set Vn(X) = V (x0, x1, . . . , xn).

Proposition 4.3. Let {x0, x1, . . . , xn} ⊂ C be a set of distinct points
and let ψj , j = 0, 1, . . . , n, and f be functions defined on {x0, x1, . . . , xn}.
Suppose that ψj(xj) = 1, j = 0, 1, . . . , n, and ψj(xi) = 0 whenever i < j.
For m = 0, 1, . . . , n set

cm = det



ψ0(x0) ψ1(x0) . . . ψm−1(x0) f(x0)

...
...

...
...

ψ0(xm) ψ1(xm) . . . ψm−1(xm) f(xm)


 .

Then

f(xk) =
n∑

j=0

cjψj(xk), k = 0, 1, . . . , n.

P r o o f. The proof is by induction: for n = 0, the conclusion holds be-
cause c0 = f(x0) and ψ0(x0) = 1.

Assuming that the conclusion holds for n points, we prove it for n + 1.
Since ψn(xk) = 0 for k = 0, . . . , n− 1, the induction hypothesis shows that

f(xk) =
n∑

j=0

cjψj(xk), k = 0, 1, . . . , n− 1.
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So to prove the proposition we need only check that

f(xn) =
n∑

j=0

cjψj(xn).

In the determinantal expression for cn, we subtract from the last column
a linear combination of the previous columns to obtain

cn = det



ψ0(x0) ψ1(x0) . . . ψn−1(x0) f(x0)−∑n−1

j=0 cjψj(x0)
...

...
...

...
ψ0(xn) ψ1(xn) . . . ψn−1(xn) f(xn)−∑n−1

j=0 cjψj(xn)


 .

In view of the induction hypothesis, this matrix is lower triangular. The
diagonal terms, apart from the (n+ 1, n+ 1) term, are equal to 1. Hence

cn = f(xn)−
n−1∑

j=0

cjψj(xn).

Since ψn(xn) = 1 we have

n∑

j=0

cjψj(xn) =
n−1∑

j=0

cjψj(xn) + cnψn(xn) = f(xn),

completing the proof.

Proposition 4.4. Let x0, x1, . . . , xn, z be independent indeterminates.
Then

det




1 x0 . . . xn−1
0

1
z−x0

1 x1 . . . xn−1
1

1
z−x1

...
...

...
...

1 xn . . . xn−1
n

1
z−xn


 =

V (x0, . . . , xn)
(z − x0)(z − x1) . . . (z − xn)

.

P r o o f. Multiplying the last column by P = (z−x0)(z−x1) . . . (z−xn)
we find that

det




1 x0 . . . xn−1
0

1
z−x0

1 x1 . . . xn−1
1

1
z−x1

...
...

...
...

1 xn . . . xn−1
n

1
z−xn




=
1
P

det




1 x0 . . . xn−1
0

̂(z − x0)(z − x1) . . . (z − xn)
1 x1 . . . xn−1

1 (z − x0) ̂(z − x1) . . . (z − xn)
...

...
...

...
1 xn . . . xn−1

n (z − x0)(z − x1) . . . ̂(z − xn)



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where ̂ denotes an omitted term. Using column linearity, we can expand
the determinant on the right hand side above into a polynomial in z whose
coefficients are determinants in the other variables. These coefficient deter-
minants vanish if we have xi = xj for some i 6= j, and hence are divisible
by V (x0, . . . , xn). Therefore, considering degrees, all these coefficients for
positive powers of z vanish. The coefficient of z0 is some constant multiple
of V (x0, . . . , xn), and this constant can be seen to be 1 by considering the
case xi = i.

Given a proper infinite sequence X of complex numbers and a complex-
valued function f defined on X we set, for each non-negative integer n,

cn(X, f) = det



φX,0(x0) φX,1(x0) . . . φX,n−1(x0) f(x0)

...
...

...
...

φX,0(xn) φX,1(xn) . . . φX,n−1(xn) f(xn)


 .

