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On the number of irreducible polynomials
with 0,1 coefficients

by

S. V. Konyagin (Moscow)

1. Introduction. For d a positive integer, let

Pd =
{
f(z) : f(z) =

d∑

j=0

ajz
j , aj = 0 or 1 for all j, a0 = ad = 1

}
.

By irreducibility we always mean irreducibility over the rationals. There is
an intriguing conjecture that almost all polynomials f(z) are irreducible,
namely, the portion of irreducible polynomials in Pd tends to 1 as d → ∞
(see [7]). This is still open. In what follows, C, c will denote large and small
absolute positive constants, respectively. In [2] it was proved that if f(2) is
prime for some f ∈ Pd then f(z) is irreducible (see also [4]). Consequently,
there are at least c2d/d irreducible polynomials f ∈ Pd. The same estimate
can also be proved by calculation of polynomials f ∈ Pd irreducible over F2

[6, p. 93].
In this paper we improve the lower estimate of the number of irreducible

polynomials of degree d with 0, 1 coefficients and establish

Theorem 1. For a positive integer d ≥ 2 there are at least c2d/log d
irreducible polynomials f ∈ Pd.

It is reasonable to conjecture that almost all reducible polynomials f ∈
Pd are divisible by z + 1; it would give the upper estimate C2d/

√
d of the

number of reducible polynomials f ∈ Pd. We are able to prove this estimate
of the number of polynomials with 0, 1 coefficients possessing nontrivial di-
visors of small degree.
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Theorem 2. For a positive integer d ≥ 2 and m1 = [cd/log d] there
are at most C2d/

√
d polynomials f ∈ Pd divisible by at least one integral

polynomial of positive degree ≤ m1.

Theorem 1 follows easily from Theorem 2. Indeed, consider the set Φ of
integers γp ∈ [2d, 2d+1) where p is prime, γ is odd and γ < γ1 = 1.12m1 . For
any γ < γ1 the number of primes p ∈ [2d/γ, 2d+1/γ), by the Prime Number
Theorem, is

2d

γ log(2d/γ)
(1 + o(1))� 2d/(dγ).

Hence,

#Φ� 2d

d

∑
γ<γ1

γ≡1 (mod 2)

1
γ
� 2d

d
log γ1 � 2d/log d,

i.e.,#Φ ≥ c2d/log d. If ad . . . a0 is the base 2 representation of an element
ϕ ∈ Φ, then the polynomial f(z) = λ(ϕ)(z) =

∑d
j=0 ajz

j ∈ Pd and f(2)
= ϕ. Suppose that f ∈ λ(ϕ) is reducible. Then f = g1g2 where g1, g2

are integral polynomials of positive degree and |g1(2)| ≤ |g2(2)|. We have
|g1(2)| · |g2(2)| = |f(2)| = ϕ. If we assume that g1(2) is divisible by p, we
get |g2(2)| ≤ γ and

ϕ = |g1(2)| · |g2(2)| ≤ |g2(2)|2 ≤ γ2
1 < 2m1 < ϕ.

This contradiction shows that g1(2) cannot be divisible by p. Hence, |g1(2)|
≤ γ1.

To estimate the degree of g1, we follow [2]. Let m = deg g1, g1(z) =
±∏m

j=1(z − zj). Any zj is a zero of the polynomial f with 0, 1 coefficients.
So, clearly, |zj | < 2, and, by [7], <zj < 1.14. These restrictions on zj imply
|zj−2|/|zj−1|> 1.12. Indeed, consider the function V (z) = (z−1)2/(z − 2)2

on the closed domainΩ restricted by the segment of the line <z = 1.14, |=z|2
≤ 4− 1.142, and the arc of the circle |z| = 2, <z ≤ 1.14. The maximum of
|V (z)| is attained on the boundary of Ω. If z is on the segment then

|V (z)| = (0.142 + =z2)/(0.862 + =z2)

≤ (0.142 + 4− 1.142)/(0.862 + 4− 1.142) = 34/43.

If z is on the arc then

|V (z)| = (|z|2 + 1− 2<z)/(|z|2 + 4− 4<z) = (5− 2<z)/(8− 4<z)
≤ (5− 2 · 1.14)/(8− 4 · 1.14) = 34/43.

Hence, for any z ∈ Ω the inequality V (z) ≤ 34/43 holds, and for any zero
zj of the polynomial g1 we have

|zj − 2|/|zj − 1| = |V (zj)|−1/2 ≥ (34/43)−1/2 > 1.12.
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Therefore,

1.12m1 = γ1 ≥ |g1(2)|/|g1(1)| ≥ 1.12m,

and deg g1 = m ≤ m1. By Theorem 2, there are at most C2d/
√
d reducible

polynomials in the set λ(Φ), but this set contains at least c2d/log d ele-
ments. Thus, λ(Φ) contains as many irreducible polynomials as required in
Theorem 1.

