Dirichlet character sums

by
Chunlei Liu (Zhengzhou)
0. Introduction. Exponential sums have a very long history and many applications. Gauss sums, which appeared already in the work of Lagrange ([10]), are instrumental in proving reciprocity laws ([3], [14]). Jacobi sums are a very convenient tool to determine the number of points on certain varieties ([9], [7], [13]). And trigonometric sums play an important role in Waring's problem ([4]). Such applications have made exponential sums an interesting topic in number theory.

For some exponential sums in a finite field, Weil's estimate is established ([12]). For some trigonometric sums in a number field, Hua's estimate is obtained ([5], [6]). Hua's estimate is believed by experts to hold also for some character sums. The main result in this paper will confirm this belief.
D. Ismoilov ([8]) had studied some Dirichlet character sums to the modulus of a prime power. He proved

Proposition 1 ([8]). Let p be a prime number, let χ be a character of conductor p^{n}, and let $f(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k}$ be an integral polynomial such that $k>3$ and $\left(p, a_{1}, \ldots, a_{k}\right)=1$. If $\chi(f(x))$ is not a constant function, then

$$
p^{-n(1-1 / k)}\left|\sum_{0 \leq x<p^{n}} \chi(f(x))\right| \leq k^{2.5} .
$$

In this paper we shall establish an iteration for the estimation of some Dirichlet character sums. It is a sharpened analogy of the iteration for the estimation of some trigonometric sums. This iteration enables us to obtain sharper estimates for a more general class of Dirichlet character sums.

Theorem 1. Let p be a prime number, let χ be a character of conductor p^{n}, and let $f(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k}$ be an integral polynomial such that $k>3$ and $\left(p^{n}, a_{1}, \ldots, a_{k}\right)=p^{m}$. Then

[^0]$$
p^{-(n-m)(1-1 / k)}\left|\sum_{0 \leq x<p^{n-m}} \chi(f(x))\right| \leq a(p, k)
$$
where
\[

a(2, k)= $$
\begin{cases}(k-1) p^{(k(p)+4) / k-1} & \text { if } k \leq 15, \\ (k-1) p^{(k(p)+1) / k-1} & \text { if } k>15,\end{cases}
$$
\]

and for every $p>2$,

$$
a(p, k)= \begin{cases}1 & \text { if }(k-1)^{2 k /(k-2)} \leq p \\ (k-1) p^{-(k-2) /(2 k)} & \text { if }(k-1)^{2} \leq p<(k-1)^{2 k /(k-2)} \\ p^{1 / k} & \text { if }(k-1)^{k /(k-2)} \leq p<(k-1)^{2} \\ (k-1) p^{3 / k-1} & \text { if }(k-1)^{k /(k-1)}<p<(k-1)^{k /(k-2)} \\ (k-1) p^{(k(p)+2) / k-1} & \text { if }(k-1)^{k /(k+1)}<p \leq(k-1)^{k /(k-1)} \\ (k-1) p^{(k(p)+1) / k-1} & \text { if } p \leq(k-1)^{k /(k+1)}\end{cases}
$$

with $k(p)$ denoting the largest integer not exceeding $\ln k / \ln p$. In particular,

$$
p^{-(n-m)(1-1 / k)}\left|\sum_{0 \leq x<p^{n-m}} \chi(f(x))\right| \leq \begin{cases}1 & \text { if } p \geq(k-1)^{2 k /(k-2)} \\ k & \text { otherwise }\end{cases}
$$

Theorem 1 enables us to obtain Hua's estimate in the global case.
Corollary 1. Let χ be a Dirichlet character of conductor q, and let $f(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k}$ be an integral polynomial such that $k>3$ and $\left(q, a_{1}, \ldots, a_{k}\right)=q / q_{1}$. Then

$$
q_{1}^{-(1-1 / k)}\left|\sum_{0 \leq x<q_{1}} \chi(f(x))\right| \leq e^{F(k)},
$$

where $F(k)=\sum_{p} \ln a(p, k)$. In particular $\left({ }^{1}\right)$,

$$
q_{1}^{-(1-1 / k)}\left|\sum_{0 \leq x<q_{1}} \chi(f(x))\right| \leq e^{1.8 k}
$$

1. An iteration. In this section we shall establish an iteration on which the estimation of character sums will be based.

Let p be a prime number, and let χ be a character of conductor p^{n}. For every integral polynomial $f(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k}$, we denote by $c(f)$ the order at p of the greatest common divisor $\left(a_{0}, a_{1}, \ldots, a_{k}\right)$. We write $c_{0}(f)=c(f-f(0))$ and $c_{1}(f)=\min \left(n, c_{0}(f)\right)$.

For every pair (f, l), where f is an integral polynomial and l is an integer no greater than $c_{1}(f)$, we write

$$
S(f, l)=\sum_{0 \leq x<p^{n-l}} \chi(f(x))
$$

We also write $S(f)=S\left(f, c_{1}(f)\right)$.

