Dirichlet character sums

by

CHUNLEI LIU (Zhengzhou)

0. Introduction. Exponential sums have a very long history and many applications. Gauss sums, which appeared already in the work of Lagrange ([10]), are instrumental in proving reciprocity laws ([3], [14]). Jacobi sums are a very convenient tool to determine the number of points on certain varieties ([9], [7], [13]). And trigonometric sums play an important role in Waring's problem ([4]). Such applications have made exponential sums an interesting topic in number theory.

For some exponential sums in a finite field, Weil's estimate is established ([12]). For some trigonometric sums in a number field, Hua's estimate is obtained ([5], [6]). Hua's estimate is believed by experts to hold also for some character sums. The main result in this paper will confirm this belief.

D. Ismoilov ([8]) had studied some Dirichlet character sums to the modulus of a prime power. He proved

PROPOSITION 1 ([8]). Let p be a prime number, let χ be a character of conductor p^n , and let $f(x) = a_0 + a_1x + \ldots + a_kx^k$ be an integral polynomial such that k > 3 and $(p, a_1, \ldots, a_k) = 1$. If $\chi(f(x))$ is not a constant function, then

$$p^{-n(1-1/k)} \Big| \sum_{0 \le x < p^n} \chi(f(x)) \Big| \le k^{2.5}.$$

In this paper we shall establish an iteration for the estimation of some Dirichlet character sums. It is a sharpened analogy of the iteration for the estimation of some trigonometric sums. This iteration enables us to obtain sharper estimates for a more general class of Dirichlet character sums.

THEOREM 1. Let p be a prime number, let χ be a character of conductor p^n , and let $f(x) = a_0 + a_1x + \ldots + a_kx^k$ be an integral polynomial such that k > 3 and $(p^n, a_1, \ldots, a_k) = p^m$. Then

¹⁹⁹¹ Mathematics Subject Classification: Primary 11L15.

Key words and phrases: exponential sums, Dirichlet characters.

This work was supported by NNSFC and MCSEC.

^[299]

C. L. Liu

$$p^{-(n-m)(1-1/k)} \Big| \sum_{0 \le x < p^{n-m}} \chi(f(x)) \Big| \le a(p,k),$$

where

$$a(2,k) = \begin{cases} (k-1)p^{(k(p)+4)/k-1} & \text{if } k \le 15, \\ (k-1)p^{(k(p)+1)/k-1} & \text{if } k > 15, \end{cases}$$

and for every p > 2,

$$a(p,k) = \begin{cases} 1 & \text{if } (k-1)^{2k/(k-2)} \leq p, \\ (k-1)p^{-(k-2)/(2k)} & \text{if } (k-1)^2 \leq p < (k-1)^{2k/(k-2)}, \\ p^{1/k} & \text{if } (k-1)^{k/(k-2)} \leq p < (k-1)^2, \\ (k-1)p^{3/k-1} & \text{if } (k-1)^{k/(k-1)} < p < (k-1)^{k/(k-2)}, \\ (k-1)p^{(k(p)+2)/k-1} & \text{if } (k-1)^{k/(k+1)} < p \leq (k-1)^{k/(k-1)}, \\ (k-1)p^{(k(p)+1)/k-1} & \text{if } p \leq (k-1)^{k/(k+1)}, \end{cases}$$

with k(p) denoting the largest integer not exceeding $\ln k / \ln p$. In particular,

$$p^{-(n-m)(1-1/k)} \Big| \sum_{0 \le x < p^{n-m}} \chi(f(x)) \Big| \le \begin{cases} 1 & \text{if } p \ge (k-1)^{2k/(k-2)} \\ k & \text{otherwise.} \end{cases}$$

Theorem 1 enables us to obtain Hua's estimate in the global case.

COROLLARY 1. Let χ be a Dirichlet character of conductor q, and let $f(x) = a_0 + a_1x + \ldots + a_kx^k$ be an integral polynomial such that k > 3 and $(q, a_1, \ldots, a_k) = q/q_1$. Then

$$q_1^{-(1-1/k)} \Big| \sum_{0 \le x < q_1} \chi(f(x)) \Big| \le e^{F(k)},$$

where $F(k) = \sum_{p} \ln a(p,k)$. In particular (1),

$$q_1^{-(1-1/k)} \Big| \sum_{0 \le x < q_1} \chi(f(x)) \Big| \le e^{1.8k}$$

1. An iteration. In this section we shall establish an iteration on which the estimation of character sums will be based.

