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1. Introduction. We say a natural number n is y-smooth if every prime
factor p of n satisfies p ≤ y. Let Ψ(x, y) denote the number of y-smooth
integers up to x. The function Ψ(x, y) is of great interest in number theory
and has been studied by many researchers.

Let Ψ(x, z, y) = Ψ(x + z, y) − Ψ(x, y). In this paper, we will give an
estimate for Ψ(x, z, y) under the Riemann Hypothesis (RH).

Various estimates for Ψ(x, z, y) have been given by several authors. (See
[1]–[9].)

In 1987, Balog [1] showed that for any ε > 0 and X ≥ X0(ε) the interval
(X,X +X1/2+ε] contains an integer having no prime factors exceeding Xε.

Harman [6] improved this result, and he proved that the bound Xε on
the size of the prime factors can be replaced by exp{(log x)2/3+ε}.

Recently, Friedlander and Granville [3] improved the “almost all” results
of Hildebrand and Tenenbaum [9] and proved the following result:

Fix ε > 0. The estimate

(1.1) Ψ(x, z, y) =
z

x
Ψ(x, y)

(
1 +O

(
(log log y)2

log y

))

holds uniformly for

(1.2) x ≥ y ≥ exp{(log x)5/6+ε}
with

(1.3) x ≥ z ≥ x1/2y2 exp{(log x)1/6}.
The authors of [3] also point out that up to now there is no indication

of how to break the “
√
x barrier”, that is, to prove that Ψ(x +

√
x, y) −
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Ψ(x, y) > 0 when y is an arbitrarily small power of x; this is evidently the
most challenging open problem in this area.

The problem is very difficult indeed. In this paper, we only prove that

Ψ(X +
√
X(log X)1+ε, Xδ)− Ψ(X,Xδ) > 0,

even if the RH is true, and we state it formally as a theorem.

Theorem. If the RH is true, then for any ε > 0, δ > 0 and X ≥
X0(ε, δ), the interval (X,X + Y ], where

√
X(logX)1+ε ≤ Y ≤ X, contains

an integer having no prime factors exceeding Xδ.

2. Proof of the Theorem. To prove the Theorem, we need the following
lemmas.

Lemma 1. For N,T ≥ 1 and any sequence bn of complex numbers, we
have

T\
0

∣∣∣
∑

n≤N
bnn

it
∣∣∣
2
dt� (T +N)

∑

n≤N
|bn|2.

P r o o f. See Theorem 6.1 of [10].

Lemma 2. If the RH is true then for 1/2 + ε ≤ σ ≤ 2 we have uniformly

ζ ′

ζ
(s)� log(|t|+ 2).

P r o o f. See [12, p. 340].

Let 0 < ε < 1/8 be fixed. We put

M = X1/2(logX)−1−ε, N = (logX)2+2ε,

Y ≥ X

M
= X1/2(logX)1+ε, y = Xδ,

a(m) =
{

1 if p |n⇒ p ≤ y,
0 otherwise,

M(s) =
∑

M<m≤2M

a(m)
ms

.

As in [6] we will show that

(2.1)
X+Y\
X

(∑∗
a(m1)a(m2)Λ(r)

)
dx = Y 2M2(1) +O(Y 2(logX)−ε/4),

where ∗ represents the summation conditions

m1m2r ∈ (x, x+ Y ], X ≤ x ≤ X + Y,

M < mi ≤ 2M, i = 1, 2.
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By the Perron formula (see Lemma 3.19 of [12]) we have for x 6∈ Z, x+Y
6∈ Z,
(2.2)

∑∗
a(m1)a(m2)Λ(r)

=
−1
2πi

c+iT\
c−iT

ζ ′

ζ
(s)M2(s)

(x+ Y )s − xs
s

ds+O

(
x log2 x

T

)
+O(log x),

where c = 1 + 1/logX, T = X4, and the O constants are absolute.
We now integrate (2.2) with respect to x between X and X + Y , and

obtain that

(2.3)
X+Y\
X

(∑∗
a(m1)a(m2)Λ(r)

)
dx

=
−1
2πi

c+iT\
c−iT

ζ ′

ζ
(s)M2(s)A(s) ds+O

(
XY log2X

T

)
+O(Y logX),

where

A(s) =
(X + 2Y )s+1 − 2(X + Y )s+1 +Xs+1

s(s+ 1)
.

