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S. V. KONYAGIN (Moscow)

1. Introduction. For d a positive integer, let

d
Pa = {f(z):f(z):zajzj, aj = 0 or 1 for all j, aozadzl},

J=0

By irreducibility we always mean irreducibility over the rationals. There is
an intriguing conjecture that almost all polynomials f(z) are irreducible,
namely, the portion of irreducible polynomials in Py tends to 1 as d — oo
(see [7]). This is still open. In what follows, C, ¢ will denote large and small
absolute positive constants, respectively. In [2] it was proved that if f(2) is
prime for some f € P, then f(z) is irreducible (see also [4]). Consequently,
there are at least ¢2?/d irreducible polynomials f € P;. The same estimate
can also be proved by calculation of polynomials f € P, irreducible over Fs
[6, p. 93].

In this paper we improve the lower estimate of the number of irreducible
polynomials of degree d with 0,1 coefficients and establish

THEOREM 1. For a positive integer d > 2 there are at least c2¢/logd
irreducible polynomials f € Py.

It is reasonable to conjecture that almost all reducible polynomials f €
P, are divisible by z + 1; it would give the upper estimate €29/ Vd of the
number of reducible polynomials f € P;. We are able to prove this estimate
of the number of polynomials with 0,1 coefficients possessing nontrivial di-
visors of small degree.
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THEOREM 2. For a positive integer d > 2 and my = [cd/logd] there
are at most C2d/\/a polynomials f € Py divisible by at least one integral
polynomial of positive degree < my.

Theorem 1 follows easily from Theorem 2. Indeed, consider the set @ of
integers vp € [2¢,29%1) where p is prime, 7 is odd and vy < v, = 1.12"™. For
any v < 7y, the number of primes p € [2¢ /7,291 /), by the Prime Number
Theorem, is
2 14 o(1 2%/(d

gty L+ o) > 2/ (@),

Hence,
24 124
o> = > 5>

Y<71
=1 (mod 2)

logy1 > 2¢/log d,

ie.,#® > c2¢/logd. If aq...aq is the base 2 representation of an element
¢ € @, then the polynomial f(z) = A(¢)(z) = Z?:o ajzl € Py and f(2)
= . Suppose that f € A(yp) is reducible. Then f = g1g2 where g1, g2
are integral polynomials of positive degree and |g1(2)| < |g2(2)]. We have
l91(2)] - |g2(2)| = |f(2)| = ¢. If we assume that g1(2) is divisible by p, we
get [g2(2)] <y and

¢ =112 92(2)] < 1g2(2)* <77 <2™ <o,

This contradiction shows that g1 (2) cannot be divisible by p. Hence, |g1(2)]
< M-

To estimate the degree of g1, we follow [2]. Let m = deggi, g1(2) =
+ ][}, (2 — 2;). Any 2; is a zero of the polynomial f with 0,1 coefficients.
So, clearly, |z;| < 2, and, by [7], Rz; < 1.14. These restrictions on z; imply
|z;—2|/|z;—1] > 1.12. Indeed, consider the function V(z) = (2 —1)?/(z — 2)?
on the closed domain {2 restricted by the segment of the line Rz = 1.14, |3z|?
< 4 —1.14?, and the arc of the circle |z| = 2, Rz < 1.14. The maximum of
|V (2)] is attained on the boundary of 2. If z is on the segment then

[V (2)] = (0.14% + 322)/(0.862 + 322)
< (0.14% +4 — 1.14%) /(0.86% + 4 — 1.14%) = 34/43.
If z is on the arc then
V(2)] = (J2]> + 1 = 2R2) /(|2|* + 4 — 4R2) = (5 — 2RN2) /(8 — 4Rz)
< (5-2-1.14)/(8 — 4 1.14) = 34/43.

Hence, for any z € 2 the inequality V' (z) < 34/43 holds, and for any zero
zj of the polynomial g; we have

12 — 2|/|z; — 1| = |V (2;)|7Y? > (34/43)" Y% > 1.12.
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Therefore,
112" =y 2 |91(2)]/]g1 (1) = 1.12™,

and deg g; = m < m;. By Theorem 2, there are at most C2¢/ Vd reducible
polynomials in the set A(®), but this set contains at least c2¢/logd ele-
ments. Thus, A\(®) contains as many irreducible polynomials as required in
Theorem 1.