[^1]Lemma 1. If f is an integral polynomial such that

$$
\min \left(c\left(f^{\prime}\right)+\operatorname{ord}_{p}(2), 2 c\left(f^{\prime}\right)-c_{0}(f)\right)<n-1,
$$

then

$$
S(f)=\sum_{\xi \in R(f)} p^{c_{1}\left(f_{\xi}\right)-c_{0}(f)-1} S\left(f_{\xi}\right),
$$

where $f_{\xi}(y)=f(\xi+p y)$ and

$$
R(f)=\left\{0 \leq \xi<p \mid p^{-c\left(f^{\prime}\right)} f^{\prime}(\xi) \equiv 0(\bmod p)\right\} .
$$

Proof. First we observe that, for every $i>0, p^{-c\left(f^{\prime}\right)} f^{(i)}(\xi) /(i-1)$! is an integer since it is the coefficient of y^{i-1} in the integral polynomial $p^{-c\left(f^{\prime}\right)} f^{\prime}(\xi+y)$. So for every $i>0$,

$$
\operatorname{ord}_{p}\left(\frac{f^{(i)}(\xi)}{i!} p^{i}\right) \geq i-\operatorname{ord}_{p}(i)+c\left(f^{\prime}\right) \geq 1+c\left(f^{\prime}\right)
$$

Hence $c_{0}\left(f_{\xi}\right) \geq c\left(f^{\prime}\right)+1 \geq c_{0}(f)+1$.
Secondly we observe that

$$
S(f)=\sum_{0<\xi \leq p} S\left(f_{\xi}, c_{0}(f)+1\right)=\sum_{0<\xi \leq p} p^{c_{1}\left(f_{\xi}\right)-c_{0}(f)-1} S\left(f_{\xi}\right) .
$$

Therefore it suffices to show that $S\left(f_{\xi}\right)$ vanishes if $\xi \notin R(f)$.
So assume that $\xi \notin R(f)$. We observe that the order at p of $p f^{\prime}(\xi)$, which is the constant term of the polynomial $\left(f_{\xi}\right)^{\prime}$, is $c\left(f^{\prime}\right)+1$. So

$$
c_{0}\left(f_{\xi}\right) \leq c\left(\left(f_{\xi}\right)^{\prime}\right) \leq c\left(f^{\prime}\right)+1
$$

which along with the inequality $c_{0}\left(f_{\xi}\right) \geq c\left(f^{\prime}\right)+1$ shows that

$$
c\left(\left(f_{\xi}\right)^{\prime}\right)=c\left(f^{\prime}\right)+1=c_{0}\left(f_{\xi}\right)
$$

We now proceed to prove that $S\left(f_{\xi}\right)$ vanishes. It suffices to show that the subsum over every coset of $\left(p^{n-c\left(f^{\prime}\right)-2}\right)$ vanishes. The subsum over the coset $b+\left(p^{n-c\left(f^{\prime}\right)-2}\right)$ is

$$
\sum_{0 \leq y<p} \chi\left(f\left(\xi+p b+p^{n-c\left(f^{\prime}\right)-1} y\right)\right) .
$$

As at the beginning of this proof, we see that, for every $i>2$,

$$
\operatorname{ord}_{p}\left(\frac{f^{(i)}(\xi+p b)}{i!} p^{\left(n-c\left(f^{\prime}\right)-1\right) i}\right) \geq i\left(n-c\left(f^{\prime}\right)-1\right)-\operatorname{ord}_{p}(i)+c\left(f^{\prime}\right) \geq n
$$

For $i=2$, we see that

$$
\begin{aligned}
& \operatorname{ord}_{p}\left(\frac{f^{(i)}(\xi+p b)}{i!} p^{\left(n-c\left(f^{\prime}\right)-1\right) i}\right) \\
& \quad \geq \max \left(2 n-c\left(f^{\prime}\right)-2-\operatorname{ord}_{p}(2), 2 n-2 c\left(f^{\prime}\right)+c_{0}(f)\right) \geq n
\end{aligned}
$$

So $f\left(\xi+p b+p^{n-c\left(f^{\prime}\right)-1} y\right)$ differs from $f(\xi+p b)+p^{n-c\left(f^{\prime}\right)-1} f^{\prime}(\xi+p b) y$ by p^{n} times an integral polynomial. Hence the subsum over the coset $b+$ ($p^{n-c\left(f^{\prime}\right)-2}$) equals

$$
\sum_{0 \leq y<p} \chi\left(f(\xi+p b)+p^{n-c\left(f^{\prime}\right)-1} f^{\prime}(\xi+p b) y\right) .
$$

We may assume that p does not divide $f(\xi+p b)$ since otherwise this subsum vanishes trivially. Let y_{0} be an integer such that $y_{0} f(\xi+p b)$ is in the unit coset $1+\left(p^{n}\right)$. The subsum then equals

$$
\chi(f(\xi+p b)) \sum_{0 \leq y<p} \chi\left(1+p^{n-c\left(f^{\prime}\right)-1} f^{\prime}(\xi+p b) y_{0} y\right) .
$$

Since

$$
\operatorname{ord}_{p}\left(p^{n-c\left(f^{\prime}\right)-1} f^{\prime}(\xi+p b)\right)=n-1 \geq n / 2,
$$

$\chi\left(1+p^{n-c\left(f^{\prime}\right)-1} f^{\prime}(\xi+p b) y_{0} y\right)$, as a function in y, is a nontrivial additive character to the modulus p. Therefore the subsum vanishes as required. The proof of Lemma 1 is complete.