Using

φX,n(x) =
(x− x0)(x− x1) . . . (x− xn−1)

(xn − x0)(xn − x1) . . . (xn − xn−1)

and elementary column operations we get the alternative expression

cn(X, f) =
1

Vn−1(X)
det




1 x0 . . . xn−1
0 f(x0)

1 x1 . . . xn−1
1 f(x1)

...
...

...
...

1 xn . . . xn−1
n f(xn)


 .

Proposition 4.5. Let X = {x0, x1, . . .} ⊂ C be a proper infinite sequence
and n a non-negative integer. Let r > max{|x0|, . . . , |xn|}. Let Dr denote
the open disk of radius r centered at the origin in the complex plane, and
Cr its boundary , and suppose that f is holomorphic in a neighborhood of
Dr ∪ Cr. Then

cn(X, f) =
Vn(X)

2πiVn−1(X)

\
Cr

f(z)
(z − x0)(z − x1) . . . (z − xn)

dz.

P r o o f. Applying Cauchy’s integral theorem to the second expression
above for cn(X, f) we find

cn(X, f) =
1

2πiVn−1(X)

\
Cr

f(z) det




1 x0 . . . xn−1
0

1
z−x0

1 x1 . . . xn−1
1

1
z−x1

...
...

...
...

1 xn . . . xn−1
n

1
z−xn


 dz.

The conclusion now follows by Proposition 4.3.
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Proposition 4.6. Let X be a semidiffuse sequence of complex numbers
and define Rn = Rn(X) as in Section 3. Suppose that

1 ≤ λ < lim inf
n→∞

|xn+1|
|xn| .

Let f be an entire function with

lim
n→∞

M(f,Rn)
λn(n−1)/2M(TX , Rn)

= 0.

Then the interpolation series
∑∞
n=0 cn(X, f)φX,n(z) is entire and equal to f .

P r o o f. Let t, z, y0, y1, . . . be independent indeterminates, and define the
polynomials P0(z) = 1, P1(z) = (z−y0), . . . , Pk(z) = (z−y0)(z−y1) . . . (z−
yk−1), . . . It is easily shown by induction (or see [9]) that, for each n,

1
t− z =

P0(z)
P1(t)

+
P1(z)
P2(t)

+ . . .+
Pn−1(z)
Pn(t)

+
Pn(z)

(t− z)Pn(t)
.

If now z is complex and r > max{|z|, |xi| | i = 0, . . . , n} then the above
identity and the formula for cn(X, f) of Proposition 4.5 yields

f(z) =
1

2πi

\
Cr

f(t)
t− z dt =

n∑

k=1

ck(X, f)φX,k(z) +Wn(z)

where

Wn(z) = Pn(z)
1

2πi

\
C−r

f(t)
(t− z)Pn(t)

dt = φX,n(z)
1

2πi

\
C−r

f(t)
(t− z)φX,n(t)

dt.

Taking r = Rn we have, once rn > |z|,

|Wn(z)| ≤ |φX,n(z)| RnM(f,Rn)
(Rn − rn)m(φX,n, Rn)

.

Since X is semidiffuse, TX is semigranular so that, under the growth hy-
pothesis on f ,

|Wn(z)| ≤ λn(n−1)/2|φX,n(z)|
once n is large enough. Choose µ > λ such that, for all sufficiently large m
(say m > M), we have

|xm+1|
|xm|+ |z| ≥ µ.

Then there is a positive constant H such that

|φX,n(z)| ≤ Hµ−(n−M)(n−M−1)/2

so that Wn(z)→ 0 as n→∞.
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Corollary 4.7. Let the entire function f satisfy the growth hypothe-
sis of Proposition 4.6 and suppose that f vanishes on X. Then f vanishes
identically.

Remark. Corollary 4.7 may be proved directly from Jensen’s Theorem
in a straightforward way, analogous to a lemma of Pólya [15] showing that
an entire function f vanishing on N and satisfying M(f, r) ≤ βr for some
β < e vanishes identically. Carlson’s theorem (see [19, 5.81]) improves this,
showing that the same conclusion holds if f vanishes on N and satisfies
M(f, r) ≤ βr for some β < eπ. This is essentially best possible in view of
the function sin(πz). It would be interesting to try to improve Corollary 4.7
in an analogous way.