Throughout the following we assume that the number d is sufficiently
large.

Denote by D the set of polynomials

g(z):ijzj, bp=1, meN,
j=0

with integral coefficients. To prove Theorem 2, we will estimate the number
of polynomials f € P, divisible by an irreducible polynomial g € D, and then
take the sum over all polynomials g of degree at most mi. To motivate our
proof of Theorem 2, we indicate how to obtain a weaker result: Theorem 2
is valid if we replace m; by mo = [v/d/(logd)?]. For any polynomial g with
leading coefficient £1 we define

M(g) = [ [ max(1, |z)),
j=1

where z1,..., 2z, are the zeros of g counted with multiplicity. By Jensen’s
theorem (Theorem 3.61 of [10]),

27
1 .
log M(g) = o | loglg(e?)| dep.
0

Therefore,

(1.1) I OSEIES )
7=0 7=0

Clearly, M(g) > 1, and Kronecker’s theorem [5] asserts that M(g) = 1
implies that all zeros of g are roots of unity. Otherwise, as was proved by
Dobrowolski [3],

loglogm

)3 (m > 3)

Take an arbitrary noncyclotomic irreducible polynomial g € D such that
degg = m < mg, and let zq,..., 2, be the zeros of g. By Lemma 3 of [3],
there exists a prime p such that log(d + 1)/, < p < 2log(d+ 1)/, and

all zf are algebraic numbers of degree m (and, therefore, are distinct). Set

(1.2) M(g) 2 exp(Am),  Am = C( logm
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gp(w) = [[j, (w — 2¥). Then, taking into account (1.2), we get

(1.3) M(gp) = M(9)? > exp(pAm,) > d+ 1.

Suppose that g(z) divides two distinct polynomials f; and fo from Py such
that
[d/p] ‘
f1(2) = fa(z) = ) a;27" = h(zP).
j=0

Clearly, all coefficients of the polynomial h are 0, £1. By (1.1), M (h) < d+1.
On the other hand, any zero zf of g, is a zero of h. Hence, h is divisible by g,,,
and (1.3) entails M (h) > d+1. This contradiction shows that our supposition
cannot occur. This means that if a polynomial f(z) = Z;‘lzo ajzl € Pq is
divisible by g then f is uniquely determined by its coefficients a;, 7 #Z 0

(mod p). Hence,

(1.4) #LFEPy: gl f} <2¢/29P < 24 20Nmy/(210s(d+1))
< 24 exp(—0.3d\p, /log d).

Let us estimate the number N of polynomials g € D of degree at most ms
dividing at least one polynomial f € P;. We consider any such polynomial
m

g9(z2) =Y b2 = [[(z— %)
=0

j=1

Since |z;| < 2 for any j, representing the coefficients of the polynomial g as
symmetric polynomials of its zeros, we find [b;| < 2™~7 (T) < 4™, Hence,
mo 5
N<]J@-4m+1)<5m.
§=0
It follows from the last inequality and (1.4) that the total number of poly-
nomials f € Py divisible by at least one noncyclotomic polynomial of degree
at most msy is less than

245™3 exp(—0.3d A, /log d) < 2% exp(2d/(log d)* — 0.3dAm, /log d)
= 0(29/Vd).

It is not difficult to prove that the number of polynomials f € Py divisible
by at least one cyclotomic polynomial is O(29/v/d) (see §4). Thus, we get
the analog of Theorem 2 for ms instead of m;.

To prove Theorem 2, we must have more accurate estimates for the
number of possible divisors of polynomials f € P,. In Section 3 we will find
upper bounds for the number of polynomials ¢ € D with restrictions on
their zeros. To do this, we need some estimates of e-capacity of appropriate
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convex bodies in finite-dimensional spaces. Such estimates will be found in
Section 2. Theorem 2 will be proved in Section 4.