If f is an integral polynomial such that

$$
\min \left(c\left(f^{\prime}\right)+\operatorname{ord}_{p}(2), 2 c\left(f^{\prime}\right)-c_{0}(f)\right)<n-1,
$$

we call f a father and f_{ξ} a child of f for every $\xi \in R(f)$. We call $\left(f_{1}, \ldots, f_{r}\right)$ a family chain of height r with ancestor f_{1} if f_{r} is a father and for every $1<i \leq r, f_{i}$ is a child of f_{i-1}. The maximum height of family chains with ancestor f is called the height of f and is denoted by $h(f)$. We write $h(f)=0$ if f is not a father.

Lemma 2. Let f be an integral polynomial, and let $\xi \in R(f)$ be of multiplicity m_{ξ}. Then
(i) $2 \leq c_{0}\left(f_{\xi}\right)-c_{0}(f) \leq \operatorname{deg} f$.
(ii) $c_{0}\left(f_{\xi}\right) \geq c\left(f^{\prime}\right)+2-\operatorname{ord}_{p}(2)$, and equality holds if $m_{\xi}=1$.
(iii) If $m_{\xi}=1$, then $f_{\xi}(y)=b_{0}+b_{1} p^{\theta} y+b_{2} p^{\theta} y^{2}+b_{3} p^{\theta} y^{3}+p^{\theta+1} y^{4} g(y)$, where b_{0}, b_{1}, b_{2} and b_{3} are integers, $p \mid b_{1}$ if $p=2, p$ does not divide $b_{2}, p \mid b_{3}$ if $p \neq 3$, and g is an integral polynomial.
(iv) $c\left(\left(f_{\xi}\right)^{\prime}\right) \leq c\left(f^{\prime}\right)+m_{\xi}+1$, and equality holds if $m_{\xi}=1$.
(v) Counting multiplicities, the number of roots η of the congruence

$$
p^{-c\left(\left(f_{\xi}\right)^{\prime}\right)}\left(f_{\xi}\right)^{\prime}(\eta) \equiv 0(\bmod p),
$$

does not exceed m_{ξ}.
Proof. We first observe that

$$
c_{0}(f(\xi+y)) \geq c(f(\xi+y)-f(0))=c(f-f(0))=c_{0}(f)
$$

where $f(\xi+y)$ is regarded as a polynomial in y. Similarly $c_{0}(f) \geq c_{0}(f(\xi+y))$. So $c_{0}(f)=c_{0}(f(\xi+y))$. Therefore, $p^{c_{0}(f)} \left\lvert\, \frac{f^{(i)}(\xi)}{i!}\right.$ if $i>0$, and there exists an integer i_{0} with $0<i_{0} \leq \operatorname{deg} f$ such that $p^{c_{0}(f)+1} \nmid \frac{f^{\left(i_{0}\right)}(\xi)}{i_{0}!}$.

The coefficient of y^{i} in the polynomial $f_{\xi}(y)=f(\xi+p y)$ is $\frac{f^{(i)}(\xi)}{i!} p^{i}$. Trivially $p^{c_{0}(f)+2} \left\lvert\, \frac{f^{(i)}(\xi)}{i!} p^{i}\right.$ if $i>1$. For $i=1$, since $\xi \in R(f)$, we also have $p^{c_{0}(f)+2} \left\lvert\, \frac{f^{(i)}(\xi)}{i!} p^{i}\right.$. So $c_{0}\left(f_{\xi}\right) \geq c_{0}(f)+2$. On the other hand, the order at p of $\frac{f^{\left(i_{0}\right)}(\xi)}{i_{0}!} p^{i_{0}}$ is no greater than $i_{0}+c_{0}(f)$. So $c_{0}\left(f_{\xi}\right) \leq i_{0}+c_{0}(f) \leq \operatorname{deg} f+c_{0}(f)$, and (i) is proved.

We secondly observe that, for every $i>0, p^{-c\left(f^{\prime}\right)} \frac{f^{(i)}(\xi)}{(i-1)!}$ is an integer since it is the coefficient of y^{i-1} in the integral polynomial $p^{-c\left(f^{\prime}\right)} f^{\prime}(\xi+y)$. So

$$
\operatorname{ord}_{p}\left(\frac{f^{(i)}(\xi)}{i!} p^{i}\right) \geq i-\operatorname{ord}_{p}(i)+c\left(f^{\prime}\right) \geq c\left(f^{\prime}\right)+2-\operatorname{ord}_{p}(2)
$$

if $i>1$, where strict inequality holds if $i>2+\operatorname{ord}_{p}(3)$ and equality holds if $i=2$ and $m_{\xi}=1$. For $i=1$, since $\xi \in R(f)$, we have

$$
\operatorname{ord}_{p}\left(\frac{f^{(i)}(\xi)}{i!} p^{i}\right) \geq c\left(f^{\prime}\right)+2
$$