Throughout the following we assume that the number d is sufficiently
large.

Denote by D the set of polynomials

g(z) =
m∑

j=0

bjz
j , bm = 1, m ∈ N,

with integral coefficients. To prove Theorem 2, we will estimate the number
of polynomials f ∈ Pd divisible by an irreducible polynomial g ∈ D, and then
take the sum over all polynomials g of degree at most m1. To motivate our
proof of Theorem 2, we indicate how to obtain a weaker result: Theorem 2
is valid if we replace m1 by m2 = [

√
d/(log d)2]. For any polynomial g with

leading coefficient ±1 we define

M(g) =
m∏

j=1

max(1, |zj |),

where z1, . . . , zm are the zeros of g counted with multiplicity. By Jensen’s
theorem (Theorem 3.61 of [10]),

logM(g) =
1

2π

2π\
0

log |g(eiϕ)| dϕ.

Therefore,

(1.1) M
( m∑

j=0

bjz
j
)
≤

m∑

j=0

|bj |.

Clearly, M(g) ≥ 1, and Kronecker’s theorem [5] asserts that M(g) = 1
implies that all zeros of g are roots of unity. Otherwise, as was proved by
Dobrowolski [3],

(1.2) M(g) ≥ exp(λm), λm = c

(
log logm

logm

)3

(m ≥ 3).

Take an arbitrary noncyclotomic irreducible polynomial g ∈ D such that
deg g = m ≤ m2, and let z1, . . . , zm be the zeros of g. By Lemma 3 of [3],
there exists a prime p such that log(d+ 1)/λm2 < p < 2 log(d+ 1)/λm2 and
all zpj are algebraic numbers of degree m (and, therefore, are distinct). Set
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gp(w) =
∏m
j=1(w − zpj ). Then, taking into account (1.2), we get

(1.3) M(gp) = M(g)p ≥ exp(pλm2) > d+ 1.

Suppose that g(z) divides two distinct polynomials f1 and f2 from Pd such
that

f1(z)− f2(z) =
[d/p]∑

j=0

ajz
jp = h(zp).

Clearly, all coefficients of the polynomial h are 0,±1. By (1.1), M(h) ≤ d+1.
On the other hand, any zero zpj of gp is a zero of h. Hence, h is divisible by gp,
and (1.3) entailsM(h) > d+1. This contradiction shows that our supposition
cannot occur. This means that if a polynomial f(z) =

∑d
j=0 ajz

j ∈ Pd is
divisible by g then f is uniquely determined by its coefficients aj , j 6≡ 0
(mod p). Hence,

#{f ∈ Pd : g | f} < 2d/2d/p < 2d/2dλm2/(2 log(d+1))(1.4)

< 2d exp(−0.3dλm2/log d).

Let us estimate the number N of polynomials g ∈ D of degree at most m2

dividing at least one polynomial f ∈ Pd. We consider any such polynomial

g(z) =
m∑

j=0

bjz
j =

m∏

j=1

(z − zj).

Since |zj | < 2 for any j, representing the coefficients of the polynomial g as
symmetric polynomials of its zeros, we find |bj | ≤ 2m−j

(
m
j

)
< 4m. Hence,

N <

m2∏

j=0

(2 · 4m2 + 1) < 5m
2
2 .

It follows from the last inequality and (1.4) that the total number of poly-
nomials f ∈ Pd divisible by at least one noncyclotomic polynomial of degree
at most m2 is less than

2d5m
2
2 exp(−0.3dλm2/log d) < 2d exp(2d/(log d)4 − 0.3dλm2/log d)

= o(2d/
√
d).

It is not difficult to prove that the number of polynomials f ∈ Pd divisible
by at least one cyclotomic polynomial is O(2d/

√
d) (see §4). Thus, we get

the analog of Theorem 2 for m2 instead of m1.
To prove Theorem 2, we must have more accurate estimates for the

number of possible divisors of polynomials f ∈ Pd. In Section 3 we will find
upper bounds for the number of polynomials g ∈ D with restrictions on
their zeros. To do this, we need some estimates of ε-capacity of appropriate
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convex bodies in finite-dimensional spaces. Such estimates will be found in
Section 2. Theorem 2 will be proved in Section 4.

2. Several geometric lemmas. In this section we fix two positive
numbers α and τ such that

(2.1) α > 1, τ < 0.1/α.

Also, m will denote a sufficiently large positive integer exceeding some mag-
nitude depending on α and τ . Let X = Xm be the m-dimensional real
coordinate space equipped with the l∞-norm:

|(x1, . . . , xm)| = max
1≤j≤m

|xj |.

