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0. Introduction. Exponential sums have a very long history and many
applications. Gauss sums, which appeared already in the work of Lagrange
([10]), are instrumental in proving reciprocity laws ([3], [14]). Jacobi sums
are a very convenient tool to determine the number of points on certain
varieties ([9], [7], [13]). And trigonometric sums play an important role in
Waring’s problem ([4]). Such applications have made exponential sums an
interesting topic in number theory.

For some exponential sums in a finite field, Weil’s estimate is established
([12]). For some trigonometric sums in a number field, Hua’s estimate is
obtained ([5], [6]). Hua’s estimate is believed by experts to hold also for
some character sums. The main result in this paper will confirm this belief.

D. Ismoilov ([8]) had studied some Dirichlet character sums to the mod-
ulus of a prime power. He proved

Proposition 1 ([8]). Let p be a prime number , let χ be a character of
conductor pn, and let f(x) = a0 +a1x+ . . .+akx

k be an integral polynomial
such that k > 3 and (p, a1, . . . , ak) = 1. If χ(f(x)) is not a constant function,
then

p−n(1−1/k)
∣∣∣
∑

0≤x<pn
χ(f(x))

∣∣∣ ≤ k2.5.

In this paper we shall establish an iteration for the estimation of some
Dirichlet character sums. It is a sharpened analogy of the iteration for the
estimation of some trigonometric sums. This iteration enables us to obtain
sharper estimates for a more general class of Dirichlet character sums.

Theorem 1. Let p be a prime number , let χ be a character of conductor
pn, and let f(x) = a0 + a1x+ . . .+ akx

k be an integral polynomial such that
k > 3 and (pn, a1, . . . , ak) = pm. Then
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p−(n−m)(1−1/k)
∣∣∣

∑

0≤x<pn−m
χ(f(x))

∣∣∣ ≤ a(p, k),

where
a(2, k) =

{
(k − 1)p(k(p)+4)/k−1 if k ≤ 15,
(k − 1)p(k(p)+1)/k−1 if k > 15,

and for every p > 2,

a(p, k) =





1 if (k − 1)2k/(k−2) ≤ p,
(k − 1)p−(k−2)/(2k) if (k − 1)2 ≤ p < (k − 1)2k/(k−2),
p1/k if (k − 1)k/(k−2) ≤ p < (k − 1)2,
(k − 1)p3/k−1 if (k − 1)k/(k−1) < p < (k − 1)k/(k−2),
(k − 1)p(k(p)+2)/k−1 if (k − 1)k/(k+1) < p ≤ (k − 1)k/(k−1),
(k − 1)p(k(p)+1)/k−1 if p ≤ (k − 1)k/(k+1),

with k(p) denoting the largest integer not exceeding ln k/ln p. In particular ,

p−(n−m)(1−1/k)
∣∣∣

∑

0≤x<pn−m
χ(f(x))

∣∣∣ ≤
{

1 if p ≥ (k − 1)2k/(k−2),
k otherwise.

Theorem 1 enables us to obtain Hua’s estimate in the global case.

Corollary 1. Let χ be a Dirichlet character of conductor q, and let
f(x) = a0 + a1x+ . . .+ akx

k be an integral polynomial such that k > 3 and
(q, a1, . . . , ak) = q/q1. Then

q
−(1−1/k)
1

∣∣∣
∑

0≤x<q1
χ(f(x))

∣∣∣ ≤ eF (k),

where F (k) =
∑
p ln a(p, k). In particular (1),

q
−(1−1/k)
1

∣∣∣
∑

0≤x<q1
χ(f(x))

∣∣∣ ≤ e1.8k.

1. An iteration. In this section we shall establish an iteration on which
the estimation of character sums will be based.

Let p be a prime number, and let χ be a character of conductor pn.
For every integral polynomial f(x) = a0 + a1x + . . . + akx

k, we denote by
c(f) the order at p of the greatest common divisor (a0, a1, . . . , ak). We write
c0(f) = c(f − f(0)) and c1(f) = min(n, c0(f)).

For every pair (f, l), where f is an integral polynomial and l is an integer
no greater than c1(f), we write

S(f, l) =
∑

0≤x<pn−l
χ(f(x)).

We also write S(f) = S(f, c1(f)).

