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0. Introduction. Exponential sums have a very long history and many
applications. Gauss sums, which appeared already in the work of Lagrange
([10]), are instrumental in proving reciprocity laws ([3], [14]). Jacobi sums
are a very convenient tool to determine the number of points on certain
varieties ([9], [7], [13]). And trigonometric sums play an important role in
Waring’s problem ([4]). Such applications have made exponential sums an
interesting topic in number theory.

For some exponential sums in a finite field, Weil’s estimate is established
([12]). For some trigonometric sums in a number field, Hua’s estimate is
obtained ([5], [6]). Hua’s estimate is believed by experts to hold also for
some character sums. The main result in this paper will confirm this belief.

D. Ismoilov ([8]) had studied some Dirichlet character sums to the mod-
ulus of a prime power. He proved

PROPOSITION 1 ([8]). Let p be a prime number, let x be a character of
conductor p", and let f(x) = ag+ayx+...+arz® be an integral polynomial
such that k > 3 and (p,a1,...,a;) = 1. If x(f(2)) is not a constant function,
then

p AT ST ()] < K
0<z<pn

In this paper we shall establish an iteration for the estimation of some
Dirichlet character sums. It is a sharpened analogy of the iteration for the
estimation of some trigonometric sums. This iteration enables us to obtain
sharper estimates for a more general class of Dirichlet character sums.

THEOREM 1. Let p be a prime number, let x be a character of conductor
p", and let f(x) = ap+ar1x+ ...+ arx® be an integral polynomial such that
k>3 and (p",a1,...,a;) =p™. Then
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p-(n—mxl—l/k)’ 3 X(f(ac))‘ < a(p, k),
0<z<pn—m

a2, ) = 4 k= Dpk®+D/E=1 - if | < 15,
(k= 1)p®+D/k=1 r k> 15,

where

and for every p > 2,

(1 if (k= 1202 < p,
(k—Dp~*=2/Ck) 4 (k—1)2 < p < (k—1)2k/(k=2),
a(p.k) = pl/k if (k 1)k/(k 2) <p< (k- 1)27
’ (k= 1)p/*t if (k—1)ME=D < p< (k- 1)k k=2,
(k — 1)pk@+2)/k=1 ¢ (k — 1)k/(+1) < p < (k — 1)k/(k=1),
(k — 1)pt@+D/k=1 4 < (k — 1)/ (+1)

with k(p) denoting the largest integer not exceeding Ink/lnp. In particular,

pf(nfm)(lfl/k)‘ Z X(f(x))‘ < {1 if p> (k— 1)2k/(=2)

0<zagn—m k  otherwise.

Theorem 1 enables us to obtain Hua’s estimate in the global case.

COROLLARY 1. Let x be a Dirichlet character of conductor q, and let
f(x) =ag+a1x+ ...+ apz® be an integral polynomial such that k > 3 and

(q,a1,...,ar) =q/q1. Then
—(1-1/k
a T )] < e ®,

0<z<q1
where F(k) =3, Ina(p, k). In particular ),

ql—(l—l/k)‘ Z X(f(x))’ Sel'Sk.

0<z<q1

1. An iteration. In this section we shall establish an iteration on which
the estimation of character sums will be based.

Let p be a prime number, and let xy be a character of conductor p”.
For every integral polynomial f(z) = ag + a1z + ... + arx®, we denote by
c(f) the order at p of the greatest common divisor (ag, a1, ..., ar). We write
co(f) = e(f — £(0)) and e1(f) = min(n, co(f)).

For every pair (f,[), where f is an integral polynomial and [ is an integer
no greater than c;(f), we write

S(HED =Y x(f(@).

0<z<pn—t

We also write S(f) = S(f,c1(f)).

(1) This can be proved by methods employed in [2].



Dirichlet character sums 301

LEMMA 1. If f is an integral polynomial such that
min(c(f’) + ord,(2),2¢(f') — co(f)) <n —1,
then
S(f)y= Y prVmolDTIS(fe),
§ER(S)
where fe(y) = f(§ +py) and

R(f)={0<¢<p|pUIf () =0 (mod p)}.

Proof. First we observe that, for every i > 0, p~°U") f@(£)/(i — 1)!
is an integer since it is the coefficient of y*~! in the integral polynomial
p= U (€ 4+ 9). So for every i > 0,

i!

(@) .
ord,, <f (5)p1> >4 —ord,(i) +c(f) > 1+ c(f').