We denote by Vol(A) = Volm(A) the volume of a convex closed bounded set
A ⊂ X.

Lemma 2.1. Let Π ⊂ Rl be a parallelepiped and A ⊂ Π be a convex
polytope with n ≤ lα vertices. Then

Vol(A) < Vol(Π)
(

90α log l
l

)l/2
,

provided that l is large enough.

P r o o f. We may suppose that Π is a cube inscribed in the unit ball B,
namely, Π = [−1/

√
l, 1/
√
l]l. We have

Vol(B) =
πl/2

Γ (1 + l/2)
<

πl/2

(l/(2e))l/2
=
(

2πe
l

)l/2
= (πe)l/2 Vol(Π).

Using the inequality

Vol(A) ≤ Vol(B)
(

10α log l
l

)l/2

for the volume of a convex polytope A with ≤ lα vertices provided that
l > l(α) (see [1]) we get

Vol(A) ≤ Vol(Π)
(

10πeα log l
l

)l/2
<

(
90α log l

l

)l/2
,

as required.

Let e1, . . . , em be the coordinate vectors of Xm. For a convex closed
bounded set A ⊂ X and j = 1, . . . ,m define

Oj(A) = A+ [−ej/2, ej/2] = {x+ µej : x ∈ A, |µ| ≤ 1/2}.
Let O(A) be the 1/2-neighborhood of A:

O(A) = {x+ y : x ∈ A, |y| ≤ 1/2}.
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We have

(2.2) O(A) = O1(. . . Om(A) . . .).

Let Σ = Σ(m) be the set of all subsets of the set {1, . . . ,m} and T ∈ Σ. We
denote by PT (A) the orthogonal projection of the set A to the linear space
spanned by ej , j ∈ T . We consider that Vol0(P∅(A)) = 1.

Lemma 2.2. For any T ∈ Σ and any j ∈ T we have

Vol#T (PT (Oj(A))) = Vol#T (PT (A)) + Vol#T−1(PT\{j}(A)).

P r o o f. Set T ′ = T \ {j} and represent PT in the following form:

PT (A) = {{xt : t ∈ T} : {xt : t ∈ T ′} ∈ PT ′(A),

f1({xt : t ∈ T ′}) ≤ xj ≤ f2({xt : t ∈ T ′})}.
Then
PT (Oj(A)) = {{xt : t ∈ T} : {xt : t ∈ T ′} ∈ PT ′(A),

f1({xt : t ∈ T ′})− 1/2 ≤ xj ≤ f2({xt : t ∈ T ′}) + 1/2}.
Expressing the volumes of PT (A) and PT (Oj(A)) as integrals over PT ′(A)
we get the required relationship. Lemma 2.2 is proved.

Using (2.2), we can write

O(A) = P{1,...,m}(O1(. . . Om(A) . . .).

Now, applying subsequently Lemma 2.2, and taking into account that the
operators T and Oj commute for j ∈ T , we obtain

Lemma 2.3. The following equality holds:

(2.3) Vol(O(A)) =
∑

T∈Σ
Vol#T (PT (A)).

In the next lemma we estimate the 1/2-capacity [9, 1.1.7] of convex
polytopes contained in a parallelepiped.

Lemma 2.4. Let Π =
∏m
j=1[−uj/2, uj/2] be a parallelepiped and A ⊂ Π

be a convex polytope with n ≤ mα−1 vertices. Let D be a subset of A such
that the distance between any two elements of D is at least 1. Then

#D < exp(m1−9τ )
m∏

j=1

(
1 +

uj
m0.5−6τ

)
.

P r o o f. The unit cubes with centers at the points of D are mutually
nonoverlapping, and the union of these cubes is a subset of O(A). Therefore,
#D ≤ Vol(O(a)), and it remains to estimate the volume of O(A).

We use Lemma 2.3. Note that in view of the inequality (2.1), n <
(m1−10τ )α. Therefore, for l = #T ≥ m1−10τ the volumes on the right-hand
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side of (2.3) can be estimated by Lemma 2.1:

Voll(PT (A)) <Voll(PT (Π))
(

90α log l
l

)l/2

≤Voll(PT (Π))
(

90α logm
m1−10τ

)l/2
< Voll(PT (Π))(m0.5−6τ )−l.

For l < m1−10τ using the trivial estimate Voll(PT (A)) ≤ Voll(PT (Π)) we
have

Voll(PT (A)) ≤Voll(PT (Π))(m0.5−6τ )−l(m0.5−6τ )l

<Voll(PT (Π))(m0.5−6τ )−l(m0.5−6τ )m
1−10τ

<Voll(PT (Π))(m0.5−6τ )−l exp(m1−9τ ).