Proof of Theorems 4.1 and 4.2. By Proposition 4.6 we have

f(z) =
∞∑

j=0

cj(X, f)φX,j(z).

We need only show that the cn(X, f) vanish for all sufficiently large n.
Since all the entries in the matrix determining cn(X, f) are integers it

follows that each cn(X, f) is an integer. We proceed to estimate cn(X, f).
Set rn = rn(X) = max{|x0|, |x1|, . . . , |xn|} as in Section 3 and let r > rn.

Since

Vn(X)
Vn−1(X)(r − x0)(r − x1) . . . (r − xn)

=
1

(r − xn)φX,n(r)
,

the expression for cn(X, f) of Proposition 4.5 yields the estimate

|cn(X, f)| ≤ r

r − |xn| ·
M(f, r)
m(φX,n, r)

.

Hence

|cn(X, f)| ≤ inf
r>rn

(
r

r − rn ·
M(f, r)

m(φX,n, r)

)

which we rewrite as

|cn(X, f)| ≤ inf
r>rn

(
r

r − rn ·
M(TX , r)
m(φX,n, r)

· M(f, r)
M(TX , r)

)
.

Under the hypotheses of Theorem 4.1 we have

lim sup
n→∞

|cn(X, f)| ≤ lim sup
r→∞

M(f, r)
M(TX , r)

< 1.

Thus there is an integer N such that |cn(X, f)| < 1 for all n > N , and since
cn(X, f) is an integer we in fact have cn(X, f) = 0 for all n > N .
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Under the hypotheses of Theorem 4.2 we have

inf
r>rn

(
r

r − rn ·
M(TX , r)
m(φX,n, r)

)

bounded independently of n while

lim
r→∞

M(f, r)
M(TX , r)

= 0.

Hence again we find that there is an integer N such that |cn(X, f)| < 1 for
all n > N and thus cn(X, f) = 0 for all n > N .

Proof of Theorem 1.2. Suppose that X is diffuse. Then TX is granular
by Proposition 3.6, and the conclusion of Theorem 1.2 follows from Theo-
rem 4.1.

5. Processions. Let X be a parade. We call X a procession if 0 ≤ x0 <
x1 < . . .

If X = {x0, x1, . . .} is a parade and Y = {y0, y1, . . .} is a procession then
we can form a new sequence denoted XY by setting

XY = Z = {z0, z1, . . .}, zn = xyn , n = 0, 1, . . .

If X is a procession then clearly XY is also a procession.
Proposition 1.1 may be restated as follows.

Proposition 5.1. Let X be a concordant parade and Y a concordant
procession. Then XY is a concordant parade.

P r o o f. Let z0, z1, . . . denote the elements of XY , so that zi = xyi . Fix d
and consider the sequence of residues of x0, x1, . . . in Z/dZ. Let h, h+ k be
the smallest two indices with xh ≡ xh+k mod d. Then, for any indices s, t
with, say, s < t, we have xs ≡ xt mod d if and only if s ≥ h and s ≡ t mod k.
Suppose now that i < j and zi ≡ zj mod d. It follows that yi, yj ≥ h and
yi ≡ yj mod k. Since Y is concordant we have yi+1 ≡ yj+1 mod k, and since
Y is a procession we have yi+1, yj+1 ≥ h; hence zi+1 ≡ zj+1 mod d.

Proposition 5.2. Let X = {x0, x1, . . .} be a diffuse sequence of complex
numbers and let Y = {y0, y1, . . .} be a subsequence of X. Then Y is diffuse.

P r o o f. Define the sequence An by setting

|xn+1|n+1 = An|xn|2n.
It follows from our hypotheses that An → ∞ as n → ∞. Define similarly
the sequence Bm by

|ym+1|m+1 = Bm|ym|2m.
We must show that Bm →∞ as m→∞.
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Take M so large that |xn| < |xn+1| for all n ≥M . We may suppose that
n ≥M .