Hence co(fe) > e(f')+1>co(f) + 1.
Secondly we observe that

S = 2. SUeeolf)+1) = > prtO=oIS(f).
0<€<p 0<g<p
Therefore it suffices to show that S(f¢) vanishes if £ & R(f).
So assume that & ¢ R(f). We observe that the order at p of pf’(£), which
is the constant term of the polynomial (f¢)’, is ¢(f’) + 1. So
co(fe) < e((fe)) < e(f) +1,
which along with the inequality co(fe) > ¢(f’) + 1 shows that
c((fe)') = e(f') + 1= colfe)-
We now proceed to prove that S(f¢) vanishes. It suffices to show that

the subsum over every coset of (p"~°f /)_2) vanishes. The subsum over the
coset b+ (pn—e(F)=2) is

> x(F(E+pb+prUIy)).

0<y<p

As at the beginning of this proof, we see that, for every i > 2,
ord, (f(i) (fi!+ pb)p(nc(f/)m) > i(n — e(f') = 1) — ordy (i) + c(f') > n.
For ¢ = 2, we see that
ord, <f(i) (fi'+ pb)p(n—c(f’)—l)i)

> max(2n — ¢(f') — 2 — ord,(2),2n — 2¢(f') + co(f)) > n.
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So (& +pb+ p <UD "1y) differs from f(€ + pb) + p" U1 (€ + pb)y
by p™ times an integral polynomial. Hence the subsum over the coset b +
(p"—c/)=2) equals

> X(F(E+pb) +p VI + pb)y).
0<y<p

We may assume that p does not divide f(£+pb) since otherwise this subsum
vanishes trivially. Let yo be an integer such that yof(£ + pb) is in the unit
coset 1+ (p™). The subsum then equals

X(FE+pb) D X+ p U7 (€ + pb)yoy).
0<y<p
Since
ordp(pnfc(f/)flf'(ﬁ +pb)=n—1>n/2,

x(1 + pr=<UD=1 £ (€ + pb)yoy), as a function in y, is a nontrivial additive
character to the modulus p. Therefore the subsum vanishes as required. The
proof of Lemma 1 is complete.

If f is an integral polynomial such that

min(c(f’) + ord,(2),2¢(f') — co(f)) <n —1,

we call f a father and fe a child of f for every £ € R(f). We call (f1,..., fr)
a family chain of height r with ancestor f1 if f, is a father and for every
1 < i <7, f;is a child of f;_1. The maximum height of family chains
with ancestor f is called the height of f and is denoted by h(f). We write
h(f) =0 if f is not a father.

LEMMA 2. Let f be an integral polynomial, and let £ € R(f) be of multi-
plicity me. Then

(i) 2 < co(fe) — co(f) < deg f.

(ii) co(fe) > e(f') + 2 —ord,(2), and equality holds if me = 1.

(iif) If me =1, then fe(y) = bo + bip®y + bap®y? + bap®y® + pFytg(y),
where by, b1, ba and by are integers, p| by if p =2, p does not divide b, p|bs
if p# 3, and g is an integral polynomial.

(iv) e((fe)") < c(f") + me + 1, and equality holds if me = 1.

(v) Counting multiplicities, the number of roots n of the congruence

p~ DV (fe)'(n) =0 (mod p),
does not exceed me.

Proof. We first observe that
a(f(€+y) = c(f(E+y) — f(0) =c(f = f(0)) = colf),
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where f(&+y) is regarded as a polynomial in y. Similarly c¢o(f) > co(f(£+Y)).
So co(f) = co(f(€ +y)). Therefore, p(f) | % if i > 0, and there exists
an integer ip with 0 < 49 < deg f such that pc (/)14 %

The coefficient of y* in the polynomial f¢(y) = f(£ + py) is %p’
Trivially p(H+2| %p’ if i > 1. For i = 1, since £ € R(f), we also have
peolH+2 ] %p’ So ¢o(fe) > co(f)+2. On the other hand, the order at p of

Mpio is no greater than ig+co(f). So co(fe) < io+co(f) < deg f+co(f),

anzc(l).(i) is proved.

—e(f) 1)
(") i

in the integral polynomial p~¢U") f/(£ 4 1).