In both cases we have the inequality

(2.4) Vol#T (PT (A)) < Vol#T (PT (Π))(m0.5−6τ )−
#T exp(m1−9τ ).

Now, using (2.3), we find

Vol(O(A)) < exp(m1−9τ )
∑

T∈Σ
Vol#T (PT (Π))(m0.5−6τ )−

#T

= exp(m1−9τ )
m∏

j=1

(
1 +

uj
m0.5−6τ

)
.

This completes the proof of Lemma 2.4.

The following lemma is the only statement of this section which will be
used later on.

Lemma 2.5. For a vector w = (w1, . . . , wm) ∈ Cm define

Sk(w) =
m∑

j=1

wkj (k = 1, . . . ,m).

Let W be a subset of Cm such that maxj |wj | ≤ exp(0.4(logm)/m) for any
w = (w1, . . . , wm) ∈ W and max1≤k≤m |<Sk(w) − <Sk(w′)|/k > 1/2 for
any two distinct vectors w,w′ from W . Then #W < exp(m0.95).

P r o o f. We associate with any vector w ∈ W the vector w̃ = (w̃1, . . .
. . . , w̃m) such that

w̃j = m−2.45(sgn(<wj)[m2.45|<wj |] + i sgn(=wj)[m2.45|=wj |])
(j = 1, . . . ,m),

where [·] denotes the integral part. For any j ∈ {1, . . . ,m} and k ∈ {1, . . . ,m}
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we have |wj − w̃j | ≤
√

2m−2.45 and

|wkj − w̃kj | ≤ k|wj − w̃j |max(|wj |k−1, |w̃j |k−1)

≤ 2km−2.45(exp(0.4(logm)/m))k−1

≤ 2m−1.45(exp(0.4(logm)/m))m = 2m−1.05.

From the last inequality and the assumption on W we get

(2.5) max
1≤k≤m

|<Sk(w̃)−<Sk(w̃′)|/k > 1/3 (w,w′ ∈W, w 6= w′).

Consider the mapping ψ : W → X:

ψ(w) = (3<S1(w̃), 3<S2(w̃)/2, . . . , 3<Sm(w̃)/m).

The condition (2.5) means that all distances between ψ(w) and ψ(w′) for
distinct w,w′ ∈W are at least 1.

The set D = ψ(W ) is contained in the convex hull A of the vectors
(3m<z, 3m<(z2)/2, . . . , 3m<(zm)/m), where |z| ≤ exp(0.4(logm)/m) and
m2.45<z, m2.45=z are integers (i.e. z runs over the set of all possible points
w̃j). The number n of the vertices of the polytope A does not exceed

π(1 + exp(0.4(logm)/m)/m−2.45)2 < m6.

Moreover, A is contained in the parallelepiped

Π =
m∏

j=1

[−uj/2, uj/2], uj = 6m exp(0.4(j/m) logm)/j (j = 1, . . . ,m).

Now we are ready to apply Lemma 2.4. Take α = 7, τ = 1/150. Lem-
ma 2.4 asserts that

(2.6) #D < exp(m0.94)
m∏

j=1

(
1 +

uj
m0.46

)
.

We have

log
m∏

j=1

(
1 +

uj
m0.46

)
≤

m∑

j=1

uj
m0.46 ≤

m∑

j=1

6m0.94

j
< m0.945.

Substitution of the last inequality into (2.6) implies
#D < exp(m0.94) exp(m0.945) < exp(m0.95).

But #W = #D. Thus, #W < exp(m0.95), as required.

3. Estimates of the number of irreducible polynomials with re-
strictions on its zeros. Let g ∈ D be an irreducible polynomial and z be
one of its zeros. For an integer l we denote the number of zeros z′ of the poly-
nomial g such that (z′)l = zl by kl(g). Clearly, kl(g) does not depend on the
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choice of z. Moreover, kl(g) divides the degree of g. For a nonnegative num-
ber U and positive integers k, l,m, m ≥ 2, we will denote by D(U,m, l, k) the
set of irreducible polynomials g of degree m such that logM(g) ≤ U/m and
kl(g) = k. We consider that k divides m since otherwise the set D(U,m, l, k)
is empty.

Lemma 3.1. For sufficiently large m the cardinality of D(U,m, l, k) does
not exceed

exp(m0.95)CU/k(Cl/k)CU/logm.

Remark. In the case l = 1 the proof of the lemma actually shows
that the number of all polynomials g(z) = zm +

∑m−1
j=0 bjz

j with integral
coefficients such that logM(g) ≤ U/m does not exceed exp(m0.95)CU .