Let p be a prime number, and let χ be a character of conductor p^n . For every integral polynomial $f(x) = a_0 + a_1x + \ldots + a_kx^k$, we denote by c(f) the order at p of the greatest common divisor (a_0, a_1, \ldots, a_k) . We write $c_0(f) = c(f - f(0))$ and $c_1(f) = \min(n, c_0(f))$.

For every pair (f, l), where f is an integral polynomial and l is an integer no greater than $c_1(f)$, we write

$$S(f,l) = \sum_{0 \leq x < p^{n-l}} \chi(f(x)).$$

We also write $S(f) = S(f, c_1(f))$.

300

 $^(^1)$ This can be proved by methods employed in [2].

LEMMA 1. If f is an integral polynomial such that

$$\min(c(f') + \operatorname{ord}_p(2), 2c(f') - c_0(f)) < n - 1,$$

then

$$S(f) = \sum_{\xi \in R(f)} p^{c_1(f_{\xi}) - c_0(f) - 1} S(f_{\xi}),$$

where $f_{\xi}(y) = f(\xi + py)$ and

$$R(f) = \{ 0 \le \xi$$

Proof. First we observe that, for every i > 0, $p^{-c(f')} f^{(i)}(\xi)/(i-1)!$ is an integer since it is the coefficient of y^{i-1} in the integral polynomial $p^{-c(f')}f'(\xi+y)$. So for every i > 0,

$$\operatorname{ord}_p\left(\frac{f^{(i)}(\xi)}{i!}p^i\right) \ge i - \operatorname{ord}_p(i) + c(f') \ge 1 + c(f').$$

Hence $c_0(f_{\xi}) \ge c(f') + 1 \ge c_0(f) + 1$.

Secondly we observe that

$$S(f) = \sum_{0 < \xi \le p} S(f_{\xi}, c_0(f) + 1) = \sum_{0 < \xi \le p} p^{c_1(f_{\xi}) - c_0(f) - 1} S(f_{\xi}).$$

Therefore it suffices to show that $S(f_{\xi})$ vanishes if $\xi \notin R(f)$.

So assume that $\xi \notin R(f)$. We observe that the order at p of $pf'(\xi)$, which is the constant term of the polynomial $(f_{\xi})'$, is c(f') + 1. So

$$c_0(f_{\xi}) \le c((f_{\xi})') \le c(f') + 1,$$

which along with the inequality $c_0(f_{\xi}) \ge c(f') + 1$ shows that

$$c((f_{\xi})') = c(f') + 1 = c_0(f_{\xi}).$$

We now proceed to prove that $S(f_{\xi})$ vanishes. It suffices to show that the subsum over every coset of $(p^{n-c(f')-2})$ vanishes. The subsum over the coset $b + (p^{n-c(f')-2})$ is

$$\sum_{0 \le y < p} \chi(f(\xi + pb + p^{n-c(f')-1}y)).$$

As at the beginning of this proof, we see that, for every i > 2,

$$\operatorname{ord}_p\left(\frac{f^{(i)}(\xi+pb)}{i!}p^{(n-c(f')-1)i}\right) \ge i(n-c(f')-1) - \operatorname{ord}_p(i) + c(f') \ge n.$$

For i = 2, we see that

$$\operatorname{ord}_{p}\left(\frac{f^{(i)}(\xi+pb)}{i!}p^{(n-c(f')-1)i}\right) \\ \geq \max(2n-c(f')-2-\operatorname{ord}_{p}(2), 2n-2c(f')+c_{0}(f)) \geq n$$

So $f(\xi + pb + p^{n-c(f')-1}y)$ differs from $f(\xi + pb) + p^{n-c(f')-1}f'(\xi + pb)y$ by p^n times an integral polynomial. Hence the subsum over the coset $b + (p^{n-c(f')-2})$ equals

$$\sum_{0 \le y < p} \chi(f(\xi + pb) + p^{n-c(f')-1}f'(\xi + pb)y).$$

We may assume that p does not divide $f(\xi + pb)$ since otherwise this subsum vanishes trivially. Let y_0 be an integer such that $y_0f(\xi + pb)$ is in the unit coset $1 + (p^n)$. The subsum then equals

$$\chi(f(\xi + pb)) \sum_{0 \le y < p} \chi(1 + p^{n-c(f')-1}f'(\xi + pb)y_0y).$$