2. Several geometric lemmas. In this section we fix two positive
numbers « and 7 such that

(2.1) a>1, 7<0.1/a.

Also, m will denote a sufficiently large positive integer exceeding some mag-
nitude depending on « and 7. Let X = X, be the m-dimensional real
coordinate space equipped with the [ .-norm:

|(z1,...,2m)| = 1%%Xm‘mj|’

We denote by Vol(A) = Vol,,(A) the volume of a convex closed bounded set
ACX.

LEMMA 2.1. Let II C R! be a parallelepiped and A C II be a convex
polytope with n < 1 vertices. Then

1/2
Vol(A) < Vol(IT) (900‘;@) :

provided that [ is large enough.

Proof. We may suppose that I is a cube inscribed in the unit ball B,
namely, IT = [-1/v/1,1/V/1]'. We have

1/2 /2 ore\ /2 )
< Gy = (1) = el

T
I(B) =
Vol(B) = Fa 7173
Using the inequality

10av logl>l/2
[

for the volume of a convex polytope A with < [® vertices provided that
I >1(a) (see [1]) we get

Vol(A4) < Vol(B)(

107Tealogl>l/2 - (90alogl>l/2

Vol(A) < Vol(H)( ; ]
as required.

Let e1,...,e, be the coordinate vectors of X,,. For a convex closed
bounded set A C X and j =1,...,m define

O;(A)=A+[—e;/2,e;/2) ={x+pej :x € A, |p| <1/2}.
Let O(A) be the 1/2-neighborhood of A:
OA)={z+y:z €A, |y <1/2}.
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We have
(2.2) O(A) = 01(...Opn(4)...).

Let X = X(m) be the set of all subsets of the set {1,...,m} and T € X. We
denote by Pr(A) the orthogonal projection of the set A to the linear space
spanned by e;, j € T. We consider that Voly(FPy(A)) = 1.

LEMMA 2.2. For any T € X and any j € T we have
Voly7(Pr(0;(A))) = Volur(Pr(A)) + Volsr_1 (Pr\ ;1 (4)).
Proof. Set 7" =T\ {j} and represent Pr in the following form:
Pr(A)={{z;:t €T} :{xs: t €T'} € Pri(A),
Al teTh) <a; < o({z:t €T}
Then
Pr(0j(A) ={{zy:t €T} :{x,: t €T'} € Pr/(A),
[z teT'y)—1/2<z; < fo{a : t €T'}) +1/2}.
Expressing the volumes of Pr(A) and Pr(O;(A)) as integrals over Pr/(A)
we get the required relationship. Lemma 2.2 is proved.
Using (2.2), we can write

O(A) = Py (01(... O (A) ...

Now, applying subsequently Lemma 2.2, and taking into account that the
operators 1" and O; commute for j € T', we obtain

LEMMA 2.3. The following equality holds:
(2.3) Vol(O(A)) = > Voler(Pr(A)).
Tex
In the next lemma we estimate the 1/2-capacity [9, 1.1.7] of convex
polytopes contained in a parallelepiped.
LEMMA 2.4. Let II = H}n:l[—uj/Q,uj/ﬂ be a parallelepiped and A C IT

be a convex polytope with n < m®~1 wertices. Let D be a subset of A such
that the distance between any two elements of D is at least 1. Then

m
_9r U
#D < exp(ml 9 )H <1+7T10536T>

j=1

Proof. The unit cubes with centers at the points of D are mutually
nonoverlapping, and the union of these cubes is a subset of O(A). Therefore,
#D < Vol(O(a)), and it remains to estimate the volume of O(A).

We use Lemma 2.3. Note that in view of the inequality (2.1), n <
(m!~107)@ Therefore, for | = #T > m!' =107 the volumes on the right-hand
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side of (2.3) can be estimated by Lemma 2.1:

90alogl>l/2
I

Vol,(Pr(A)) < Vol (Pr(IT ))<

90a logm

1/2
— 1o ) < Vol (Pr(IT))(m°5757) ",

ngll<PT<n>>(

For | < m'7197 using the trivial estimate Vol;(Pr(A)) < Vol,(Pr(I)) we
have

Vol;(Pr(A)) SVoll(PT(H))(mO.F)—fST)—l(m0‘5—67-)l
< Voll(PT(H))(mO'5_6T)_l(m0'5_67)m1710T
< Vol;(Pr (H))(m0'5_67)_l exp(m*=97).
In both cases we have the inequality
(2:4) Volur(Pr(A)) < Vol (Pr(I1))(m®5=57) =" T exp(m! 7).