P r o o f (of Lemma 3.1). We say that the zeros v, v′ of the polynomial g ∈
D(U,m, l, k) are equivalent if vl = (v′)l. Fix a maximal subset {v1, . . . , vm/k}
of mutually nonequivalent zeros of g such that |v1| ≥ . . . ≥ |vm/k|. Let
|vn| ≥ exp(0.4(logm)/m) > |vn+1| (for definiteness, we consider v0 = ∞,
vm/k+1 = 0). Define n = ψ(g). Besides the mapping ψ, we define several
mappings on the set D(U,m, l, k). Let ψj(g) = [m log |vj |] (j = 1, . . . , n).
We have

n∏

j=1

|vj | ≤
m/k∏

j=1

max(1, |vj |) = (M(g))1/k ≤ exp(U/(mk)).

On the other hand,
n∏

j=1

|vj | ≥ exp(0.4n(logm)/m)

and
n∏

j=1

|vj | ≥
n∏

j=1

exp(ψj(g)/m) = exp
( n∑

j=1

ψj(g)/m
)
.

Therefore,

(3.1) ψ(g) = n ≤ U/(0.4k logm)

and

(3.2)
n∑

j=1

ψj(g) ≤ U/k.

For any u ∈ Z+ we cover the disk {z : |z| ≤ exp((u+ 1)/m)} by disjoint
squares

Suν = [α/(m3v), (α+ 1)/(m3v))× [β/(m3v), (β + 1)/(m3v)),

v = exp((m− 1)u/m), α, β ∈ Z, ν ∈ Z, 1 ≤ ν ≤ Nu.
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Taking into account that

v exp((m− 1)u/m) = exp(u+ 1/m) < 3 exp(u),

we can write a rough estimate for the number Nu of squares intersecting the
disk:

(3.3) Nu ≤ m7 exp(2u).

We define the mappings Ψj (j = 1, . . . , n) setting Ψj(g) = ν if vj ∈ Suν
where u = ψj(g). Finally, for j = 1, . . . , n we define the mapping ϕj from
D(U,m, l, k) to the set Σ(k, l) of k-element subsets of {1, . . . , l} by setting
ϕj(g) = T ∈ Σ(k, l) if the set of zeros of g equivalent to vj is the set of
numbers vjζt, t ∈ T , where ζ is a fixed primitive lth root of unity.

We want to estimate the number of distinct images

(n = ψ(g), ψ1(g), . . . , ψn(g), Ψ1(g), . . . , Ψn(g), ϕ1(g), . . . , ϕn(g))

for g ∈ D(U,m, l, k).
For a fixed n = ψ(g) the values ψ1(g), . . . , ψn(g) are determined by n

different numbers ψ1(g), ψ1(g)+ψ2(g), . . . , ψ1(g)+ . . .+ψn(g) not exceeding
[U/k] by (3.2). Consequently,

(3.4) #{(n, ψ1(g), . . . , ψn(g))} ≤
[U/k]∑
n=0

(
[U/k]
n

)
≤ 2U/k.

Then, for fixed n, ψ1(g), . . . , ψn(g) we have, by (3.3), (3.1) and (3.2),

#{(Ψ1(g), . . . , Ψn(g))} ≤
n∏

j=1

(m7 exp(2ψj(g)))(3.5)

≤ m7U/(0.4k logm) exp(2U/k) ≤ CU/k.
Finally, for fixed n, ψ1(g), . . . , ψn(g), Ψ1(g), . . . , Ψn(g), using (3.1) again

and the inequality (
l

k

)
≤ lk/k! ≤ (el/k)k,

we obtain

(3.6) #{(ϕ1(g), . . . , ϕn(g))}

≤
(
l

k

)n
≤ (el/k)kU/(0.4k logm) ≤ (el/k)CU/logm.

The combination of inequalities (3.4)–(3.6) implies

(3.7) #{(n, ψ1(g), . . . , ψn(g), Ψ1(g), . . . , Ψn(g), ϕ1(g), . . . , ϕn(g))}
≤ N = (2C)U/k(el/k)CU/logm.
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Consider two polynomials g ∈ D(U,m, l, k) and g̃ ∈ D(U,m, l, k) such
that

ψ(g) = ψ(g̃), ψj(g) = ψj(g̃) (j = 1, . . . , n),
(3.8)

Ψj(g) = Ψj(g̃) (j = 1, . . . , n), ϕj(g) = ϕj(g̃) (j = 1, . . . , n).

Define

Z = {z : g(z) = 0}, Z̃ = {z : g̃(z) = 0},
V = {v ∈ Z : |v| ≥ exp(0.4(logm)/m)},
Ṽ = {v ∈ Z̃ : |v| ≥ exp(0.4(logm)/m)},
W = {w ∈ Z : |w| < exp(0.4(logm)/m)},
W̃ = {w ∈ Z̃ : |w| < exp(0.4(logm)/m)}.