Since

$$\operatorname{ord}_p(p^{n-c(f')-1}f'(\xi+pb)) = n-1 \ge n/2$$

 $\chi(1 + p^{n-c(f')-1}f'(\xi + pb)y_0y)$, as a function in y, is a nontrivial additive character to the modulus p. Therefore the subsum vanishes as required. The proof of Lemma 1 is complete.

If f is an integral polynomial such that

$$\min(c(f') + \operatorname{ord}_p(2), 2c(f') - c_0(f)) < n - 1,$$

we call f a father and f_{ξ} a child of f for every $\xi \in R(f)$. We call (f_1, \ldots, f_r) a family chain of height r with ancestor f_1 if f_r is a father and for every $1 < i \leq r, f_i$ is a child of f_{i-1} . The maximum height of family chains with ancestor f is called the height of f and is denoted by h(f). We write h(f) = 0 if f is not a father.

LEMMA 2. Let f be an integral polynomial, and let $\xi \in R(f)$ be of multiplicity m_{ξ} . Then

(i) $2 \le c_0(f_{\xi}) - c_0(f) \le \deg f$.

(ii) $c_0(f_{\xi}) \ge c(f') + 2 - \operatorname{ord}_p(2)$, and equality holds if $m_{\xi} = 1$.

(iii) If $m_{\xi} = 1$, then $f_{\xi}(y) = b_0 + b_1 p^{\theta} y + b_2 p^{\theta} y^2 + b_3 p^{\theta} y^3 + p^{\theta+1} y^4 g(y)$, where b_0, b_1, b_2 and b_3 are integers, $p \mid b_1$ if p = 2, p does not divide b_2 , $p \mid b_3$ if $p \neq 3$, and g is an integral polynomial.

(iv) $c((f_{\xi})') \leq c(f') + m_{\xi} + 1$, and equality holds if $m_{\xi} = 1$.

(v) Counting multiplicities, the number of roots η of the congruence

$$p^{-c((f_{\xi})')}(f_{\xi})'(\eta) \equiv 0 \pmod{p}$$

does not exceed m_{ξ} .

Proof. We first observe that

$$c_0(f(\xi + y)) \ge c(f(\xi + y) - f(0)) = c(f - f(0)) = c_0(f)$$

where $f(\xi+y)$ is regarded as a polynomial in y. Similarly $c_0(f) \ge c_0(f(\xi+y))$. So $c_0(f) = c_0(f(\xi+y))$. Therefore, $p^{c_0(f)} \mid \frac{f^{(i)}(\xi)}{i!}$ if i > 0, and there exists an integer i_0 with $0 < i_0 \le \deg f$ such that $p^{c_0(f)+1} \nmid \frac{f^{(i_0)}(\xi)}{i_0!}$.

The coefficient of y^i in the polynomial $f_{\xi}(y) = f(\xi + py)$ is $\frac{f^{(i)}(\xi)}{i!}p^i$. Trivially $p^{c_0(f)+2} | \frac{f^{(i)}(\xi)}{i!}p^i$ if i > 1. For i = 1, since $\xi \in R(f)$, we also have $p^{c_0(f)+2} | \frac{f^{(i)}(\xi)}{i!}p^i$. So $c_0(f_{\xi}) \ge c_0(f)+2$. On the other hand, the order at p of $\frac{f^{(i_0)}(\xi)}{i_0!}p^{i_0}$ is no greater than $i_0+c_0(f)$. So $c_0(f_{\xi}) \le i_0+c_0(f) \le \deg f+c_0(f)$, and (i) is proved.