(1) This can be proved by methods employed in [2].
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Lemma 1. If f is an integral polynomial such that

min(c(f ′) + ordp(2), 2c(f ′)− c0(f)) < n− 1,

then

S(f) =
∑

ξ∈R(f)

pc1(fξ)−c0(f)−1S(fξ),

where fξ(y) = f(ξ + py) and

R(f) = {0 ≤ ξ < p | p−c(f ′)f ′(ξ) ≡ 0 (mod p)}.
P r o o f. First we observe that, for every i > 0, p−c(f

′)f (i)(ξ)/(i− 1)!
is an integer since it is the coefficient of yi−1 in the integral polynomial
p−c(f

′)f ′(ξ + y). So for every i > 0,

ordp

(
f (i)(ξ)
i!

pi
)
≥ i− ordp(i) + c(f ′) ≥ 1 + c(f ′).

Hence c0(fξ) ≥ c(f ′) + 1 ≥ c0(f) + 1.
Secondly we observe that

S(f) =
∑

0<ξ≤p
S(fξ, c0(f) + 1) =

∑

0<ξ≤p
pc1(fξ)−c0(f)−1S(fξ).

Therefore it suffices to show that S(fξ) vanishes if ξ 6∈ R(f).
So assume that ξ 6∈ R(f). We observe that the order at p of pf ′(ξ), which

is the constant term of the polynomial (fξ)′, is c(f ′) + 1. So

c0(fξ) ≤ c((fξ)′) ≤ c(f ′) + 1,

which along with the inequality c0(fξ) ≥ c(f ′) + 1 shows that

c((fξ)′) = c(f ′) + 1 = c0(fξ).

We now proceed to prove that S(fξ) vanishes. It suffices to show that
the subsum over every coset of (pn−c(f

′)−2) vanishes. The subsum over the
coset b+ (pn−c(f

′)−2) is
∑

0≤y<p
χ(f(ξ + pb+ pn−c(f

′)−1y)).

As at the beginning of this proof, we see that, for every i > 2,

ordp

(
f (i)(ξ + pb)

i!
p(n−c(f ′)−1)i

)
≥ i(n− c(f ′)− 1)− ordp(i) + c(f ′) ≥ n.

For i = 2, we see that

ordp

(
f (i)(ξ + pb)

i!
p(n−c(f ′)−1)i

)

≥ max(2n− c(f ′)− 2− ordp(2), 2n− 2c(f ′) + c0(f)) ≥ n.
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So f(ξ + pb + pn−c(f
′)−1y) differs from f(ξ + pb) + pn−c(f

′)−1f ′(ξ + pb)y
by pn times an integral polynomial. Hence the subsum over the coset b +
(pn−c(f

′)−2) equals
∑

0≤y<p
χ(f(ξ + pb) + pn−c(f

′)−1f ′(ξ + pb)y).

We may assume that p does not divide f(ξ+pb) since otherwise this subsum
vanishes trivially. Let y0 be an integer such that y0f(ξ + pb) is in the unit
coset 1 + (pn). The subsum then equals

χ(f(ξ + pb))
∑

0≤y<p
χ(1 + pn−c(f

′)−1f ′(ξ + pb)y0y).

Since

ordp(pn−c(f
′)−1f ′(ξ + pb)) = n− 1 ≥ n/2,

χ(1 + pn−c(f
′)−1f ′(ξ + pb)y0y), as a function in y, is a nontrivial additive

character to the modulus p. Therefore the subsum vanishes as required. The
proof of Lemma 1 is complete.

If f is an integral polynomial such that

min(c(f ′) + ordp(2), 2c(f ′)− c0(f)) < n− 1,

we call f a father and fξ a child of f for every ξ ∈ R(f). We call (f1, . . . , fr)
a family chain of height r with ancestor f1 if fr is a father and for every
1 < i ≤ r, fi is a child of fi−1. The maximum height of family chains
with ancestor f is called the height of f and is denoted by h(f). We write
h(f) = 0 if f is not a father.

Lemma 2. Let f be an integral polynomial , and let ξ ∈ R(f) be of multi-
plicity mξ. Then

(i) 2 ≤ c0(fξ)− c0(f) ≤ deg f .
(ii) c0(fξ) ≥ c(f ′) + 2− ordp(2), and equality holds if mξ = 1.

(iii) If mξ = 1, then fξ(y) = b0 + b1p
θy + b2p

θy2 + b3p
θy3 + pθ+1y4g(y),

where b0, b1, b2 and b3 are integers, p | b1 if p = 2, p does not divide b2, p | b3
if p 6= 3, and g is an integral polynomial.