Let n = ψ(g) = ψ(g̃). For any j = 1, . . . , n we take u = ψj(g) = ψj(g̃),
v = exp((m− 1)u/m) and the corresponding zeros vj of g and ṽj of g̃. Since
the values of Ψj at g and g̃ coincide, we have

|vj − ṽj | ≤
√

2/(m3v) < 4/(m3 exp((m− 1)(u+ 1)/m))(3.9)

≤ 4 max(|vj |, |ṽj |)1−m/m3.

For any zero v ∈ V of g equivalent to vj we set χ(v) = vṽj/vj . As the values
of ϕj at g and g̃ coincide, χ is a one-to-one correspondence V → Ṽ . By
(3.9), |χ(v)− v| ≤ 4|max(|v|, |χ(v)|)1−m|/m3 for any v ∈ V . Therefore,

|(χ(v))i − vi| ≤ imax(|v|, |χ(v)|)i−1|χ(v)− v|
< mmax(|v|, |χ(v)|)m−1|χ(v)− v| ≤ 4/m2 (i = 1, . . . ,m),

and

(3.10)
∣∣∣
∑

v∈V
vi −

∑

v∈Ṽ
vi
∣∣∣ < 1/2 (i = 1, . . . ,m).

Let

g(z) =
m∑

j=0

bjz
j , bm = 1,

Si =
∑

z∈Z
zi =

∑

v∈V
vi +

∑

w∈W
wi (i = 1, . . . ,m),

S̃i =
∑

z∈Z̃
zi =

∑

v∈Ṽ
vi +

∑

w∈W̃
wi (i = 1, . . . ,m).

The numbers S1, . . . , Sm are integers. Moreover, by the Newton identities,

Si + bm−1Si−1 + . . .+ bm−i+1S1 + ibm−i = 0 (i = 1, . . . ,m).
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Therefore, S1, . . . , Si−1 determine bm−1, . . . , bm−i+1 and the residue of Si
(mod i). If the integral polynomials g and g̃ are distinct then we can take
the minimal i such that Si 6= S̃i. Then Si ≡ S̃i (mod i) and, hence,

∃i |Si − S̃i| ≥ i,
or

(3.11) ∃i
∣∣∣
∑

v∈V
vi +

∑

w∈W
wi −

∑

v∈Ṽ
vi −

∑

w∈W̃
wi
∣∣∣ ≥ i.

Let

W = {w1, . . . , wm−kn}, W̃ = {w̃1, . . . , w̃m−kn},
wj = w̃j = 0 (m− kn < j ≤ m).

Then we can deduce from (3.10) and (3.11) that

∃i
∣∣∣<

m∑

j=1

wij −<
m∑

j=1

w̃ij

∣∣∣ > i/2.

Now we can apply Lemma 2.5: there are at most exp(m0.95) polynomials
g ∈ D(U,m, l, k) possessing any prescribed collection of values

(n = ψ(g), ψ1(g), . . . , ψn(g), Ψ1(g), . . . , Ψn(g), ϕ1(g), . . . , ϕn(g)).

Finally, by (3.7), we find
#D(U,m, l, k) ≤ exp(m0.95)N ≤ exp(m0.95)CU/k(Cl/k)CU/logm.

This completes the proof of Lemma 3.1.

4. Proof of Theorem 2. Let n be a positive integer and ζ a primitive
nth root of unity. Then the polynomial

Qn(z) =
n∏

j=1
gcd(j,n)=1

(z − ζj)

is called the nth cyclotomic polynomial [6, p. 64]. Note that degQn = ϕ(n)
where ϕ is the Euler totient function.

Denote by g an integral irreducible polynomial of positive degree ≤ m1.
Let N be the number of polynomials f ∈ Pd divisible by at least one such g.
Recall that m2 = [

√
d/(log d)2]. Then

(4.1) N ≤ N1 +N2 +N3 +N4,

where

• N1 is the number of f ∈ Pd divisible by at least one cyclotomic g with
deg g ≤ m2,
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• N2 is the number of f ∈ Pd divisible by at least one noncyclotomic g
with deg g ≤ m2,
• N3 is the number of f ∈ Pd divisible by at least one g with deg g > m2

and logM(g) ≤ c,
• N4 is the number of f ∈ Pd divisible by at least one g with m2 <

deg g ≤ m1 and logM(g) > c.

Note that all the large constants C can be effectively evaluated. Consid-
ering the values of all these constants fixed, we can choose the constant c
in the definitions of N3 and N4 and the constant c in the definition of m1

small enough to guarantee the validity of all the forthcoming inequalities
including C and c.

We have already estimated N2 in Section 1:

(4.2) N2 = o(2d/
√
d).