We note that A(1) = Y 2, and

(2.4) A(s)� min(Y 2Xσ−1, Xσ+1|t|−2).

From the definitions of T and Y, it follows that the two error terms in (2.3)
are � Y 2 exp{−(logX)1/2}.

By the theorem of residues, the integral on the right side of (2.3) is

(2.5) Y 2M2(1) +
1

2πi

( η−iT\
c−iT

+
η+iT\
η−iT

+
c+iT\
η+iT

)
,

where η = 1/2 + ε/3.
Here we estimate |M(s)| trivially as

(2.6) |M(s)| ≤M1−σ.

From this, (2.4) and Lemma 2, the integrals along the lines [c− iT, η − iT ]
and [η + iT, c+ iT ] are

�
c\
η

M2−2σXσ+1T−2 log T dσ(2.7)

� X2T−2 log T � Y 2 exp{−(logX)1/2}.
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Also,
η+iT\
η−iT

ζ ′

ζ
(s)M2(s)A(s) ds� Y 2Xη−1 logX

X/Y\
0

|M(η + it)|2 dt(2.8)

+Xη+1 logX
T\

X/Y

|M(η + it)|2t−2 dt

= I1 + I2.

By Lemma 1, we have

I1 � Y 2Xη−1 logX
(
X

Y
+M

)
M1−2η(2.9)

� Y 2 logX ·N−1+η � Y 2(logX)−ε/4.

From Lemma 1 and (2.6) together with integration by parts we have

I2 � Xη+1 logX
(
X

Y

)−2(
X

Y
+M

)
M1−2η(2.10)

� Y 2 logX ·N−1+η � Y 2(logX)−ε/4.

So from (2.3), (2.5) and (2.7)–(2.10) we get (2.1). By Theorem 1 of [7], we
have

M(1) =
∑

M<m≤2M

a(m)
m
�δ 1.

The Theorem follows from (2.1) and the above estimate.

Remarks. Using the methods of this paper, we can prove the following
results.

For any X ≥ X0(ε), the interval (X,X + Y ] contains an integer having
no prime factors exceeding y, where

(i) X ≥ Y ≥ X1/2 exp{(logX)5/6+ε} and X ≥ y ≥ exp{(logX)5/6+ε},
or

(ii) X ≥ Y ≥ X1/2 exp
{ logX

(log logX)b
}

and

X ≥ y ≥ exp{C(logX)2/3(log logX)4/3+b},
where b is any fixed positive number and C is a sufficiently large absolute
constant.

The result suitable for the ranges (ii) is stronger than one of Harman [6]
and the ranges (i) are wider than the ranges (1.2) and (1.3) of the asymptotic
estimate of Friedlander and Granville [3] since the bound for Y in (i) is
independent of y.
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The proofs of the results are similar to that of the Theorem, but for the
ranges (i) with

M = X1/2 exp{(− logX)5/6+ε}, N = exp{2(logX)5/6+ε},
and

η = 1− c1
(logX)2/3+ε

;

and for the ranges (ii) with

M = X1/2 exp
{
− logX

(log logX)b

}
, N = exp

{
2 logX

(log logX)b

}
,

and
η = 1− c1

(logX)2/3(log logX)1/3
.

Moreover, in the proof we also need the following result: the estimate

ζ ′

ζ
(s)� log(|t|+ 2)

holds uniformly in the ranges σ ≥ 1 − c1/((logX)2/3(log logX)1/3) and
|t| ≤ X4. This estimate follows from an estimate of [11] and Theorems 3.10
and 3.11 of [12] with ϕ(t) = 302

3 log log t and θ(t) = (log log t)2/3/(log t)2/3.
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147–148 (1987), 27–31.
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