We secondly observe that, for every ¢ > 0, p
i—1

is an integer

since it is the coefficient of y
So
FO©

Al

ord,, <zp ) > i —ord, (i) + ¢(f) > c¢(f') +2 — ord,(2)

if i > 1, where strict inequality holds if i > 2 4 ord,(3) and equality holds
if i = 2 and m¢ = 1. For ¢ = 1, since £ € R(f), we have

o, (29 27

]

Therefore we see that co(fe) > ¢(f’) +2 — ord,(2), where equality holds if
me = 1. And if m¢ = 1, we also see that

fe(y) = bo + bip”y + bap’y® + b3p”y® + "y g (y),
where by, by, by and bs are integers, p| by if p = 2, p does not divide bs, p| b3
if p # 3, and g is an integral polynomial. Thus (ii) and (iii) are proved.
To prove (iv) and (v), we observe that

p U (@) = (@ = &) <h(x) + pu(x)
where v is an integral polynomial of degree less than m¢ and h is an integral
polynomial such that pth(&). So

(fe) () = pf' (€ + py) = pmeteUDTymep(e 4 py) + p2HeUDu(e + py),

from which (iv) follows. The above equalities also show that the reduction of
p~ U (fe) at p is of degree me, which implies (v). The proof of Lemma 2
is complete.

2. The case p > (k — 1)%/(*=2)_ In this section we prove the estimate
of Theorem 1 by induction on h(f) in the case p > (k — 1)*/(k=2),

We observe that 2 < k < p and ¢(f") = ¢o(f) for every integral polyno-
mial f. If A(f) =0, then ¢o(f) > n—1. So the desired estimate follows from
the trivial estimate and Weil’s estimate ([12]).
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If now A(f) = h > 0 and the desired estimate holds for polynomials
of height less than h, then, by Lemma 1, Lemma 2(iv) and the assumed
estimate for S(f¢), we have

p~ (o A=1/R) 1 §(F)| < alp, k) Z pler(fe)—co(£)/k—1
EER(f)
Salp k) 3 pmeL
§ER(S)
By Lemma 4 of [1], the inequality deR(f) me < k — 1, and the fact that
p > (k—1)**=2) we have

Z pmg/k < max((k‘ o 1)p1/k’p(k71)/k) < p(kfl)/k‘
§ER(S)
So
pm eS| < alp k).

The estimate in Theorem 1 is now proved in the case p > (k — 1)k/(k=2),

3. The case (k—1)/*=1 < p < (k—1)%(*=2)_ In this section we prove
the estimate of Theorem 1 in the case (k — 1)*/ =1 < p < (k — 1)/ (+=2),

Again, 2 < k < p and ¢(f’") = co(f) for every integral polynomial f. If
h(f) = 0, then the desired estimate follows from the trivial one as well as
the fact that co(f) > n — 1. If h(f) > 0, then the estimate follows from
Lemmas 1, 2(v) and the following.

LEMMA 3. Let g be an integral polynomial of degree k > 3 which is a
child of some polynomial, and let p be a prime such that (k — l)k/(k_l) <
p< (k—DF*=2) [f g = fe is a child of f, then

(1) p~(nmeotMNA=1/k)yer(fe)=co(H=11g( )| < p3/F I

Proof. First assume that h(fe) = 0. If m¢g = 1, then (1) follows from the
trivial estimate for S(f¢) and the fact that n < 2+ co(f) + me. If me > 1,
then (1) follows from the fact that n < 24 ¢o(f) + me, the trivial estimate
for S(f¢), and Lemma 2.1 of [11], which says that p™¢/* < mgp!/k.

If now h(fe) = h > 0 and (1) holds for polynomials of height less
than h which are children of some polynomials, then (1) follows from Lem-
ma 2(i), (v). The proof of Lemma 3 is complete.

4. The case p > 2 and (k— 1)*/*+1) < p < (k—1)#/(k=1)_Tn this case
c(f) < co(f) + k(p) for every integral polynomial f. If h(f) = 0, then the
estimate of Theorem 1 follows from the trivial one as well as the fact that
n < 1+ c(f’). If h(f) > 0, then the estimate follows from Lemmas 1, 2(v)
and the following.
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LEMMA 4. Let g be an integral polynomial of degree k > 3 which is a child
of some polynomial, and let p be an odd prime such that (k — 1)k/(k+1) <
p<(k—1)kED Ifg= fe is a child of f, then

(2) p—(n—CO(f))(l—l/k)pC1(fe)—CU(f)—l|5(f§)| < p(k(p)+2)/k—1m£.
Proof. First we assume that h(f:) = 0. We observe that

n<14c((fe)) <24c(f') +me.