It remains to give upper bounds for N1, N3, and N4.
Clearly, no f ∈ Pd is divisible by Q1(z) = z − 1. For n ≥ 2 denote by

N1,n the number of f ∈ Pd divisible by Qn(z). Suppose that the polynomial

f(z) =
d∑

j=0

ajz
j

is divisible by Qn. Let

h(z) =
n−1∑

j=0

Ajz
j ,

where

(4.3) Aj =
∑

k≡j (modn)

ak.

The polynomials f and h are congruent mod(zn − 1). Therefore, h is di-
visible by Qn(z). Let l = ϕ(n) = degQn. It is well known that n ≤
Cl log log(l + 2) [8, Chapter 1, Theorem 5.1]. The divisibility of h by Qn
determines the coefficients Aj (0 ≤ j < l) of h if its other coefficients are
given. This means that for fixed ak (k ≡ j (mod n), l ≤ j < n) all sums
(4.3) for 0 ≤ j < l are determined. For any such j the proportion of vectors
(aj , aj+n, . . . , aj+[(d−j)/n]n) satisfying (4.3) among all 0, 1-vectors is at most
C
√
n/d. We will use the fact that C

√
n/d ≤ C

√
2Cm2(log logm2)/d ≤

1/d1/4. Therefore,

N1,2 ≤ (C
√

2/d)2d, N1,n ≤ 2d/dl/4, l = ϕ(n) > 1,
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and

N1 ≤ 2d
(

2C/
√
d+

m2∑

l=2

#{n : ϕ(n) = l}/dl/4
)

(4.4)

≤ 2d
(

2C/
√
d+

m2∑

l=2

Cl(log log(l + 2))/dl/4
)
≤ 3C · 2d/

√
d.

To estimate N3, we use the following simple

Lemma 4.1. For any irreducible polynomial g with deg g = m, there are
at most 2d−1−m polynomials f ∈ Pd divisible by g.

P r o o f. There are 2d−1−m choices of coefficients aj (j = m+1, . . . , d−1)
of a polynomial f ∈ Pd. If these coefficients are fixed, the other coefficients
are determined by the condition of divisibility of f by g. The lemma is
proved.

Applying Lemma 3.1 for U = cm, k = l = 1, we find that there are
at most 1.5m distinct polynomials g with deg g = m and logM(g) ≤ c
(provided that c is small enough). Hence,

(4.5) N3 ≤ 2d−1
∞∑

m=m2+1

1.5m · 2−m = o(2d/
√
d).

Remark. We have not yet used the restriction deg g ≤ m1. Thus, we
have proved that the number of polynomials f ∈ Pd having at least one
nontrivial integral divisor g with logM(g) ≤ c (in particular, cyclotomic g)
does not exceed C2d/

√
d.

The most delicate part of the proof is the estimation of N4. We will deal
with an irreducible polynomial g, dividing at least one polynomial f ∈ Pd,
such that m2 < deg g = m ≤ m1 and logM(g) > c. Applying (1.1) to f we
have

(4.6) M(g) ≤M(f) ≤ d+ 1.

We use the notation of Section 3. Let

l(g) = min{l ∈ Z+ : (l + 1) logM(g)/kl+1 > log(d+ 1)}.
By (4.6), l ≥ 1. We need the upper estimate of l(g).

Lemma 4.2. The number l = l(g) satisfies

(2C log(d+ 1)/logM(g))Cm logM(g)/logm ≤ 1.05d/l,

where C is the same constant as in the statement of Lemma 3.1.

(We may consider C > 1.)
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P r o o f. Set A = 2C log(d+ 1)/logM(g),

l1 =
d(log 1.05) logm

Cm(logM(g)) logA
.

(A > 2 by (4.6).) We have

(logM(g)) logA ≤ 2C log(d+ 1)/e ≤ 2C logm2 ≤ 2C logm,

d(logm)/m ≥ (d/m1) logm,

and, consequently,

(4.7) l1 ≥ d(log 1.05) logm
2C2m logm

≥ d(log 1.05)/(2C2m1) > 6 logm

(for an appropriate choice of a small constant c in the definition of m1). The
lemma asserts that l(g) ≤ l1. Assume the opposite. Then for any l ∈ (l1/2, l1]
we have

kl ≥ l logM(g)/log(d+ 1) > l1 logM(g)/(2 log(d+ 1))(4.8)

=
d(log 1.05) logm

2Cm(log(d+ 1)) logA

≥ d(log 1.05) logm1

2Cm1(log(d+ 1)) log(2C log(d+ 1)/c)

> (log d)1/2 > (logm)1/2.