Now, using (2.3), we find

Vol(O(A)) < exp(m*~7) 3" Volup(Pp(IT)) (m®5~67) =" T
Tex

m
_or u;
= exp(m'™? )H (1 + m0.5367—>'

j=1

This completes the proof of Lemma 2.4.

The following lemma is the only statement of this section which will be
used later on.

LEMMA 2.5. For a vector w = (w1, ..., wy) € C™ define
Sk(w):wa (k=1,...,m).
j=1

Let W be a subset of C™ such that max; |w;| < exp(0.4(logm)/m) for any
w = (w1,...,wn) € W and maxi<p<m, |RSk(w) — RSk (w")|/k > 1/2 for
any two distinct vectors w,w’ from W. Then #W < exp(m®9).

Proof. We associate with any vector w € W the vector w = (wy, ...
., Wyy,) such that

w; = m~ 2 (sgn(Rw; ) [m**° |Rw; |] + i sgn(Sw; ) [m***|Sw,|])
(j=1,...,m),
where [-] denotes the integral part. For any j € {1,...,m}and k € {1,...,m}
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we have |w; — w;| < v2m~%% and

wh — @F| < klw; — w;| max(|w; ", [w;[F)

J
< 2km ™% (exp(0.4(log m) /m))F !
< 2m ™1 (exp(0.4(logm)/m))™ = 2m =105,
From the last inequality and the assumption on W we get

(2.5) | max |RSk(w) — RSk(@)|/k >1/3  (w,w' €W, w#w).

Consider the mapping ¢ : W — X:
Y(w) = (3RS1(w), 3RSy (w)/2, ..., 3RS (w)/m).

The condition (2.5) means that all distances between 1 (w) and (w’) for
distinct w,w’ € W are at least 1.

The set D = (W) is contained in the convex hull A of the vectors
(3mRz, 3mN(22)/2,...,3mR(z™)/m), where |z| < exp(0.4(logm)/m) and
m2Rz, m?453z are integers (i.e. z runs over the set of all possible points
w;). The number n of the vertices of the polytope A does not exceed

7(1 + exp(0.4(logm) /m)/m=24%)% < mS.

Moreover, A is contained in the parallelepiped

H:H[—uj/z,uj/g], uj = 6mexp(0.4(j/m)logm)/ji (i =1,...,m).

Now we are ready to apply Lemma 2.4. Take o = 7, 7 = 1/150. Lem-
ma 2.4 asserts that

(2.6) #D < exp(m®*) <1 + uj)
j=1 m
We have

i U o L 6m094

J J 0.945

e T (1+ ot ) < 30 s < 2 <o
j=1 j=1 j=1

Substitution of the last inequality into (2.6) implies

0.945)

#D < exp(m® ) exp(m < exp(m®9).

But #W = #D. Thus, #W < exp(m?9%), as required.

3. Estimates of the number of irreducible polynomials with re-
strictions on its zeros. Let g € D be an irreducible polynomial and z be
one of its zeros. For an integer [ we denote the number of zeros 2z’ of the poly-
nomial g such that (2')! = 2! by k;(g). Clearly, k;(g) does not depend on the
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choice of z. Moreover, k;(g) divides the degree of g. For a nonnegative num-
ber U and positive integers k, [, m, m > 2, we will denote by D(U, m, [, k) the
set of irreducible polynomials g of degree m such that log M (g) < U/m and
ki(g) = k. We consider that k divides m since otherwise the set D(U, m, [, k)
is empty.

LEMMA 3.1. For sufficiently large m the cardinality of D(U, m,l, k) does
not exceed

exp(mo.%)CU/k:(Cl/k)CU/log m
REMARK. In the case [ = 1 the proof of the lemma actually shows
that the number of all polynomials g(z) = 2™ + ZT:_Ol bjz? with integral
coefficients such that log M (g) < U/m does not exceed exp(m®%)CY.