(iv) c((fξ)′) ≤ c(f ′) +mξ + 1, and equality holds if mξ = 1.
(v) Counting multiplicities, the number of roots η of the congruence

p−c((fξ)
′)(fξ)′(η) ≡ 0 (mod p),

does not exceed mξ.

P r o o f. We first observe that

c0(f(ξ + y)) ≥ c(f(ξ + y)− f(0)) = c(f − f(0)) = c0(f),
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where f(ξ+y) is regarded as a polynomial in y. Similarly c0(f)≥ c0(f(ξ+y)).

So c0(f) = c0(f(ξ + y)). Therefore, pc0(f) | f(i)(ξ)
i! if i > 0, and there exists

an integer i0 with 0 < i0 ≤ deg f such that pc0(f)+1 - f
(i0)(ξ)
i0! .

The coefficient of yi in the polynomial fξ(y) = f(ξ + py) is f(i)(ξ)
i! pi.

Trivially pc0(f)+2 | f(i)(ξ)
i! pi if i > 1. For i = 1, since ξ ∈ R(f), we also have

pc0(f)+2 | f(i)(ξ)
i! pi. So c0(fξ) ≥ c0(f)+2. On the other hand, the order at p of

f(i0)(ξ)
i0! pi0 is no greater than i0+c0(f). So c0(fξ) ≤ i0+c0(f) ≤ deg f+c0(f),

and (i) is proved.

We secondly observe that, for every i > 0, p−c(f
′) f(i)(ξ)

(i−1)! is an integer

since it is the coefficient of yi−1 in the integral polynomial p−c(f
′)f ′(ξ + y).

So

ordp

(
f (i)(ξ)
i!

pi
)
≥ i− ordp(i) + c(f ′) ≥ c(f ′) + 2− ordp(2)

if i > 1, where strict inequality holds if i > 2 + ordp(3) and equality holds
if i = 2 and mξ = 1. For i = 1, since ξ ∈ R(f), we have

ordp

(
f (i)(ξ)
i!

pi
)
≥ c(f ′) + 2.

Therefore we see that c0(fξ) ≥ c(f ′) + 2 − ordp(2), where equality holds if
mξ = 1. And if mξ = 1, we also see that

fξ(y) = b0 + b1p
θy + b2p

θy2 + b3p
θy3 + pθ+1y4g(y),

where b0, b1, b2 and b3 are integers, p | b1 if p = 2, p does not divide b2, p | b3
if p 6= 3, and g is an integral polynomial. Thus (ii) and (iii) are proved.

To prove (iv) and (v), we observe that

p−c(f
′)f ′(x) = (x− ξ)mξh(x) + pu(x)

where u is an integral polynomial of degree less than mξ and h is an integral
polynomial such that p -h(ξ). So

(fξ)′(y) = pf ′(ξ + py) = pmξ+c(f
′)+1ymξh(ξ + py) + p2+c(f ′)u(ξ + py),

from which (iv) follows. The above equalities also show that the reduction of
p−c((fξ)

′)(fξ)′ at p is of degree mξ, which implies (v). The proof of Lemma 2
is complete.

2. The case p ≥ (k − 1)k/(k−2). In this section we prove the estimate
of Theorem 1 by induction on h(f) in the case p ≥ (k − 1)k/(k−2).

We observe that 2 < k < p and c(f ′) = c0(f) for every integral polyno-
mial f . If h(f) = 0, then c0(f) ≥ n−1. So the desired estimate follows from
the trivial estimate and Weil’s estimate ([12]).
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If now h(f) = h > 0 and the desired estimate holds for polynomials
of height less than h, then, by Lemma 1, Lemma 2(iv) and the assumed
estimate for S(fξ), we have

p−(n−c0(f))(1−1/k)|S(f)| ≤ a(p, k)
∑

ξ∈R(f)

p(c1(fξ)−c0(f))/k−1

≤ a(p, k)
∑

ξ∈R(f)

p(mξ+1)/k−1.

By Lemma 4 of [1], the inequality
∑
ξ∈R(f)mξ ≤ k − 1, and the fact that

p ≥ (k − 1)k/(k−2), we have
∑

ξ∈R(f)

pmξ/k ≤ max((k − 1)p1/k, p(k−1)/k) ≤ p(k−1)/k.

So
p−(n−c0(f))(1−1/k)|S(f)| ≤ a(p, k).

The estimate in Theorem 1 is now proved in the case p ≥ (k − 1)k/(k−2).