We secondly observe that, for every i > 0, $p^{-c(f')} \frac{f^{(i)}(\xi)}{(i-1)!}$ is an integer since it is the coefficient of y^{i-1} in the integral polynomial $p^{-c(f')}f'(\xi+y)$. So

$$\operatorname{ord}_p\left(\frac{f^{(i)}(\xi)}{i!}p^i\right) \ge i - \operatorname{ord}_p(i) + c(f') \ge c(f') + 2 - \operatorname{ord}_p(2)$$

if i > 1, where strict inequality holds if $i > 2 + \operatorname{ord}_p(3)$ and equality holds if i = 2 and $m_{\xi} = 1$. For i = 1, since $\xi \in R(f)$, we have

$$\operatorname{ord}_p\left(\frac{f^{(i)}(\xi)}{i!}p^i\right) \ge c(f') + 2.$$

Therefore we see that $c_0(f_{\xi}) \ge c(f') + 2 - \operatorname{ord}_p(2)$, where equality holds if $m_{\xi} = 1$. And if $m_{\xi} = 1$, we also see that

$$f_{\xi}(y) = b_0 + b_1 p^{\theta} y + b_2 p^{\theta} y^2 + b_3 p^{\theta} y^3 + p^{\theta+1} y^4 g(y),$$

where b_0, b_1, b_2 and b_3 are integers, $p \mid b_1$ if p = 2, p does not divide $b_2, p \mid b_3$ if $p \neq 3$, and g is an integral polynomial. Thus (ii) and (iii) are proved.

To prove (iv) and (v), we observe that

$$p^{-c(f')}f'(x) = (x - \xi)^{m_{\xi}}h(x) + pu(x)$$

where u is an integral polynomial of degree less than m_{ξ} and h is an integral polynomial such that $p \nmid h(\xi)$. So

$$(f_{\xi})'(y) = pf'(\xi + py) = p^{m_{\xi} + c(f') + 1}y^{m_{\xi}}h(\xi + py) + p^{2 + c(f')}u(\xi + py)$$

from which (iv) follows. The above equalities also show that the reduction of $p^{-c((f_{\xi})')}(f_{\xi})'$ at p is of degree m_{ξ} , which implies (v). The proof of Lemma 2 is complete.

2. The case $p \ge (k-1)^{k/(k-2)}$. In this section we prove the estimate of Theorem 1 by induction on h(f) in the case $p \ge (k-1)^{k/(k-2)}$.

We observe that 2 < k < p and $c(f') = c_0(f)$ for every integral polynomial f. If h(f) = 0, then $c_0(f) \ge n - 1$. So the desired estimate follows from the trivial estimate and Weil's estimate ([12]).

If now h(f) = h > 0 and the desired estimate holds for polynomials of height less than h, then, by Lemma 1, Lemma 2(iv) and the assumed estimate for $S(f_{\xi})$, we have

$$p^{-(n-c_0(f))(1-1/k)}|S(f)| \le a(p,k) \sum_{\xi \in R(f)} p^{(c_1(f_\xi)-c_0(f))/k-1} \le a(p,k) \sum_{\xi \in R(f)} p^{(m_\xi+1)/k-1}.$$

By Lemma 4 of [1], the inequality $\sum_{\xi \in R(f)} m_{\xi} \leq k-1$, and the fact that $p \geq (k-1)^{k/(k-2)}$, we have

$$\sum_{\xi \in R(f)} p^{m_{\xi}/k} \le \max((k-1)p^{1/k}, p^{(k-1)/k}) \le p^{(k-1)/k}.$$

So

$$p^{-(n-c_0(f))(1-1/k)}|S(f)| \le a(p,k)$$

The estimate in Theorem 1 is now proved in the case $p \ge (k-1)^{k/(k-2)}$.

3. The case $(k-1)^{k/(k-1)} . In this section we prove the estimate of Theorem 1 in the case <math>(k-1)^{k/(k-1)} .$

Again, 2 < k < p and $c(f') = c_0(f)$ for every integral polynomial f. If h(f) = 0, then the desired estimate follows from the trivial one as well as the fact that $c_0(f) \ge n - 1$. If h(f) > 0, then the estimate follows from Lemmas 1, 2(v) and the following.