Proof (of Lemma 3.1). We say that the zeros v, v’ of the polynomial g €
D(U,m, 1, k) are equivalent if v' = (v')!. Fix a maximal subset {v1, ..., Uk}
of mutually nonequivalent zeros of g such that |vi| > ... > |vp, /. Let
|un| > exp(0.4(logm)/m) > |v,41]| (for definiteness, we consider vy = oo,
Um/k+1 = 0). Define n = 9(g). Besides the mapping 1, we define several
mappings on the set D(U,m, [, k). Let ¥,(g9) = [mloglv,|]] (j = 1,...,n).
We have

n m/k:
[T 1os1 < TT max(t, o, = ()" < exp(U/ (m)).

On the other hand,

H lvuj| > exp(0.4n(logm) /m)

and
[T 151 = T exp(wso)/m) = exp (3 5(9)/m)
Jj=1 j=1 J=1
Therefore,
(3.1) ¥(g) =n < U/(0.4klogm)
and

(3.2) Zwm < U/k.

For any u € Z, we cover the disk {z : |z] < exp((u+ 1)/m)} by disjoint
squares

Sy = la/(m?v), (o +1)/(m*v)) x [B/(m?v), (8 + 1)/ (m*v)),
v=-exp((m—1u/m), «a,f€Z, veZ 1<v<N,.
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Taking into account that
vexp((m — 1)u/m) = exp(u+ 1/m) < 3exp(u),

we can write a rough estimate for the number N, of squares intersecting the
disk:

(3.3) N, <m” exp(2u).

We define the mappings ¥; (j = 1,...,n) setting ¥;(g9) = v if v; € SV
where u = 1;(g). Finally, for j = 1,...,n we define the mapping ¢, from
D(U, m,l, k) to the set X(k,1) of k-element subsets of {1,...,l} by setting
;i(g) =T € X(k,1) if the set of zeros of g equivalent to v, is the set of
numbers v;(*, t € T, where ¢ is a fixed primitive [th root of unity.

We want to estimate the number of distinct images

(n=1v(9),%1(9), -, ¥n(9),%1(9), - -, ¥n(9),1(9), - - -, on(9))
for g € D(U,m, 1, k).
For a fixed n = v¢(g) the values 91(g),...,¥,(g) are determined by n

different numbers 11 (g), ¥1(g) +12(g), ..., ¥1(9)+. ..+ ¥, (g) not exceeding
[U/k] by (3.2). Consequently,

[U/k]
B o< 3 () o
n=0

Then, for fixed n,11(g),...,¥n(g) we have, by (3.3), (3.1) and (3.2),

(35)  F{(W(g), ... Ta(9)} < J[(m" exp(2¢5(9)))

j=1
< m7U/(0.4k log m) exp(QU/k) < CU/k:

Finally, for fixed n,¢1(g),...,¥n(9),¥1(9),-..,¥.(g), using (3.1) again
and the inequality

<,i> < IF/K! < (el /K)F,
we obtain
(3:6)  F{(p1(9)---:0n(9)}
< <ll<:> < (el/k)kU/(OAIclogm) < (6l/k:)CU/1°gm‘

The combination of inequalities (3.4)—(3.6) implies

(3.7) #{(n,wl(g), ey Un(9),Y1(9)y - W (9), 01(9)s - - -y 0n(9))}
< N = (20)"/* (el / k)T 1og ™,
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Consider two polynomials g € D(U,m,l, k) and g € D(U,m,1, k) such
that

w(g)ziﬁ@)a wj(g):%‘@) (j:1,...,n),
1pj(g):!pj(g) (j:1>"'an)7 @j(g):@j(zj) (j:1,...,n).