Let p run over primes in (l1/2, l1]; as l1 is sufficiently large, there are at
least 0.4l1/log l1 such primes. By the property (iii) of Lemma 3 from [3] and
(4.8) for L =

∏
p p we have

kL ≥
∏
p

kp ≥ (logm)0.2l1/log l1 ,

and substitution of (4.7) gives

kL ≥ (logm)1.2 logm/log(6 logm) > m.

The last inequality is impossible. Thus, our assumption was not correct, and
Lemma 4.2 is proved.

For a nonnegative number U such that 2cm ≤ U ≤ 2m log(d + 1) and
positive integers k, l,m with m1 < m ≤ m2, we denote by D(U,m) the set of
irreducible polynomials g of degree m such that U/(2m) < logM(g) ≤ U/m,
and by D(U,m, l) the set of polynomials g ∈ D(U,m) such that l(g) = l. By
the definition of l(g),

kl ≥ l logM(g)
log(d+ 1)

≥ lU

2m log(d+ 1)
= K.

Lemma 3.1 gives the estimate of the number of polynomials in D(U,m, l):
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(4.9) #D(U,m, l)

≤
l∑

k=K

#D(U,m, l, k) ≤
l∑

k=K

exp(m0.95)CU/k(Cl/k)CU/logm

≤ l exp(m0.95)CU/K(Cl/K)CU/logm.

We have

CU/K = C2m log(d+1)/l ≤ C2m1 log(d+1)/l ≤ 1.05d/l,

(4.10)

(Cl/K)CU/logm ≤
(

2Cm log(d+ 1)
U

)CU/logm

≤
(

2Cm log(d+ 1)
m logM(g)

)2Cm logM(g)/logm

,

and, hence, by Lemma 4.2,

(4.11) (Cl/K)CU/logm ≤ 1.052d/l.

Substituting (4.10) and (4.11) into (4.9), we get

#D(U,m, l) ≤
l∑

k=K

#D(U,m, l, k) ≤ l exp(m0.95)1.053d/l(4.12)

≤ exp(m0.96)1.053d/l ≤ exp(2m0.96) + 1.056d/l.

Repeating the same arguments as in Section 1, we now show that for any
g ∈ D(U,m, l) the condition of divisibility of f(z) =

∑d
j=0 ajz

j ∈ Pd by g
uniquely determines f by its coefficients aj with j 6≡ 0 (mod l+ 1). Indeed,
let z1, . . . , zm be the zeros of g, and G be the minimal polynomial for zl+1

1 .
Then Gk(w) =

∏m
j=1(w − zl+1

j ) where k = kl+1. By the definition of l(g),
we get

(4.13) M(G) = M(g)(l+1)/k > d+ 1.

Suppose that g(z) divides two distinct polynomials f1 and f2 from Pd such
that

f1(z)− f2(z) =
[d/p]∑

j=0

ajz
j(l+1) = h(zl+1).

Clearly, all the coefficients of the polynomial h are 0,±1. By (1.1), M(h) ≤
d+1. On the other hand, h is divisible by G, and (4.13) entails M(h) > d+1.
This contradiction shows that our supposition cannot occur. Hence,

#{f ∈ Pd : g | f} < 2d/2d/(l+1) < 2d/1.41d/l.

Combining this estimate with Lemma 4.1 and using (4.12) and the inequality
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1.057 < 1.41, we get

(4.14) #{f ∈ Pd : ∃g ∈ D(U,m) g | f}
< 2d

∑

l

(exp(2m0.96) + 1.056d/l) min(2−m, 1.41−d/l)

≤ 2d
(∑

l

exp(2m0.96)2−m +
∑

l

1.05−d/l
)
,

where the sum is taken over l for which there exists at least one polynomial
g ∈ D(U,m, l) dividing some polynomial f ∈ Pd. By Lemma 4.2, any such l
satisfies

1.05−d/l ≤ C−cCm/logm.

Hence, it follows from (4.14) that

(4.15) #{f ∈ Pd : ∃g ∈ D(U,m) g | f}
≤ 2dm(exp(2m0.96)2−m + C−cCm/logm)

< 2d exp(−√m).

Set Uj,m = cm·2j and note that if f ∈ Pd is divisible by some polynomial
g with m2 < m = deg g ≤ m1 and logM(g) > c, then g ∈ D(Uj,m,m) for
some j with 1 ≤ j ≤ J = 1 + [log(d+ 1)/c]. Thus, from (4.15) we get

N4 < 2d
J∑

j=1

m1∑
m=m2+1

exp(−√m)(4.16)

< C2dm1 exp(−√m2) log(d+ 1) = o(2d/
√
d).

The substitution of (4.2), (4.4), (4.5), and (4.16) into (4.1) completes the
proof of Theorem 2.

As we have seen in Section 1, Theorem 1 is a corollary of Theorem 2.
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