Therefore we see that $c_{0}\left(f_{\xi}\right) \geq c\left(f^{\prime}\right)+2-\operatorname{ord}_{p}(2)$, where equality holds if $m_{\xi}=1$. And if $m_{\xi}=1$, we also see that

$$
f_{\xi}(y)=b_{0}+b_{1} p^{\theta} y+b_{2} p^{\theta} y^{2}+b_{3} p^{\theta} y^{3}+p^{\theta+1} y^{4} g(y)
$$

where b_{0}, b_{1}, b_{2} and b_{3} are integers, $p \mid b_{1}$ if $p=2, p$ does not divide $b_{2}, p \mid b_{3}$ if $p \neq 3$, and g is an integral polynomial. Thus (ii) and (iii) are proved.

To prove (iv) and (v), we observe that

$$
p^{-c\left(f^{\prime}\right)} f^{\prime}(x)=(x-\xi)^{m_{\xi}} h(x)+p u(x)
$$

where u is an integral polynomial of degree less than m_{ξ} and h is an integral polynomial such that $p \nmid h(\xi)$. So

$$
\left(f_{\xi}\right)^{\prime}(y)=p f^{\prime}(\xi+p y)=p^{m_{\xi}+c\left(f^{\prime}\right)+1} y^{m_{\xi}} h(\xi+p y)+p^{2+c\left(f^{\prime}\right)} u(\xi+p y),
$$

from which (iv) follows. The above equalities also show that the reduction of $p^{-c\left(\left(f_{\xi}\right)^{\prime}\right)}\left(f_{\xi}\right)^{\prime}$ at p is of degree m_{ξ}, which implies (v). The proof of Lemma 2 is complete.
2. The case $p \geq(k-1)^{k /(k-2)}$. In this section we prove the estimate of Theorem 1 by induction on $h(f)$ in the case $p \geq(k-1)^{k /(k-2)}$.

We observe that $2<k<p$ and $c\left(f^{\prime}\right)=c_{0}(f)$ for every integral polynomial f. If $h(f)=0$, then $c_{0}(f) \geq n-1$. So the desired estimate follows from the trivial estimate and Weil's estimate ([12]).

If now $h(f)=h>0$ and the desired estimate holds for polynomials of height less than h, then, by Lemma 1, Lemma 2(iv) and the assumed estimate for $S\left(f_{\xi}\right)$, we have

$$
\begin{aligned}
p^{-\left(n-c_{0}(f)\right)(1-1 / k)}|S(f)| & \leq a(p, k) \sum_{\xi \in R(f)} p^{\left(c_{1}\left(f_{\xi}\right)-c_{0}(f)\right) / k-1} \\
& \leq a(p, k) \sum_{\xi \in R(f)} p^{\left(m_{\xi}+1\right) / k-1}
\end{aligned}
$$

By Lemma 4 of [1], the inequality $\sum_{\xi \in R(f)} m_{\xi} \leq k-1$, and the fact that $p \geq(k-1)^{k /(k-2)}$, we have

$$
\sum_{\xi \in R(f)} p^{m_{\xi} / k} \leq \max \left((k-1) p^{1 / k}, p^{(k-1) / k}\right) \leq p^{(k-1) / k}
$$

So

$$
p^{-\left(n-c_{0}(f)\right)(1-1 / k)}|S(f)| \leq a(p, k)
$$

The estimate in Theorem 1 is now proved in the case $p \geq(k-1)^{k /(k-2)}$.
3. The case $(k-1)^{k /(k-1)}<p<(k-1)^{k /(k-2)}$. In this section we prove the estimate of Theorem 1 in the case $(k-1)^{k /(k-1)}<p<(k-1)^{k /(k-2)}$.

Again, $2<k<p$ and $c\left(f^{\prime}\right)=c_{0}(f)$ for every integral polynomial f. If $h(f)=0$, then the desired estimate follows from the trivial one as well as the fact that $c_{0}(f) \geq n-1$. If $h(f)>0$, then the estimate follows from Lemmas $1,2(\mathrm{v})$ and the following.

Lemma 3. Let g be an integral polynomial of degree $k>3$ which is a child of some polynomial, and let p be a prime such that $(k-1)^{k /(k-1)}<$ $p<(k-1)^{k /(k-2)}$. If $g=f_{\xi}$ is a child of f, then

$$
\begin{equation*}
p^{-\left(n-c_{0}(f)\right)(1-1 / k)} p^{c_{1}\left(f_{\xi}\right)-c_{0}(f)-1}\left|S\left(f_{\xi}\right)\right| \leq p^{3 / k-1} m_{\xi} \tag{1}
\end{equation*}
$$

Proof. First assume that $h\left(f_{\xi}\right)=0$. If $m_{\xi}=1$, then (1) follows from the trivial estimate for $S\left(f_{\xi}\right)$ and the fact that $n \leq 2+c_{0}(f)+m_{\xi}$. If $m_{\xi}>1$, then (1) follows from the fact that $n \leq 2+c_{0}(f)+m_{\xi}$, the trivial estimate for $S\left(f_{\xi}\right)$, and Lemma 2.1 of [11], which says that $p^{m_{\xi} / k} \leq m_{\xi} p^{1 / k}$.