LEMMA 3. Let g be an integral polynomial of degree k > 3 which is a child of some polynomial, and let p be a prime such that $(k-1)^{k/(k-1)} . If <math>g = f_{\xi}$ is a child of f, then

(1)
$$p^{-(n-c_0(f))(1-1/k)}p^{c_1(f_{\xi})-c_0(f)-1}|S(f_{\xi})| \le p^{3/k-1}m_{\xi}.$$

Proof. First assume that $h(f_{\xi}) = 0$. If $m_{\xi} = 1$, then (1) follows from the trivial estimate for $S(f_{\xi})$ and the fact that $n \leq 2 + c_0(f) + m_{\xi}$. If $m_{\xi} > 1$, then (1) follows from the fact that $n \leq 2 + c_0(f) + m_{\xi}$, the trivial estimate for $S(f_{\xi})$, and Lemma 2.1 of [11], which says that $p^{m_{\xi}/k} \leq m_{\xi}p^{1/k}$.

If now $h(f_{\xi}) = h > 0$ and (1) holds for polynomials of height less than h which are children of some polynomials, then (1) follows from Lemma 2(i), (v). The proof of Lemma 3 is complete.

4. The case p > 2 and $(k-1)^{k/(k+1)} . In this case <math>c(f') \le c_0(f) + k(p)$ for every integral polynomial f. If h(f) = 0, then the estimate of Theorem 1 follows from the trivial one as well as the fact that $n \le 1 + c(f')$. If h(f) > 0, then the estimate follows from Lemmas 1, 2(v) and the following.

LEMMA 4. Let g be an integral polynomial of degree k > 3 which is a child of some polynomial, and let p be an odd prime such that $(k-1)^{k/(k+1)} . If <math>g = f_{\xi}$ is a child of f, then

(2)
$$p^{-(n-c_0(f))(1-1/k)}p^{c_1(f_{\xi})-c_0(f)-1}|S(f_{\xi})| \le p^{(k(p)+2)/k-1}m_{\xi}.$$

Proof. First we assume that $h(f_{\xi}) = 0$. We observe that

γ

$$n \le 1 + c((f_{\xi})') \le 2 + c(f') + m_{\xi}.$$

If $m_{\xi} > 1$, then (2) follows from the trivial estimate for $S(f_{\xi})$ and Lemma 2.1 of [11], which says that $p^{m_{\xi}/k} \leq m_{\xi}$. So we may suppose that $m_{\xi} = 1$. By Lemma 2(ii), (iv), we have $c((f_{\xi})') = c_0(f_{\xi}) = c(f') + 2$. If $n \leq c(f') + 2$, then (2) follows from the trivial estimate for $S(f_{\xi})$. If n = c(f') + 3, then by Lemma 2(iii), we have

$$f_{\xi}(y) = b_0 + b_1 p^{n-1} y + b_2 p^{n-1} y^2 + b_3 p^{n-1} y^3 + p^n y^4 g(y),$$

where b_0, b_1, b_2 and b_3 are integers, p does not divide $b_2, p | b_3$ if $p \neq 3$, and g is an integral polynomial. Therefore we have

$$S(f_{\xi}) = \sum_{0 \le y < p} \chi(b_0 + b_1' p^{n-1} y + b_2 p^{n-1} y^2),$$

where $b'_1 = b_1$ if $p \neq 3$ and $b'_1 = b_1 - b_3$ if p = 3. We may assume that p does not divide b_0 since otherwise this sum vanishes and (2) is proved. Let y_0 be an integer such that y_0b_0 is in the unit coset $1 + (p^n)$. Then

$$S(f_{\xi}) = \chi(b_0) \sum_{0 \le y < p} \chi(1 + p^{n-1}y_0(b'_1y + b_2y^2))$$

Since n = c(f') + 3 > 1, $\chi(1 + p^{n-1}y_0y)$, as a function in y, is a nontrivial additive character to the modulus p. Therefore $S(f_{\xi})$ is a Gauss sum, and we have $|S(f_{\xi})| \leq \sqrt{p}$. Hence

$$p^{(n-c_0(f))/k-1}p^{-(n-c_1(f_{\xi}))}|S(f_{\xi})| \le p^{(k(p)+3)/k-1}/\sqrt{p} \le p^{(k(p)+2)/k-1}m_{\xi}.$$

If now $h(f_{\xi}) = h > 0$ and (2) holds for polynomials of height less than h which are children of some polynomials, then (2) follows from Lemma 2(i), (v). The proof of Lemma 4 is complete.

5. The case $2 . In this section, <math>c(f') \le c_0(f) + k(p)$ for every integral polynomial f. If h(f) = 0, then the estimate of Theorem 1 follows from the trivial one as well as the fact that $n \le 1 + c(f')$.