3. The case (k−1)k/(k−1) < p < (k−1)k/(k−2). In this section we prove
the estimate of Theorem 1 in the case (k − 1)k/(k−1) < p < (k − 1)k/(k−2).

Again, 2 < k < p and c(f ′) = c0(f) for every integral polynomial f . If
h(f) = 0, then the desired estimate follows from the trivial one as well as
the fact that c0(f) ≥ n − 1. If h(f) > 0, then the estimate follows from
Lemmas 1, 2(v) and the following.

Lemma 3. Let g be an integral polynomial of degree k > 3 which is a
child of some polynomial , and let p be a prime such that (k − 1)k/(k−1) <
p < (k − 1)k/(k−2). If g = fξ is a child of f , then

(1) p−(n−c0(f))(1−1/k)pc1(fξ)−c0(f)−1|S(fξ)| ≤ p3/k−1mξ.

P r o o f. First assume that h(fξ) = 0. If mξ = 1, then (1) follows from the
trivial estimate for S(fξ) and the fact that n ≤ 2 + c0(f) + mξ. If mξ > 1,
then (1) follows from the fact that n ≤ 2 + c0(f) +mξ, the trivial estimate
for S(fξ), and Lemma 2.1 of [11], which says that pmξ/k ≤ mξp

1/k.
If now h(fξ) = h > 0 and (1) holds for polynomials of height less

than h which are children of some polynomials, then (1) follows from Lem-
ma 2(i), (v). The proof of Lemma 3 is complete.

4. The case p > 2 and (k− 1)k/(k+1) < p ≤ (k− 1)k/(k−1). In this case
c(f ′) ≤ c0(f) + k(p) for every integral polynomial f . If h(f) = 0, then the
estimate of Theorem 1 follows from the trivial one as well as the fact that
n ≤ 1 + c(f ′). If h(f) > 0, then the estimate follows from Lemmas 1, 2(v)
and the following.
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Lemma 4. Let g be an integral polynomial of degree k > 3 which is a child
of some polynomial , and let p be an odd prime such that (k − 1)k/(k+1) <
p ≤ (k − 1)k/(k−1). If g = fξ is a child of f , then

(2) p−(n−c0(f))(1−1/k)pc1(fξ)−c0(f)−1|S(fξ)| ≤ p(k(p)+2)/k−1mξ.

P r o o f. First we assume that h(fξ) = 0. We observe that

n ≤ 1 + c((fξ)′) ≤ 2 + c(f ′) +mξ.

If mξ > 1, then (2) follows from the trivial estimate for S(fξ) and Lemma 2.1
of [11], which says that pmξ/k ≤ mξ. So we may suppose that mξ = 1. By
Lemma 2(ii), (iv), we have c((fξ)′) = c0(fξ) = c(f ′) + 2. If n ≤ c(f ′) + 2,
then (2) follows from the trivial estimate for S(fξ). If n = c(f ′) + 3, then
by Lemma 2(iii), we have

fξ(y) = b0 + b1p
n−1y + b2p

n−1y2 + b3p
n−1y3 + pny4g(y),

where b0, b1, b2 and b3 are integers, p does not divide b2, p | b3 if p 6= 3, and
g is an integral polynomial. Therefore we have

S(fξ) =
∑

0≤y<p
χ(b0 + b′1p

n−1y + b2p
n−1y2),

where b′1 = b1 if p 6= 3 and b′1 = b1− b3 if p = 3. We may assume that p does
not divide b0 since otherwise this sum vanishes and (2) is proved. Let y0 be
an integer such that y0b0 is in the unit coset 1 + (pn). Then

S(fξ) = χ(b0)
∑

0≤y<p
χ(1 + pn−1y0(b′1y + b2y

2)).

Since n = c(f ′) + 3 > 1, χ(1 + pn−1y0y), as a function in y, is a nontrivial
additive character to the modulus p. Therefore S(fξ) is a Gauss sum, and
we have |S(fξ)| ≤ √p. Hence

p(n−c0(f))/k−1p−(n−c1(fξ))|S(fξ)| ≤ p(k(p)+3)/k−1/
√
p ≤ p(k(p)+2)/k−1mξ.

If now h(fξ) = h > 0 and (2) holds for polynomials of height less
than h which are children of some polynomials, then (2) follows from Lem-
ma 2(i), (v). The proof of Lemma 4 is complete.