If now $h\left(f_{\xi}\right)=h>0$ and (1) holds for polynomials of height less than h which are children of some polynomials, then (1) follows from Lemma 2(i), (v). The proof of Lemma 3 is complete.
4. The case $p>2$ and $(k-1)^{k /(k+1)}<p \leq(k-1)^{k /(k-1)}$. In this case $c\left(f^{\prime}\right) \leq c_{0}(f)+k(p)$ for every integral polynomial f. If $h(f)=0$, then the estimate of Theorem 1 follows from the trivial one as well as the fact that $n \leq 1+c\left(f^{\prime}\right)$. If $h(f)>0$, then the estimate follows from Lemmas $1,2(\mathrm{v})$ and the following.

Lemma 4. Let g be an integral polynomial of degree $k>3$ which is a child of some polynomial, and let p be an odd prime such that $(k-1)^{k /(k+1)}<$ $p \leq(k-1)^{k /(k-1)}$. If $g=f_{\xi}$ is a child of f, then

$$
\begin{equation*}
p^{-\left(n-c_{0}(f)\right)(1-1 / k)} p^{c_{1}\left(f_{\xi}\right)-c_{0}(f)-1}\left|S\left(f_{\xi}\right)\right| \leq p^{(k(p)+2) / k-1} m_{\xi} \tag{2}
\end{equation*}
$$

Proof. First we assume that $h\left(f_{\xi}\right)=0$. We observe that

$$
n \leq 1+c\left(\left(f_{\xi}\right)^{\prime}\right) \leq 2+c\left(f^{\prime}\right)+m_{\xi}
$$

If $m_{\xi}>1$, then (2) follows from the trivial estimate for $S\left(f_{\xi}\right)$ and Lemma 2.1 of [11], which says that $p^{m_{\xi} / k} \leq m_{\xi}$. So we may suppose that $m_{\xi}=1$. By Lemma 2(ii), (iv), we have $c\left(\left(f_{\xi}\right)^{\prime}\right)=c_{0}\left(f_{\xi}\right)=c\left(f^{\prime}\right)+2$. If $n \leq c\left(f^{\prime}\right)+2$, then (2) follows from the trivial estimate for $S\left(f_{\xi}\right)$. If $n=c\left(f^{\prime}\right)+3$, then by Lemma 2(iii), we have

$$
f_{\xi}(y)=b_{0}+b_{1} p^{n-1} y+b_{2} p^{n-1} y^{2}+b_{3} p^{n-1} y^{3}+p^{n} y^{4} g(y)
$$

where b_{0}, b_{1}, b_{2} and b_{3} are integers, p does not divide $b_{2}, p \mid b_{3}$ if $p \neq 3$, and g is an integral polynomial. Therefore we have

$$
S\left(f_{\xi}\right)=\sum_{0 \leq y<p} \chi\left(b_{0}+b_{1}^{\prime} p^{n-1} y+b_{2} p^{n-1} y^{2}\right)
$$

where $b_{1}^{\prime}=b_{1}$ if $p \neq 3$ and $b_{1}^{\prime}=b_{1}-b_{3}$ if $p=3$. We may assume that p does not divide b_{0} since otherwise this sum vanishes and (2) is proved. Let y_{0} be an integer such that $y_{0} b_{0}$ is in the unit coset $1+\left(p^{n}\right)$. Then

$$
S\left(f_{\xi}\right)=\chi\left(b_{0}\right) \sum_{0 \leq y<p} \chi\left(1+p^{n-1} y_{0}\left(b_{1}^{\prime} y+b_{2} y^{2}\right)\right)
$$

Since $n=c\left(f^{\prime}\right)+3>1, \chi\left(1+p^{n-1} y_{0} y\right)$, as a function in y, is a nontrivial additive character to the modulus p. Therefore $S\left(f_{\xi}\right)$ is a Gauss sum, and we have $\left|S\left(f_{\xi}\right)\right| \leq \sqrt{p}$. Hence

$$
p^{\left(n-c_{0}(f)\right) / k-1} p^{-\left(n-c_{1}\left(f_{\xi}\right)\right)}\left|S\left(f_{\xi}\right)\right| \leq p^{(k(p)+3) / k-1} / \sqrt{p} \leq p^{(k(p)+2) / k-1} m_{\xi}
$$

If now $h\left(f_{\xi}\right)=h>0$ and (2) holds for polynomials of height less than h which are children of some polynomials, then (2) follows from Lemma 2(i), (v). The proof of Lemma 4 is complete.
5. The case $2<p \leq(k-1)^{k /(k+1)}$. In this section, $c\left(f^{\prime}\right) \leq c_{0}(f)+k(p)$ for every integral polynomial f. If $h(f)=0$, then the estimate of Theorem 1 follows from the trivial one as well as the fact that $n \leq 1+c\left(f^{\prime}\right)$.