LEMMA 5. Let f be an integral polynomial of degree k > 3, let p be an odd prime such that $2 , and let <math>f_{\xi}$ be a child of f such that $h(f_{\xi}) = 0$. If $m_{\xi} > 1$ or $n > c_0(f)$, then

$$p^{-(n-c_0(f))(1-1/k)}p^{c_1(f_{\xi})-c_0(f)-1}|S(f_{\xi})| \le p^{(k(p)+1)/k-1}m_{\xi}.$$

Proof. If $m_{\xi} > 1$, this follows from the trivial estimate for $S(f_{\xi})$, the fact that $n \leq 1 + c((f_{\xi})') \leq 2 + c(f') + m_{\xi}$ and Lemma 2.1 of [2], which says that $p^{(m_{\xi}+1)/k} \leq m_{\xi}$.

If $m_{\xi} = 1$, then by Lemma 2(ii), (iv) we have

$$n = c((f_{\xi})') + 1 = c_0(f_{\xi}) + 1 = c(f') + 3.$$

By Lemma 2(iii), we have

$$f_{\xi}(y) = b_0 + b_1 p^{n-1} y + b_2 p^{n-1} y^2 + b_3 p^{n-1} y^3 + p^n y^4 g(y)$$

where b_0, b_1, b_2 and b_3 are integers, p does not divide $b_2, p | b_3$ if $p \neq 3$, and g is an integral polynomial. As in the proof of Lemma 4 we get $|S(f_{\xi})| \leq \sqrt{p}$. Hence

 $p^{(n-c_0(f))/k-1}p^{-(n-c_1(f_{\xi}))}|S(f_{\xi})| \le p^{(k(p)+3)/k-1}/\sqrt{p} \le p^{(k(p)+1)/k-1}m_{\xi}.$

The proof of Lemma 5 is complete.

We now turn back to our main concern. If h(f) = 1, and there is a child f_{ξ} of f such that $m_{\xi} = 1$ and $n \leq c_0(f_{\xi})$, then the desired estimate follows from the trivial estimate for S(f) and the fact that $n \leq c_0(f_{\xi}) \leq 2 + c(f')$. If h(f) = 1 and for every child f_{ξ} of f, $m_{\xi} > 1$ or $n > c_0(f)$, then the desired estimate follows from Lemmas 1, 5 and 2(v). If h(f) > 1, then the estimate follows from Lemmas 1, 2(v) and the following.

LEMMA 6. Let g be an integral polynomial of degree k > 3 which is a child of some polynomial of height greater than 1, and let p be an odd prime such that $2 . If <math>g = f_{\xi}$ is a child of f with h(f) > 1, then

(3)
$$p^{-(n-c_0(f))(1-1/k)}p^{c_1(f_{\xi})-c_0(f)-1}|S(f_{\xi})| \le p^{(k(p)+1)/k-1}m_{\xi}.$$

Proof. First assume that $h(f_{\xi}) = 0$. If $m_{\xi} > 1$, then (3) follows from Lemma 5. If $m_{\xi} = 1$, then by Lemma 2(ii), we have $c_0(f_{\xi}) = c(f') + 2 \le c_0(f_{\eta}) < n$, where f_{η} is a child of f such that $h(f_{\eta}) > 0$. (3) follows from Lemma 5 again.

Secondly we assume that $h(f_{\xi}) = 1$. If $m_{\xi} = k - 1$, then (3) follows from Lemma 2(i) and the desired estimate for $S(f_{\xi})$. So we may suppose that $m_{\xi} < k - 1$. By Lemmas 1 and 2(v), it suffices to prove that, for every child $(f_{\xi})_{\eta}$ of f_{ξ} ,

$$p^{-(n-c_0(f))(1-1/k)}p^{c_1((f_{\xi})_\eta)-c_0(f)-2}|S((f_{\xi})_\eta)| \le p^{(k(p)+1)/k-1}m_\eta.$$

If $m_{\eta} > 1$ or $n > c_0((f_{\xi})_{\eta})$, then this follows from Lemmas 5 and 2(i). If $m_{\eta} = 1$ and $n \le c_0((f_{\xi})_{\eta})$, then it follows from the trivial estimate for $S((f_{\xi})_{\eta})$ and the fact that $n \le c_0((f_{\xi})_{\eta}) \le 2 + c((f_{\xi})') \le c(f') + k + 1$.