If mg > 1, then (2) follows from the trivial estimate for S(f¢) and Lemma 2.1
of [11], which says that phelk < m¢. So we may suppose that mg = 1. By
Lemma 2(ii), (iv), we have ¢((fe)") = co(fe) = c(f') +2. It n < c(f') + 2,
then (2) follows from the trivial estimate for S(fe). If n = ¢(f’) + 3, then
by Lemma 2(iii), we have

fe(y) = bo +bip™ My + bop™ My + bsp™ Ty + "y g(y),

where by, by, bs and bs are integers, p does not divide by, p|bs if p # 3, and
g is an integral polynomial. Therefore we have

S(fe)= D x(bo+ "y +bap™ y),

0<y<p

where b] = by if p # 3 and b} = by — b3 if p = 3. We may assume that p does
not divide by since otherwise this sum vanishes and (2) is proved. Let yo be
an integer such that ygbg is in the unit coset 1 + (p™). Then

S(fe) = x(bo) Z X(1+p" o (biy + bay?)).

0<y<p

Since n = c(f’') +3 > 1, x(1 + p"yoy), as a function in y, is a nontrivial
additive character to the modulus p. Therefore S(f¢) is a Gauss sum, and
we have |S(fe)| < /p. Hence

p(n—CO(f))/k—lp—(n—61(fg))‘S(f£)| < p(k(p)+3)/k—1/\/]3 < p(k(p)+2)/k_1m5.

If now h(fe) = h > 0 and (2) holds for polynomials of height less
than h which are children of some polynomials, then (2) follows from Lem-
ma 2(i), (v). The proof of Lemma 4 is complete.

5. The case 2 < p < (k—1)¥/ ¢+ In this section, c(f) < co(f) + k(p)
for every integral polynomial f. If h(f) = 0, then the estimate of Theorem 1
follows from the trivial one as well as the fact that n <1+ ¢(f’).

LEMMA 5. Let f be an integral polynomial of degree k > 3, let p be an
odd prime such that 2 < p < (k — 1)*/*+D and let fe be a child of f such
that h(fe) = 0. If me > 1 orn > co(f), then

p—(n—CO(f))(l—l/k?)pcl(fs)—CO(f)—l IS(fe)| < p(k(P)-i-l)/k—lmg'
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Proof. If m¢ > 1, this follows from the trivial estimate for S(f¢), the
fact that n < 1+¢((fe)) < 24c¢(f") +me and Lemma 2.1 of [2], which says
that p(metD/k < my.

If mg = 1, then by Lemma 2(ii), (iv) we have

n=c((fe)) +1=co(fe) +1=c(f') +3.

By Lemma 2(iii), we have

fe(y) = bo + bip"™y + bap™ Ty + bap" Ty + Py g(y),
where by, by, by and b are integers, p does not divide bo, p| b3 if p # 3, and ¢

is an integral polynomial. As in the proof of Lemma 4 we get [S(f¢)| < /P
Hence

p(n*CO(f))/kflp*(n*q(fg))‘5(f§)| < p(k(p)+3)/k*1/\/2; < p(k(p)Jrl)/k*lm&'
The proof of Lemma 5 is complete.

We now turn back to our main concern. If h(f) = 1, and there is a child
fe of f such that me =1 and n < ¢o(fe), then the desired estimate follows
from the trivial estimate for S(f) and the fact that n < ¢o(fe) < 2+¢(f’). If
h(f) =1 and for every child fe of f, m¢ > 1 or n > ¢o(f), then the desired
estimate follows from Lemmas 1, 5 and 2(v). If A(f) > 1, then the estimate
follows from Lemmas 1, 2(v) and the following.

LEMMA 6. Let g be an integral polynomial of degree k > 3 which is a
child of some polynomial of height greater than 1, and let p be an odd prime
such that 2 < p < (k — V)MV [f g = f¢ is a child of f with h(f) > 1,
then
(3) p—(n—cO(f))(l—l/k)pm(fg)—CU(f)—l|5(f§)| < p(k(p)+1)/k—1m£.

Proof. First assume that h(fe) = 0. If mg > 1, then (3) follows from
Lemma 5. If mg = 1, then by Lemma 2(ii), we have co(fe) = ¢(f') +2 <
co(fy) < n, where f, is a child of f such that h(f,) > 0. (3) follows from
Lemma 5 again.

Secondly we assume that h(fe) = 1. If mg = k— 1, then (3) follows from
Lemma 2(i) and the desired estimate for S(f¢). So we may suppose that
me¢ < k—1. By Lemmas 1 and 2(v), it suffices to prove that, for every child

(f&)?? of f{a
p—("—CO(f))(l—l/k?)pCl((fe)n)—CO(f)—?|S((f£)n)| < p(k(p)+1)/k_1m77.

If m,, > 1 or n > cy((fe)y), then this follows from Lemmas 5 and 2(i).
If m,, =1 and n < ¢o((fe)y), then it follows from the trivial estimate for
S((fe)y) and the fact that 7 < co((fe)) < 2+ e((fe)') < c(f) + b+ 1.