Z={z:9(2) =0}, Z={z:3(z) =0},
V={veZ:|v]>exp(0.4(logm)/m)},
V={veZ:|v|>exp(0.4(logm)/m)},
W ={we Z:|w| <exp(0.4(logm)/m)},
W ={we Z:|w <exp(0.4(logm)/m)}.
Let n = ¢(g) = ¥(g). For any j = 1,...,n we take u = v;(g) = ¥;(9),
v = exp((m —1)u/m) and the corresponding zeros v; of g and v; of g. Since
the values of ¥; at g and g coincide, we have
(3.9) oy — 5l < V3/(m) < 4/ (mP exp((m — 1(u+1)/m))
< dmax(foy], [0;])' 7" /m?.
For any zero v € V of g equivalent to v; we set x(v) = vv;/v;. As the values

of ¢; at g and g coincide, x is a one-to-one correspondence V. — V. By
(3.9), |x(v) —v| < 4|max(|v], |x(v)])}=™|/m? for any v € V. Therefore,

|(x(v))" = v'| < imax(fo], [x(0)))' " [x(v) - v|
< mmax(Jv], [x(0))" T x(v) —v| <4/m*  (i=1,...,m),

and
(3.10) ‘Zvi—Zvi <1/2 (i=1,...,m).
veV veV
Let
g(z):ijzj, by, =1,
§j=0
Si = Zzi: Zvi—k Z w' (i=1,...,m),
z2€Z veV weW
S; = Zzi: Zvi—k Z w' (i=1,...,m).
27 veV wew
The numbers Sy, ..., Sy, are integers. Moreover, by the Newton identities,

Si +bm_15-1+... +bp_i+151 +ibp_; =0 (Z =1,.. .,m).
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Therefore, Sy,...,S5;—1 determine b,,—1,...,by,—i+1 and the residue of §;
(mod 7). If the integral polynomials g and g are distinct then we can take
the minimal 7 such that S; # S;. Then S; = S; (mod ¢) and, hence,

i 1S — S| >,

or

(3.11) i ‘Zvi—{—Zwi—Zvi—Zwi > i
veV weW veV weW

Let

W = {wl,...,wm_kn}, WZ {@1,...,wm_kn},
wj=w; =0 (m—Fkn<j<m).

Then we can deduce from (3.10) and (3.11) that
S RYwi Ry,
j=1 j=1

Now we can apply Lemma 2.5: there are at most exp(m®?3) polynomials
g € D(U,m, 1, k) possessing any prescribed collection of values

(n=1(9),¥1(9), -+ ¥n(9),¥1(9), -, ¥nl9),21(9), - -, @n(9))-
Finally, by (3.7), we find

#D(U, m, 1, k) < exp(m®*®*)N < exp(m®?®)CV/*(C1/k)CV/ g™,
This completes the proof of Lemma 3.1.

> /2.

4. Proof of Theorem 2. Let n be a positive integer and ( a primitive
nth root of unity. Then the polynomial
Qu(z)= ] -¢)
j=1
ged(j,n)=1
is called the nth cyclotomic polynomial [6, p. 64]. Note that deg Q,, = ¢(n)
where ¢ is the Euler totient function.
Denote by g an integral irreducible polynomial of positive degree < mj.
Let N be the number of polynomials f € P, divisible by at least one such g.
Recall that my = [v/d/(log d)?]. Then

(4.1) N < Ny + Nz + N3+ Ny,
where

e N, is the number of f € P, divisible by at least one cyclotomic g with
degg S ma,
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e Ny is the number of f € P, divisible by at least one noncyclotomic g
with deg g < mao,

e N3 is the number of f € P, divisible by at least one g with deg g > mo
and log M(g) < ¢,

e N, is the number of f € P, divisible by at least one g with ms <
deg g < my and log M (g) > c.

Note that all the large constants C' can be effectively evaluated. Consid-
ering the values of all these constants fixed, we can choose the constant c
in the definitions of N3 and N4 and the constant ¢ in the definition of my
small enough to guarantee the validity of all the forthcoming inequalities
including C' and c.

We have already estimated N, in Section 1:
(4.2) Ny = o(2¢/V/d).

It remains to give upper bounds for Ny, N3, and N4.