Suppose that ym = xn, where m ≤ n. Then ym+1 = xn+j for some j ≥ 1
so that |ym+1| ≥ |xn+1|. We then have

|ym+1|m+1 ≥ |xn+1|m+1 = |Anx2n
n |(m+1)/(n+1)

= A(m+1)/(n+1)
n |ym|2m|ym|2(n−m)/(n+1).

Thus
Bm ≥ A(m+1)/(n+1)

n |ym|2(n−m)/(n+1).

Since we must have either m ≤ n/2 or m > n/2 we have (for n ≥ 1)

Bm ≥ min{
√
An,

√
|ym|}

so that Bm →∞ as m→∞ as required.

These two results imply that if X is a diffuse concordant sequence and
Y is a concordant procession then XY is a diffuse concordant sequence. The
choice X = Xa,b and Y = Xc yields the example Z = Xa,b,c mentioned in
the introduction. Setting W = Xb,c,d and Xa,b,c,d = XW yields the example

Xa,b,c,d = {abc
dn

| n = 0, 1, . . .}.
The following proposition deals with sequences of the form XY when X

and Y are generated by linear polynomials with non-unit slope.

Proposition 5.3. Let P,Q ∈ Z[x] be linear with non-unit slope. Suppose
that x0, y0 ∈ Z. Set X = XP,x0 and Y = XQ,y0 and suppose that X is proper
and that Y is a procession. Then XY is a diffuse parade.

P r o o f. Let XY = {z0, z1, . . .}. Let a be the leading coefficient of P and
write Q(x) = bx+ g. There are constants H,K,M such that, for n ≥M ,

H|a|n−M ≤ |xn| ≤ K|a|n−M .
Hence

|zn+1|n+1

|zn|2n ≥ (H|a|yn+1−M )n+1

(K|a|yn−M )2n ≥ Hn+1

K2n |a|(n+1)yn+1−2nyn .

Now
(n+ 1)yn+1 − 2nyn = yn((n+ 1)b(1 + g/yn)− 2n)

≥ yn((n+ 1)2(1 + g/yn)− 2n) ≥ yn/2
for all sufficiently large n. Thus |zn+1|n+1/|zn|2n →∞ as n→∞.

6. Envelope functions. In this section we study the envelope functions
Ta. We show that Ta satisfies a recurrence relation, and derive therefrom a
combinatorial expression for its Taylor series. The recurrence relation for Ta
also appears in a paper [6] of Bundschuh; we include a proof for the reader’s
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convenience. We thank the referee for making us aware of Bundschuh’s pa-
per. It would be interesting to investigate whether analogous recurrence
relations are satisfied by other envelope functions.

We denote the Taylor expansion of TX by

TX(z) =
∞∑
n=0

tn(X)zn.

For x an indeterminate and a in some valued field with |a| > 1 let

T (x) = Ta(x) = 1 +
∞∑
n=1

(x− 1) . . . (x− an−1)
(an − 1) . . . (an − an−1)

.

(The terms in the series are the q-binomial polynomials, with q = a. The
value of the nth term at x = am with a a prime number is the number of
n-dimensional planes in an m-dimensional vector space over Z/aZ. If we had
the regular binomial polynomials instead, the series would equal 2x and in
fact (over C) T (az) tends to 2z as a tends to 1. It follows from Remark 2.2,
and is not hard to see directly, that T (an) is a polynomial in a with integer
coefficients for every n ∈ N.)

We want to find an expression for the Taylor expansion of T as a function
of x. We start by proving the following.

Lemma 6.1.

T (a2x)− 2T (ax) + (1− ax)T (x) = 0.

P r o o f. First consider

H(x) = T (ax)− T (x) = A+
∞∑
n=2

(x− 1)(x− a) . . . (x− an−2)
(an − 1)(an − a) . . . (an − an−1)

B,

where

A =
ax− 1
a− 1

− x− 1
a− 1

= x,

B = an−1(ax− 1)− (x− an−1) = x(an − 1).

Hence

H(x) = x

(
1 +

∞∑
n=2

(x− 1) . . . (x− an−1)
(an − 1) . . . (an − an−1)

· 1
an

)
.