If now $h(f_{\xi}) = h > 1$ and (3) holds for all polynomials of height less than h which are children of some polynomials of height greater than 1, then (3) follows from Lemmas 1 and 2(i). This completes the proof of Lemma 6.

306

6. The case p = 2. By considering this case, we now complete the proof of Theorem 1.

We observe that $c(f') \leq c_0(f) + k(p)$ for every integral polynomial f. If h(f) = 0, then the desired estimate follows from the trivial one as well as the fact that $n \leq 1 + c(f')$. If h(f) > 0, then the estimate follows from Lemmas 1, 2(v) and the following.

LEMMA 7. Let p = 2, and let g be an integral polynomial of degree k > 3 which is a child of some polynomial. If $g = f_{\xi}$ is a child of f, then

$$(4) \quad p^{-(n-c_0(f))(1-1/k)} p^{c_1(f_{\xi})-c_0(f)-1} |S(f_{\xi})| \\ \leq \begin{cases} p^{(k(p)+4)/k-1} m_{\xi} & \text{if } k \le 15, \\ p^{(k(p)+1)/k-1} m_{\xi} & \text{if } k > 15. \end{cases}$$

 $\operatorname{Proof.}$ First assume that $h(f_\xi)=0.$ We observe that

$$n \le 2 + c((f_{\xi})') \le 3 + c(f') + m_{\xi}.$$

If $m_{\xi} > 1$, then (4) follows from the trivial estimate for $S(f_{\xi})$ and the fact that $p^{(m_{\xi}+2)/k} \leq m_{\xi}$. So we may suppose that $m_{\xi} = 1$. By Lemma 2(ii), (iv), we have $c((f_{\xi})') = c(f') + 2 = c_0(f_{\xi}) + 1$. If $n \leq c(f') + 1$, then (4) follows from the trivial estimate for $S(f_{\xi})$.

If n = c(f') + 2, then by Lemma 2(iii), we have

$$f_{\xi}(y) = b_0 + b_1 p^{n-1} y + b_2 p^{n-1} y^2 + p^n y^3 g(y),$$

where b_0, b_1 and b_2 are integers, p does not divide b_2 , and g is an integral polynomial. As in the proof of Lemma 4 we get $|S(f_{\xi})| \leq \sqrt{p}$, from which (4) follows.

If n = c(f') + 3 = 3, then (4) follows from the trivial estimate for $S(f_{\xi})$. If n = c(f') + 3 > 3, then by Lemma 2(iii), we have

$$f_{\xi}(y) = b_0 + b_2 p^{n-2} y^2 + p^{n-1} y g(y),$$

where b_0 , and b_2 are integers, p does not divide b_2 , and g is an integral polynomial. Therefore we have

$$S(f_{\xi}) = \sum_{0 \le y < p^2} \chi(b_0 + b_2 p^{n-2} y^2 + p^{n-1} y g(y))$$

= $2 \sum_{0 \le y < 2} \chi(b_0 + b'_2 p^{n-2} y),$

where $b'_2 = b_2 + pg(1)$. We may assume that p does not divide b_0 since otherwise this sum vanishes and (4) is proved. Let y_0 be an integer such that y_0b_0 is in the unit coset $1 + (p^n)$. Then

$$S(f_{\xi}) = 2\chi(b_0) \sum_{0 \le y < 2} \chi(1 + p^{n-2}y_0 b'_2 y).$$

Since n > 3, $\chi(1 + p^{n-2}y_0b'_2y)$, as a function in y, is a nontrivial additive character to the modulus p^2 . Therefore $|S(f_{\xi})| \leq 2\sqrt{2}$, from which (4) follows.