Lemma 5. Let f be an integral polynomial of degree $k>3$, let p be an odd prime such that $2<p \leq(k-1)^{k /(k+1)}$, and let f_{ξ} be a child of f such that $h\left(f_{\xi}\right)=0$. If $m_{\xi}>1$ or $n>c_{0}(f)$, then

$$
p^{-\left(n-c_{0}(f)\right)(1-1 / k)} p^{c_{1}\left(f_{\xi}\right)-c_{0}(f)-1}\left|S\left(f_{\xi}\right)\right| \leq p^{(k(p)+1) / k-1} m_{\xi}
$$

Proof. If $m_{\xi}>1$, this follows from the trivial estimate for $S\left(f_{\xi}\right)$, the fact that $n \leq 1+c\left(\left(f_{\xi}\right)^{\prime}\right) \leq 2+c\left(f^{\prime}\right)+m_{\xi}$ and Lemma 2.1 of [2], which says that $p^{\left(m_{\xi}+1\right) / k} \leq m_{\xi}$.

If $m_{\xi}=1$, then by Lemma 2(ii), (iv) we have

$$
n=c\left(\left(f_{\xi}\right)^{\prime}\right)+1=c_{0}\left(f_{\xi}\right)+1=c\left(f^{\prime}\right)+3 .
$$

By Lemma 2(iii), we have

$$
f_{\xi}(y)=b_{0}+b_{1} p^{n-1} y+b_{2} p^{n-1} y^{2}+b_{3} p^{n-1} y^{3}+p^{n} y^{4} g(y),
$$

where b_{0}, b_{1}, b_{2} and b_{3} are integers, p does not divide $b_{2}, p \mid b_{3}$ if $p \neq 3$, and g is an integral polynomial. As in the proof of Lemma 4 we get $\left|S\left(f_{\xi}\right)\right| \leq \sqrt{p}$. Hence

$$
p^{\left(n-c_{0}(f)\right) / k-1} p^{-\left(n-c_{1}\left(f_{\xi}\right)\right)}\left|S\left(f_{\xi}\right)\right| \leq p^{(k(p)+3) / k-1} / \sqrt{p} \leq p^{(k(p)+1) / k-1} m_{\xi} .
$$

The proof of Lemma 5 is complete.
We now turn back to our main concern. If $h(f)=1$, and there is a child f_{ξ} of f such that $m_{\xi}=1$ and $n \leq c_{0}\left(f_{\xi}\right)$, then the desired estimate follows from the trivial estimate for $S(f)$ and the fact that $n \leq c_{0}\left(f_{\xi}\right) \leq 2+c\left(f^{\prime}\right)$. If $h(f)=1$ and for every child f_{ξ} of $f, m_{\xi}>1$ or $n>c_{0}(f)$, then the desired estimate follows from Lemmas 1,5 and $2(\mathrm{v})$. If $h(f)>1$, then the estimate follows from Lemmas 1, 2(v) and the following.

Lemma 6. Let g be an integral polynomial of degree $k>3$ which is a child of some polynomial of height greater than 1 , and let p be an odd prime such that $2<p \leq(k-1)^{k /(k+1)}$. If $g=f_{\xi}$ is a child of f with $h(f)>1$, then

$$
\begin{equation*}
p^{-\left(n-c_{0}(f)\right)(1-1 / k)} p^{c_{1}\left(f_{\xi}\right)-c_{0}(f)-1}\left|S\left(f_{\xi}\right)\right| \leq p^{(k(p)+1) / k-1} m_{\xi} . \tag{3}
\end{equation*}
$$

Proof. First assume that $h\left(f_{\xi}\right)=0$. If $m_{\xi}>1$, then (3) follows from Lemma 5. If $m_{\xi}=1$, then by Lemma 2(ii), we have $c_{0}\left(f_{\xi}\right)=c\left(f^{\prime}\right)+2 \leq$ $c_{0}\left(f_{\eta}\right)<n$, where f_{η} is a child of f such that $h\left(f_{\eta}\right)>0$. (3) follows from Lemma 5 again.

Secondly we assume that $h\left(f_{\xi}\right)=1$. If $m_{\xi}=k-1$, then (3) follows from Lemma 2(i) and the desired estimate for $S\left(f_{\xi}\right)$. So we may suppose that $m_{\xi}<k-1$. By Lemmas 1 and 2(v), it suffices to prove that, for every child $\left(f_{\xi}\right)_{\eta}$ of f_{ξ},

$$
p^{-\left(n-c_{0}(f)\right)(1-1 / k)} p^{c_{1}\left(\left(f_{\xi}\right)_{\eta}\right)-c_{0}(f)-2}\left|S\left(\left(f_{\xi}\right)_{\eta}\right)\right| \leq p^{(k(p)+1) / k-1} m_{\eta} .
$$

If $m_{\eta}>1$ or $n>c_{0}\left(\left(f_{\xi}\right)_{\eta}\right)$, then this follows from Lemmas 5 and 2(i). If $m_{\eta}=1$ and $n \leq c_{0}\left(\left(f_{\xi}\right)_{\eta}\right)$, then it follows from the trivial estimate for $S\left(\left(f_{\xi}\right)_{\eta}\right)$ and the fact that $n \leq c_{0}\left(\left(f_{\xi}\right)_{\eta}\right) \leq 2+c\left(\left(f_{\xi}\right)^{\prime}\right) \leq c\left(f^{\prime}\right)+k+1$.