Now let ∆ = T (a2x)− 2T (ax) + (1− ax)T (x). Then

∆ = H(ax)−H(x)− axT (x) = x

(
C +

∞∑
n=2

(x− 1) . . . (x− an−2)
(an − 1) . . . (an − an−1)

· D
an

)
,
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where

C = −1 +
ax− 1
a− 1

− x− 1
a(a− 1)

− a(x− 1)
a− 1

=
−x+ 1
a(a− 1)

,

D = an(ax− 1)− (x− an−1)− (x− an−1) = −(x− an−1) + an(an − 1).

Therefore,

∆ = x

(
− x− 1
a(a− 1)

)
− x

∞∑
n=2

(x− 1) . . . (x− an−1)
(an − 1) . . . (an − an−1)an

+ x

∞∑
n=2

(x− 1) . . . (x− an−2)
(an−1 − 1) . . . (an−1 − an−2)an−1 = 0

and we are done.

Let

T (x) =
∞∑
n=0

tn(a) xn

be the Taylor expansion of T as a function of x. It is easy to see that our
previous lemma is equivalent to the following recursion for the tn’s:

tn =
a

(an − 1)2 tn−1,

from which it follows that

T (x) = t0

(
1 +

∞∑
n=1

an

(an − 1)2 . . . (a− 1)2x
n

)
.

If we now evaluate this identity at x = 1 we get

t−1
0 = 1 +

∞∑
n=1

an

(an − 1)2 . . . (a− 1)2 ,

and hence by an identity of Euler (see for example Hardy and Wright [12,
Theorem 351])

t0 =
∞∏
n=1

(1− a−n).

We have thus proved the following.

Proposition 6.2. The Taylor expansion of T as a function of x is given
by

T (x) =
∞∏
n=1

(1− a−n)
(

1 +
∞∑
n=1

an

(an − 1)2 . . . (a− 1)2x
n

)
.
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Notice that if we evaluate at x = 0 we recover the classical identity
∞∏
n=1

(1− a−n) = 1 +
∞∑
n=1

(−1)n

(an − 1) . . . (a− 1)
.

We next establish a property for all semidiffuse parades. To formulate our
result we require some further notation. Suppose that X = {x0, x1, . . . , xn}
is an infinite proper sequence of real numbers. For each non-negative integer
n we set

In = In(X) = [min{x0, x1, . . . , xn},max{x0, x1, . . . , xn}]
and

IX =
⋃
In(X).

Thus In is the convex closure of {x0, . . . , xn} in R and IX is the convex
closure of X. In all the cases we consider we have |xn| → ∞ as n → ∞ so
that IX is either all of R or a halfline (−∞, c] or [c,∞) for some real c.

A real-valued function g ∈ C∞(IX) will be called univocal for X at stage
n if g(k) is non-vanishing on Ik(X) for all k ≥ n. We will call g univocal for
X if there is a non-negative integer n such that g is univocal for X at stage
n, and the least n for which this holds will be called the stage of g for X
and denoted stag(X, g).

A parade X with TX entire will be called univocal if TX is univocal for
X. We then define the stage of X to be stag(X,TX) and denote it stag(X).

Proposition 6.3. Let X be a semidiffuse parade of integers. Then X is
univocal.

P r o o f. Choose positive constants C and δ > 1 and a non-negative
integer M so large that, for n ≥M , the following inequalities hold:

n−1∏

j=0

(
1− |xj ||xn|

)
≥ 1
C
,

n−1∏

j=0

(
1 +
|xj |
|xn|

)
≤ C,

|xn+1|/|xn| ≥ δ, δ > exp(1/n).

Let S(i, k) denote the sum of all products of i distinct terms from
{x0, x1, . . . , xk−1}. The number of summands is

(
k
i

)
. Then for k non-nega-

tive and x ∈ R we have

(xk − x0)(xk − x1) . . . (xk − xk−1)φX,k(x) =
k∑

i=0

(−1)k−iS(k − i, k)xi.