If n = c(f') + 4 and $k \le 15$, then (4) follows from the trivial estimate for $S(f_{\xi})$. If n = c(f') + 4, k > 15, and c(f') < 2, then (4) follows from the trivial estimate for $S(f_{\xi})$. If n = c(f') + 4, k > 15, and $c(f') \ge 2$, then n > 5. As in the proof of Lemma 2(iii), we can verify that

$$f_{\xi}(y) = b_0 + b_1 p^{n-2} y + b_2 p^{n-3} y^2 + b_3 p^{n-1} y^3 + b_4 p^{n-2} y^4 + p^n y^5 g(y),$$

where b_0, b_1, b_3, b_4 , and b_5 are integers, p does not divide b_2 , and g is an integral polynomial. We may write

$$f_{\xi}(y) = b_0 + b'_1 p^{n-2} y + b'_2 p^{n-3} y^2 + b_3 p^{n-1} (y^3 - y) + b_4 p^{n-2} (y^4 - y^2) + p^n y^5 q(y).$$

Then we have $p \nmid b'_2$ and

$$S(f_{\xi}) = \sum_{0 \le y < p^3} \chi(b_0 + b'_1 p^{n-2} y + b'_2 p^{n-3} y^2).$$

By a linear transformation, we have

$$S(f_{\xi}) = \sum_{0 \le y < p^3} \chi(b'_0 + b'_2 p^{n-3} y^2).$$

We may assume that p does not divide b'_0 since otherwise this sum vanishes and (4) is proved. Let y_0 be an integer such that $y_0b'_0$ is in the unit coset $1 + (p^n)$. Then

$$S(f_{\xi}) = \chi(b_0) \sum_{0 \le y < p^3} \chi(1 + y_0 b'_2 p^{n-3} y^2).$$

Since n > 5, $\chi(1 + p^{n-3}y_0b'_2y)$, as a function in y, is a nontrivial additive character to the modulus p^3 . We write $\chi(1 + p^{n-3}y_0b'_2) = e^{2\pi i r/8} = \varrho$, where r is an odd integer. Then we have $S(f_{\xi}) = 2\chi(b_0)(1 + 2\varrho + \varrho^4) = 4\varrho\chi(b_0)$, from which (4) follows.

If now $h(f_{\xi}) = h > 0$ and (4) holds for all polynomials of height less than h which are children of some polynomials, then (4) follows from Lemmas 1 and 2(i). The proof of Lemma 7 is complete.

The author thanks Professor Pan Chengbiao for his help.

References

 J.-R. Chen, On Professor Hua's estimate of exponential sums, Sci. Sinica 20 (1977), 711–719.

- P. Ding and M.-G. Qi, Further estimate of complete trigonometric sums, J. Tsinghua Univ. 29 (1989), no. 6, 74–85.
- [3] C. F. Gauss, Summatio quarumdam serierum singularium, Comment. Soc. Reg. Sci. Gottingensis 1 (1811); Werke, Vol. 2, Königl. Gesellschaft der Wissenschaften, Göttingen, 1876, 9–45.
- [4] G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio Numerorum': IV. The singular series in Waring's Problem and the value of the number G(k), Math. Z. 12 (1922), 161–188.
- [5] L.-K. Hua, On exponential sums, J. Chinese Math. Soc. 2 (1940), 301–312.
- [6] —, On exponential sums over an algebraic number field, Canad. J. Math. 3 (1951), 44–51.
- [7] L.-K. Hua and H. S. Vandiver, On the existence of solutions of certain equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 481–487.
- [8] D. Ismoilov, Estimates of complete character sums of polynomials, Trudy Mat. Inst. Steklov. 200 (1991), 171–184 (in Russian).
- C. G. J. Jacobi, Brief an Gauss vom 8. Februar 1827, Gesammelte Werke, Vol. 7, Reimer, Berlin, 1891, 393–400.
- [10] J.-L. Lagrange, Réflexions sur la résolution algébrique des équations, Nouv. Mémoires Acad. Roy. Berlin 1770, 134–215; ibid. 1771, 138–254; Oeuvres, Vol. 3, Gauthier-Villars, Paris, 1869, 205–421.
- [11] M.-G. Lu, Estimate of a complete trigonometric sum, Sci. Sinica 28 (1985), 561–578.
- [12] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204– 207.
- [13] —, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497–508.
- [14] —, La cyclotomie jadis et naguère, Enseign. Math. (2) 20 (1974), 247–263.

P.O. Box 1001-46 Zhengzhou 450002 China E-mail: zeng@public2.ha.zz.cn

> Received on 7.4.1997 and in revised form on 6.7.1998

(3164)