If now $h\left(f_{\xi}\right)=h>1$ and (3) holds for all polynomials of height less than h which are children of some polynomials of height greater than 1, then (3) follows from Lemmas 1 and 2(i). This completes the proof of Lemma 6.
6. The case $p=2$. By considering this case, we now complete the proof of Theorem 1.

We observe that $c\left(f^{\prime}\right) \leq c_{0}(f)+k(p)$ for every integral polynomial f. If $h(f)=0$, then the desired estimate follows from the trivial one as well as the fact that $n \leq 1+c\left(f^{\prime}\right)$. If $h(f)>0$, then the estimate follows from Lemmas $1,2(\mathrm{v})$ and the following.

Lemma 7. Let $p=2$, and let g be an integral polynomial of degree $k>3$ which is a child of some polynomial. If $g=f_{\xi}$ is a child of f, then

$$
\begin{align*}
& p^{-\left(n-c_{0}(f)\right)(1-1 / k)} p^{c_{1}\left(f_{\xi}\right)-c_{0}(f)-1}\left|S\left(f_{\xi}\right)\right| \tag{4}\\
& \leq \begin{cases}p^{(k(p)+4) / k-1} m_{\xi} & \text { if } k \leq 15, \\
p^{(k(p)+1) / k-1} m_{\xi} & \text { if } k>15\end{cases}
\end{align*}
$$

Proof. First assume that $h\left(f_{\xi}\right)=0$. We observe that

$$
n \leq 2+c\left(\left(f_{\xi}\right)^{\prime}\right) \leq 3+c\left(f^{\prime}\right)+m_{\xi}
$$

If $m_{\xi}>1$, then (4) follows from the trivial estimate for $S\left(f_{\xi}\right)$ and the fact that $p^{\left(m_{\xi}+2\right) / k} \leq m_{\xi}$. So we may suppose that $m_{\xi}=1$. By Lemma 2(ii), (iv), we have $c\left(\left(f_{\xi}\right)^{\prime}\right)=c\left(f^{\prime}\right)+2=c_{0}\left(f_{\xi}\right)+1$. If $n \leq c\left(f^{\prime}\right)+1$, then (4) follows from the trivial estimate for $S\left(f_{\xi}\right)$.

If $n=c\left(f^{\prime}\right)+2$, then by Lemma 2(iii), we have

$$
f_{\xi}(y)=b_{0}+b_{1} p^{n-1} y+b_{2} p^{n-1} y^{2}+p^{n} y^{3} g(y),
$$

where b_{0}, b_{1} and b_{2} are integers, p does not divide b_{2}, and g is an integral polynomial. As in the proof of Lemma 4 we get $\left|S\left(f_{\xi}\right)\right| \leq \sqrt{p}$, from which (4) follows.

If $n=c\left(f^{\prime}\right)+3=3$, then (4) follows from the trivial estimate for $S\left(f_{\xi}\right)$. If $n=c\left(f^{\prime}\right)+3>3$, then by Lemma 2(iii), we have

$$
f_{\xi}(y)=b_{0}+b_{2} p^{n-2} y^{2}+p^{n-1} y g(y),
$$

where b_{0}, and b_{2} are integers, p does not divide b_{2}, and g is an integral polynomial. Therefore we have

$$
\begin{aligned}
S\left(f_{\xi}\right) & =\sum_{0 \leq y<p^{2}} \chi\left(b_{0}+b_{2} p^{n-2} y^{2}+p^{n-1} y g(y)\right) \\
& =2 \sum_{0 \leq y<2} \chi\left(b_{0}+b_{2}^{\prime} p^{n-2} y\right),
\end{aligned}
$$

where $b_{2}^{\prime}=b_{2}+p g(1)$. We may assume that p does not divide b_{0} since otherwise this sum vanishes and (4) is proved. Let y_{0} be an integer such that $y_{0} b_{0}$ is in the unit coset $1+\left(p^{n}\right)$. Then

$$
S\left(f_{\xi}\right)=2 \chi\left(b_{0}\right) \sum_{0 \leq y<2} \chi\left(1+p^{n-2} y_{0} b_{2}^{\prime} y\right) .
$$

Since $n>3, \chi\left(1+p^{n-2} y_{0} b_{2}^{\prime} y\right)$, as a function in y, is a nontrivial additive character to the modulus p^{2}. Therefore $\left|S\left(f_{\xi}\right)\right| \leq 2 \sqrt{2}$, from which (4) follows.