If now h(f¢) = h > 1 and (3) holds for all polynomials of height less than
h which are children of some polynomials of height greater than 1, then (3)
follows from Lemmas 1 and 2(i). This completes the proof of Lemma 6.
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6. The case p = 2. By considering this case, we now complete the proof
of Theorem 1.

We observe that ¢(f') < ¢o(f) + k(p) for every integral polynomial f.
If h(f) = 0, then the desired estimate follows from the trivial one as well
as the fact that n < 14 ¢(f’). If h(f) > 0, then the estimate follows from
Lemmas 1, 2(v) and the following.

LEMMA 7. Let p = 2, and let g be an integral polynomial of degree k > 3
which is a child of some polynomial. If g = f¢ is a child of f, then
(4) pA(n—COUﬁﬂlflﬂdpcdfOAfoU341|5(jéﬂ
p(k(p)+4)/k7_1m€ Zf k S 15,
= | pk@FD/ k=l k> 15.
Proof. First assume that h(fe¢) = 0. We observe that
n<24c((fe)') <3+c(f) +me.

If me > 1, then (4) follows from the trivial estimate for S(f¢) and the fact
that p(me+2)/k < mg. So we may suppose that mg = 1. By Lemma 2(ii), (iv),
we have ¢((fe)') = c(f') +2 =co(fe) + 1. If n < ¢(f’) + 1, then (4) follows
from the trivial estimate for S(fe).

If n = ¢(f’) 4+ 2, then by Lemma 2(iii), we have

fe(y) = bo +b1p™ 'y + bap" 'y + 0"y g(y),

where by, b1 and by are integers, p does not divide bs, and ¢ is an integral
polynomial. As in the proof of Lemma 4 we get [S(f¢)| < /p, from which
(4) follows.

If n = ¢(f")+ 3 = 3, then (4) follows from the trivial estimate for S(f¢).
If n =c¢(f') +3 > 3, then by Lemma 2(iii), we have

fe(y) = bo + bap™ 2y* + p" yg(y),

where by, and bs are integers, p does not divide by, and ¢ is an integral
polynomial. Therefore we have

S(fo)=>_ xlbo+bp"2y* +p" 'yg(y))

0<y<p?
=2 Y x(bo +bhp" %),
0<y<2

where b, = by + pg(1). We may assume that p does not divide by since
otherwise this sum vanishes and (4) is proved. Let yo be an integer such
that yobo is in the unit coset 1 + (p™). Then

S(fe) =2x(bo) Y x(1+p"yobhy).

0<y<2
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Since n > 3, x(1 + p"2yobhy), as a function in y, is a nontrivial addi-
tive character to the modulus p?. Therefore |S(f¢)| < 2v/2, from which (4)
follows.

If n =c¢(f’) +4 and k < 15, then (4) follows from the trivial estimate
for S(fe). If n = ¢(f") +4, k > 15, and ¢(f") < 2, then (4) follows from
the trivial estimate for S(fe). If n = ¢(f’) + 4, k > 15, and ¢(f’) > 2, then
n > 5. As in the proof of Lemma 2(iii), we can verify that

fe(y) = bo + b1p™ 2y + bap™ 3y + bap™ 1P 4+ bap™ 2yt + p "y g (y),

where by, b1, b3, by, and bs are integers, p does not divide by, and ¢ is an
integral polynomial. We may write

ff( )—bo—i-b, n— 2y—|—b’ n— 3 +b3pn—l(y3_y)

+mﬂ2@“w)+ﬁfﬂw

Then we have p1b, and
S(fo)= > x(bo+bip" 2y + bhp" 2y
0<y<p3

By a linear transformation, we have

S(fé) — Z X(b/ b/ n—3 2)‘

0<y<p3

We may assume that p does not divide b, since otherwise this sum vanishes
and (4) is proved. Let yo be an integer such that yob{, is in the unit coset
1+ (p™). Then

S(fe) = x(bo) D x(1+yobhp™*y?).

0<y<p3

Since n > 5, x(1 + p"3yobby), as a function in y, is a nontrivial additive
character to the modulus p®. We write x(14p" 3yoby) = e>™"/8 = p, where
r is an odd integer. Then we have S(f¢) = 2x(bo)(1 + 20 + o) = 4ox(bo),
from which (4) follows.

If now h(f¢) = h > 0 and (4) holds for all polynomials of height less than
h which are children of some polynomials, then (4) follows from Lemmas 1
and 2(i). The proof of Lemma 7 is complete.

The author thanks Professor Pan Chengbiao for his help.
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