5. The case 2 < p ≤ (k−1)k/(k+1). In this section, c(f ′) ≤ c0(f) +k(p)
for every integral polynomial f . If h(f) = 0, then the estimate of Theorem 1
follows from the trivial one as well as the fact that n ≤ 1 + c(f ′).

Lemma 5. Let f be an integral polynomial of degree k > 3, let p be an
odd prime such that 2 < p ≤ (k − 1)k/(k+1), and let fξ be a child of f such
that h(fξ) = 0. If mξ > 1 or n > c0(f), then

p−(n−c0(f))(1−1/k)pc1(fξ)−c0(f)−1|S(fξ)| ≤ p(k(p)+1)/k−1mξ.
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P r o o f. If mξ > 1, this follows from the trivial estimate for S(fξ), the
fact that n ≤ 1 + c((fξ)′) ≤ 2 + c(f ′) +mξ and Lemma 2.1 of [2], which says
that p(mξ+1)/k ≤ mξ.

If mξ = 1, then by Lemma 2(ii), (iv) we have

n = c((fξ)′) + 1 = c0(fξ) + 1 = c(f ′) + 3.

By Lemma 2(iii), we have

fξ(y) = b0 + b1p
n−1y + b2p

n−1y2 + b3p
n−1y3 + pny4g(y),

where b0, b1, b2 and b3 are integers, p does not divide b2, p | b3 if p 6= 3, and g
is an integral polynomial. As in the proof of Lemma 4 we get |S(fξ)| ≤ √p.
Hence

p(n−c0(f))/k−1p−(n−c1(fξ))|S(fξ)| ≤ p(k(p)+3)/k−1/
√
p ≤ p(k(p)+1)/k−1mξ.

The proof of Lemma 5 is complete.

We now turn back to our main concern. If h(f) = 1, and there is a child
fξ of f such that mξ = 1 and n ≤ c0(fξ), then the desired estimate follows
from the trivial estimate for S(f) and the fact that n ≤ c0(fξ) ≤ 2+c(f ′). If
h(f) = 1 and for every child fξ of f , mξ > 1 or n > c0(f), then the desired
estimate follows from Lemmas 1, 5 and 2(v). If h(f) > 1, then the estimate
follows from Lemmas 1, 2(v) and the following.

Lemma 6. Let g be an integral polynomial of degree k > 3 which is a
child of some polynomial of height greater than 1, and let p be an odd prime
such that 2 < p ≤ (k − 1)k/(k+1). If g = fξ is a child of f with h(f) > 1,
then

(3) p−(n−c0(f))(1−1/k)pc1(fξ)−c0(f)−1|S(fξ)| ≤ p(k(p)+1)/k−1mξ.

P r o o f. First assume that h(fξ) = 0. If mξ > 1, then (3) follows from
Lemma 5. If mξ = 1, then by Lemma 2(ii), we have c0(fξ) = c(f ′) + 2 ≤
c0(fη) < n, where fη is a child of f such that h(fη) > 0. (3) follows from
Lemma 5 again.

Secondly we assume that h(fξ) = 1. If mξ = k− 1, then (3) follows from
Lemma 2(i) and the desired estimate for S(fξ). So we may suppose that
mξ < k− 1. By Lemmas 1 and 2(v), it suffices to prove that, for every child
(fξ)η of fξ,

p−(n−c0(f))(1−1/k)pc1((fξ)η)−c0(f)−2|S((fξ)η)| ≤ p(k(p)+1)/k−1mη.

If mη > 1 or n > c0((fξ)η), then this follows from Lemmas 5 and 2(i).
If mη = 1 and n ≤ c0((fξ)η), then it follows from the trivial estimate for
S((fξ)η) and the fact that n ≤ c0((fξ)η) ≤ 2 + c((fξ)′) ≤ c(f ′) + k + 1.

If now h(fξ) = h > 1 and (3) holds for all polynomials of height less than
h which are children of some polynomials of height greater than 1, then (3)
follows from Lemmas 1 and 2(i). This completes the proof of Lemma 6.
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6. The case p = 2. By considering this case, we now complete the proof
of Theorem 1.

We observe that c(f ′) ≤ c0(f) + k(p) for every integral polynomial f .
If h(f) = 0, then the desired estimate follows from the trivial one as well
as the fact that n ≤ 1 + c(f ′). If h(f) > 0, then the estimate follows from
Lemmas 1, 2(v) and the following.