Clearly, no f € Py is divisible by Q1(z) = z — 1. For n > 2 denote by
N, the number of f € P, divisible by Q,,(2). Suppose that the polynomial

d
f(z) =) a;?
i=0

is divisible by @,,. Let

n—1
h(z) = Z A2,
j=0
where
(4.3) Aj = Z ag.
k=7 (modn)

The polynomials f and h are congruent mod(z" — 1). Therefore, h is di-
visible by @, (2). Let | = ¢(n) = deg@,. It is well known that n <
Clloglog(l + 2) [8, Chapter 1, Theorem 5.1]. The divisibility of h by @,
determines the coefficients A; (0 < j < 1) of h if its other coefficients are
given. This means that for fixed a; (kK = j (mod n), [ < j < n) all sums
(4.3) for 0 < j < [ are determined. For any such j the proportion of vectors
(@j,@j4ns- - Qjq[(d—j)/nln) satisfying (4.3) among all 0, 1-vectors is at most
Cy/n/d. We will use the fact that Cy/n/d < C+/2Cmz(loglogms)/d <
1/d/*. Therefore,

Nia2 < (CV2/d)2%, Ny, <2Y/d7,  1=p(n)>1,
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and

(4.4) N <2 (20/\/& + i #{n : p(n) = z}/dl/4)
=2

< 2¢ (20/\/& + i Cl(loglog(l + 2))/dl/4) <3C-2%/V4d.
=2

To estimate N3, we use the following simple

LEMMA 4.1. For any irreducible polynomial g with degg = m, there are
at most 2471=™ polynomials f € Py divisible by g.
Proof. There are 2¢=1=™ choices of coefficients a; (j=m+1,...,d-1)
of a polynomial f € Py. If these coefficients are fixed, the other coefficients
are determined by the condition of divisibility of f by g. The lemma is

proved.

Applying Lemma 3.1 for U = ¢m, k = | = 1, we find that there are
at most 1.5 distinct polynomials g with degg = m and log M(g) < ¢
(provided that ¢ is small enough). Hence,

(4.5) N3 <2471 i 1.5™ . 27™ = o(2¢/V/d).

m=mqo—+1

REMARK. We have not yet used the restriction degg < my. Thus, we
have proved that the number of polynomials f € P; having at least one
nontrivial integral divisor g with log M (g) < ¢ (in particular, cyclotomic g)
does not exceed C'2¢ / V.

The most delicate part of the proof is the estimation of V4. We will deal
with an irreducible polynomial g, dividing at least one polynomial f € Py,
such that ms < degg = m < my and log M (g) > ¢. Applying (1.1) to f we
have

(4.6) M(g) < M(f) < d+1.
We use the notation of Section 3. Let
l(9) =min{l € Z4 : (I 4+ 1)log M(g)/ki+1 > log(d+ 1)}.
By (4.6), I > 1. We need the upper estimate of /(g).
LEMMA 4.2. The number | = [(g) satisfies
(2C log(d + 1) /log M (g))C™1ee M(9)/legm < 1 5/l
where C is the same constant as in the statement of Lemma 3.1.

(We may consider C' > 1.)
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Proof. Set A =2Clog(d+ 1)/log M(g),
d(log1.05) log m

h= Cm(log M(g))log A

(A > 2 by (4.6).) We have
(log M(g))log A <2Clog(d+1)/e < 2Clogmsy < 2Clogm,
d(logm)/m > (d/my)logm,
and, consequently,
d(log 1.05) logm
2C?mlogm

(4.7) I > > d(log 1.05)/(2C*m4) > 6logm

(for an appropriate choice of a small constant ¢ in the definition of mq). The
lemma asserts that [(g) < l;. Assume the opposite. Then for any [ € (I1/2,14]
we have

(4.8) k; > llog M(g)/log(d + 1) > l;log M(g)/(2log(d + 1))
~ d(log1.05)logm
~ 20m(log(d + 1)) log A
d(log 1.05) log m;
~ 2Cmy(log(d + 1)) log(2C log(d + 1)/c)
1/2

> (logd)'/? > (logm)

Let p run over primes in (I;/2,11]; as [; is sufficiently large, there are at
least 0.41; /logl; such primes. By the property (iii) of Lemma 3 from [3] and
(4.8) for L =[], p we have

ki > [ kp > (logm)®2h/1oeh,
P
and substitution of (4.7) gives

kL > (logm)1.2logm/log(6logm) > m.