If $n=c\left(f^{\prime}\right)+4$ and $k \leq 15$, then (4) follows from the trivial estimate for $S\left(f_{\xi}\right)$. If $n=c\left(f^{\prime}\right)+4, k>15$, and $c\left(f^{\prime}\right)<2$, then (4) follows from the trivial estimate for $S\left(f_{\xi}\right)$. If $n=c\left(f^{\prime}\right)+4, k>15$, and $c\left(f^{\prime}\right) \geq 2$, then $n>5$. As in the proof of Lemma 2(iii), we can verify that

$$
f_{\xi}(y)=b_{0}+b_{1} p^{n-2} y+b_{2} p^{n-3} y^{2}+b_{3} p^{n-1} y^{3}+b_{4} p^{n-2} y^{4}+p^{n} y^{5} g(y)
$$

where $b_{0}, b_{1}, b_{3}, b_{4}$, and b_{5} are integers, p does not divide b_{2}, and g is an integral polynomial. We may write

$$
\begin{aligned}
f_{\xi}(y)= & b_{0}+b_{1}^{\prime} p^{n-2} y+b_{2}^{\prime} p^{n-3} y^{2}+b_{3} p^{n-1}\left(y^{3}-y\right) \\
& +b_{4} p^{n-2}\left(y^{4}-y^{2}\right)+p^{n} y^{5} g(y) .
\end{aligned}
$$

Then we have $p \nmid b_{2}^{\prime}$ and

$$
S\left(f_{\xi}\right)=\sum_{0 \leq y<p^{3}} \chi\left(b_{0}+b_{1}^{\prime} p^{n-2} y+b_{2}^{\prime} p^{n-3} y^{2}\right) .
$$

By a linear transformation, we have

$$
S\left(f_{\xi}\right)=\sum_{0 \leq y<p^{3}} \chi\left(b_{0}^{\prime}+b_{2}^{\prime} p^{n-3} y^{2}\right)
$$

We may assume that p does not divide b_{0}^{\prime} since otherwise this sum vanishes and (4) is proved. Let y_{0} be an integer such that $y_{0} b_{0}^{\prime}$ is in the unit coset $1+\left(p^{n}\right)$. Then

$$
S\left(f_{\xi}\right)=\chi\left(b_{0}\right) \sum_{0 \leq y<p^{3}} \chi\left(1+y_{0} b_{2}^{\prime} p^{n-3} y^{2}\right) .
$$

Since $n>5, \chi\left(1+p^{n-3} y_{0} b_{2}^{\prime} y\right)$, as a function in y, is a nontrivial additive character to the modulus p^{3}. We write $\chi\left(1+p^{n-3} y_{0} b_{2}^{\prime}\right)=e^{2 \pi i r / 8}=\varrho$, where r is an odd integer. Then we have $S\left(f_{\xi}\right)=2 \chi\left(b_{0}\right)\left(1+2 \varrho+\varrho^{4}\right)=4 \varrho \chi\left(b_{0}\right)$, from which (4) follows.

If now $h\left(f_{\xi}\right)=h>0$ and (4) holds for all polynomials of height less than h which are children of some polynomials, then (4) follows from Lemmas 1 and 2(i). The proof of Lemma 7 is complete.

The author thanks Professor Pan Chengbiao for his help.

References

[1] J.-R. Chen, On Professor Hua's estimate of exponential sums, Sci. Sinica 20 (1977), 711-719.
[2] P. Ding and M.-G. Qi, Further estimate of complete trigonometric sums, J. Tsinghua Univ. 29 (1989), no. 6, 74-85.
[3] C. F. Gauss, Summatio quarumdam serierum singularium, Comment. Soc. Reg. Sci. Gottingensis 1 (1811); Werke, Vol. 2, Königl. Gesellschaft der Wissenschaften, Göttingen, 1876, 9-45.
[4] G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio Numerorum': $I V$. The singular series in Waring's Problem and the value of the number $G(k)$, Math. Z. 12 (1922), 161-188.
[5] L.-K. Hua, On exponential sums, J. Chinese Math. Soc. 2 (1940), 301-312.
[6] -, On exponential sums over an algebraic number field, Canad. J. Math. 3 (1951), 44-51.
[7] L.-K. Hua and H. S. Vandiver, On the existence of solutions of certain equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 481-487.
[8] D. Ismoilov, Estimates of complete character sums of polynomials, Trudy Mat. Inst. Steklov. 200 (1991), 171-184 (in Russian).
[9] C. G. J. Jacobi, Brief an Gauss vom 8. Februar 1827, Gesammelte Werke, Vol. 7, Reimer, Berlin, 1891, 393-400.
[10] J.-L. Lagrange, Réflexions sur la résolution algébrique des équations, Nouv. Mémoires Acad. Roy. Berlin 1770, 134-215; ibid. 1771, 138-254; Oeuvres, Vol. 3, Gauthier-Villars, Paris, 1869, 205-421.
[11] M.-G. Lu, Estimate of a complete trigonometric sum, Sci. Sinica 28 (1985), 561-578.
[12] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204207.
[13] -, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497-508.
[14] -, La cyclotomie jadis et naguère, Enseign. Math. (2) 20 (1974), 247-263.
P.O. Box 1001-46

Zhengzhou 450002
China
E-mail: zeng@public2.ha.zz.cn

[^0]: 1991 Mathematics Subject Classification: Primary 11L15.
 Key words and phrases: exponential sums, Dirichlet characters.
 This work was supported by NNSFC and MCSEC.

[^1]: ${ }^{1}$) This can be proved by methods employed in [2].