Lemma 7. Let p = 2, and let g be an integral polynomial of degree k > 3
which is a child of some polynomial. If g = fξ is a child of f , then

(4) p−(n−c0(f))(1−1/k)pc1(fξ)−c0(f)−1|S(fξ)|

≤
{
p(k(p)+4)/k−1mξ if k ≤ 15,
p(k(p)+1)/k−1mξ if k > 15.

P r o o f. First assume that h(fξ) = 0. We observe that

n ≤ 2 + c((fξ)′) ≤ 3 + c(f ′) +mξ.

If mξ > 1, then (4) follows from the trivial estimate for S(fξ) and the fact
that p(mξ+2)/k ≤ mξ. So we may suppose that mξ = 1. By Lemma 2(ii), (iv),
we have c((fξ)′) = c(f ′) + 2 = c0(fξ) + 1. If n ≤ c(f ′) + 1, then (4) follows
from the trivial estimate for S(fξ).

If n = c(f ′) + 2, then by Lemma 2(iii), we have

fξ(y) = b0 + b1p
n−1y + b2p

n−1y2 + pny3g(y),

where b0, b1 and b2 are integers, p does not divide b2, and g is an integral
polynomial. As in the proof of Lemma 4 we get |S(fξ)| ≤ √p, from which
(4) follows.

If n = c(f ′) + 3 = 3, then (4) follows from the trivial estimate for S(fξ).
If n = c(f ′) + 3 > 3, then by Lemma 2(iii), we have

fξ(y) = b0 + b2p
n−2y2 + pn−1yg(y),

where b0, and b2 are integers, p does not divide b2, and g is an integral
polynomial. Therefore we have

S(fξ) =
∑

0≤y<p2

χ(b0 + b2p
n−2y2 + pn−1yg(y))

= 2
∑

0≤y<2

χ(b0 + b′2p
n−2y),

where b′2 = b2 + pg(1). We may assume that p does not divide b0 since
otherwise this sum vanishes and (4) is proved. Let y0 be an integer such
that y0b0 is in the unit coset 1 + (pn). Then

S(fξ) = 2χ(b0)
∑

0≤y<2

χ(1 + pn−2y0b
′
2y).



308 C. L. Liu

Since n > 3, χ(1 + pn−2y0b
′
2y), as a function in y, is a nontrivial addi-

tive character to the modulus p2. Therefore |S(fξ)| ≤ 2
√

2, from which (4)
follows.

If n = c(f ′) + 4 and k ≤ 15, then (4) follows from the trivial estimate
for S(fξ). If n = c(f ′) + 4, k > 15, and c(f ′) < 2, then (4) follows from
the trivial estimate for S(fξ). If n = c(f ′) + 4, k > 15, and c(f ′) ≥ 2, then
n > 5. As in the proof of Lemma 2(iii), we can verify that

fξ(y) = b0 + b1p
n−2y + b2p

n−3y2 + b3p
n−1y3 + b4p

n−2y4 + pny5g(y),

where b0, b1, b3, b4, and b5 are integers, p does not divide b2, and g is an
integral polynomial. We may write

fξ(y) = b0 + b′1p
n−2y + b′2p

n−3y2 + b3p
n−1(y3 − y)

+ b4p
n−2(y4 − y2) + pny5g(y).

Then we have p - b′2 and

S(fξ) =
∑

0≤y<p3

χ(b0 + b′1p
n−2y + b′2p

n−3y2).

By a linear transformation, we have

S(fξ) =
∑

0≤y<p3

χ(b′0 + b′2p
n−3y2).

We may assume that p does not divide b′0 since otherwise this sum vanishes
and (4) is proved. Let y0 be an integer such that y0b

′
0 is in the unit coset

1 + (pn). Then

S(fξ) = χ(b0)
∑

0≤y<p3

χ(1 + y0b
′
2p
n−3y2).

Since n > 5, χ(1 + pn−3y0b
′
2y), as a function in y, is a nontrivial additive

character to the modulus p3. We write χ(1+pn−3y0b
′
2) = e2πir/8 = %, where

r is an odd integer. Then we have S(fξ) = 2χ(b0)(1 + 2% + %4) = 4%χ(b0),
from which (4) follows.

If now h(fξ) = h > 0 and (4) holds for all polynomials of height less than
h which are children of some polynomials, then (4) follows from Lemmas 1
and 2(i). The proof of Lemma 7 is complete.

The author thanks Professor Pan Chengbiao for his help.
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