For n ≤ k we therefore have

(xk − x0)(xk − x1) . . . (xk − xk−1)φ(n)
X,k(x) =

k∑

i=n

(−1)k−iS(k − i, k)i!
(i− n)!

xi−n.
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If x ∈ In and n ≤ i ≤ k then

|S(k − i, k)xi−n| ≤
(

k

k − 1

)
rnrn+1 . . . rk−1

and hence, if n ≥M , we find that

rkk
C
|φ(n)
X,k(x)| ≤ k!

(k − n)!

k−n∑

j=0

(
k − n
j

)
|rnrn+1 . . . rk−1|

≤ k!
(k − n)!

2k−n|rn . . . rk−1|.

Since |φ(n)
X,n| ≥ 1/(Crnn) we have, for x ∈ In,

|T (n)
X (x)− φ(n)

X,n|
|φ(n)
X,n|

≤ C2
∞∑

k=n+1

k!2k−nrn+1
n rn+1 . . . rk−1

(k − n)!rkk

≤ C2
∞∑

j=1

((n+ j)!)2j

j!δjn+j(j+1)/2
.

We observe that
(

(n+ j)!
j!

)
≤ nj

j!

j∏

h=1

(
1 +

h

n

)
≤ nj

j!
exp

( j∑

h=1

h

n

)
≤ nj

j!
exp

(
j(j + 1)

2n

)
.

We have assumed n so large that
√
δ > exp (1/(2n)). Hence

max{|T (n)
X (x)− φ(n)

X,n| | x ∈ In}
|φ(n)
X,n|

≤ C2
∞∑

j=1

(2n)j

j!δjn
= C2

(
exp

(
2n
δn

)
−1
)
→ 0

as n→∞. Hence T (n) is non-vanishing on In for all sufficiently large n.

Remarks. 1) The proof of Proposition 6.3 shows that the sign of T (n)

on In is the same as the sign of (xn−x0)(xn−x1) . . . (xn−xn−1). It follows
that the envelope function TX of a semidiffuse procession X shares with
2z the property that all but at most finitely many Taylor coefficients are
strictly positive.

2) Let X be a univocal parade with envelope function T = TX . If f is a
complex-valued function possessing n derivatives on In then the equality

1
V (x0, . . . , xn)

det




1 x0 . . . xn−1
0 f(x0)

...
...

...
1 xn . . . xn−1

n f(xn)



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=
1\
0

dt0

1\
0

t0 dt1

1\
0

t1t0 dt2 . . .

1\
0

tn−2 . . . t0 dtn−1

× f (n)(x0 + t0(x1 − x0) + . . .+ tn−1 . . . t0(xn − xn−1))

is easily established by induction. This leads to the following alternative
expression for the cn = cn(X, f) of Proposition 4.5:

cn =
Vn(X)
Vn−1(X)

1\
0

dt0 . . .

1\
0

tn−2 . . . t0 dtn−1

× f (n)(x0 + . . .+ tn−1 . . . t0(xn − xn−1)).

For each integer n ≥ stag(X) set

an(X, f) = max
{∣∣∣∣
f (n)(x)

T
(n)
X (x)

∣∣∣∣, x ∈ In(X)
}
.

For the envelope function T one has cn(X,T ) = 1 for all n. Hence by com-
paring integrands one sees that

|cn(X, f)| ≤ an(X, f).

This estimate may be used to give a variant of Theorem 1.2 in which f
and T are compared on the real line only: the growth hypothesis on f in
this variant is that an(X, f) < 1 for all sufficiently large n. As the referee
pointed out to us, this variant, in the case X = N, may be deduced from
the results of Pólya [16] or Selberg [18] mentioned in Section 1. Indeed,
under the hypotheses, for any procession X, one finds that M(f, r)/M(T, r)
is bounded as r → ∞. Results for other parades analogous to those of [16,
18] for X = N are not known. In the other direction, it is straightforward to
deduce Pólya’s original result (with the factor

√
r) from this variant. This

may be accomplished using Cauchy’s Theorem and Stirling’s Formula.
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