The last inequality is impossible. Thus, our assumption was not correct, and
Lemma 4.2 is proved.

For a nonnegative number U such that 2em < U < 2mlog(d + 1) and
positive integers k, [, m with m; < m < msg, we denote by D(U, m) the set of
irreducible polynomials g of degree m such that U/(2m) < log M (g) < U/m,
and by D(U, m, 1) the set of polynomials g € D(U, m) such that I(g) = [. By
the definition of [(g),

llog M(g) - U
"= log(d+1) = 2mlog(d+ 1)

Lemma 3.1 gives the estimate of the number of polynomials in D(U, m,):
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(4.9) #DU,m,l)

l l
< D FDWUm LK) <> exp(m®?)CUH(Cl/k)CV BT
k=K k=K

< leXp(m0'95)CU/K(Cl/K)CU/lOgm.

We have
CU/K = o2mlog(d+1)/l < 2malog(d+1)/L < 1 g5d/l
CU/logm
(CL/K)CU o < (20m10g(d+ 1)) flog
o U
(4.10)
< 2Cmlog(d + 1) 2Cmlog M(g)/log m
o mlog M(g) )

and, hence, by Lemma 4.2,
(4.11) (Cl/K)CU/Mosm < 1 052d/1,
Substituting (4.10) and (4.11) into (4.9), we get

l
(412) #D(U,m,1) < > #DU,m,1,k) < lexp(m®?®)1.05%%/"
k=K
exp(m®99)1.05°%! < exp(2m®2%) + 1.055¢/!,

IN

Repeating the same arguments as in Section 1, we now show that for any
g € D(U,m,!) the condition of divisibility of f(z) = Z;‘l:o ajzl € Py by g
uniquely determines f by its coefficients a; with j # 0 (mod [+ 1). Indeed,
let z1,..., 2y, be the zeros of g, and G be the minimal polynomial for zi‘H.
Then G*(w) = H;n:l(w - zé“) where k = k; 1. By the definition of /(g),
we get
(4.13) M(G) = M(g)HD/* > d41.
Suppose that g(z) divides two distinct polynomials f; and fo from Py such
that

[d/p] ‘
fi(2) = falz) = ) a; 2D = ().

§=0

Clearly, all the coefficients of the polynomial h are 0, +1. By (1.1), M (h) <
d+1. On the other hand, h is divisible by G, and (4.13) entails M (h) > d+1.
This contradiction shows that our supposition cannot occur. Hence,

FLfePa:g|fy < 2?29+ < 9d /1 419/,

Combining this estimate with Lemma 4.1 and using (4.12) and the inequality
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1.057 < 1.41, we get
(4.14) #{fePy:3g€DU,m) g|f}
<27 “(exp(2m® ) + 1.05°%") min(27, 1.41741)
l

< 27( exp(2m®)27 + 3" 10571,
l l

where the sum is taken over [ for which there exists at least one polynomial
g € D(U,m,l) dividing some polynomial f € P,. By Lemma 4.2, any such [
satisfies

1'057d/l < Cchm/logm'

Hence, it follows from (4.14) that
(4.15)  #{f € Pa:3g € DU,m) g f}
< 2dm(exp(2m0.96)2—m + C—ch/log m)

< 2¢exp(—v/m).

Set U; m = cm-27 and note that if f € P, is divisible by some polynomial
g with mg < m = degg < m; and logM(g) > ¢, then g € D(Uj 1, m) for
some j with 1 < j < J =1+ [log(d + 1)/c|. Thus, from (4.15) we get

J m1
(4.16) Ny<2') " > exp(—vm)

j=1 m=mao—+1
< C2%my exp(—/mz) log(d + 1) = 0(2/Vd).

The substitution of (4.2), (4.4), (4.5), and (4.16) into (4.1) completes the
proof of Theorem 2.

As we have seen in Section 1, Theorem 1 is a corollary of Theorem 2.
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