Weyl sequences: Asymptotic distributions of the partition lengths

by

Anatoly Zhigljavsky (Cardiff) and Iskander Aliev (Warszawa)

1. Introduction: Statement of the problem and formulation of the main results

1.1. Weyl sequences. Let θ be an irrational number in [0,1) and $x_k = k\theta \pmod{1}$ for $k = 1, 2, \ldots$ The collection of points $W_n(\theta) = \{x_1, \ldots, x_n\}$ is sometimes called the Weyl sequence of order n.

In the present work we derive asymptotic distributions of different characteristics associated with the interval lengths of the partitions of [0,1) generated by $W_n(\theta)$. The main result establishes the two-dimensional asymptotic distribution of

$$(n \min\{x_1,\ldots,x_n\}, n(1-\max\{x_1,\ldots,x_n\}))$$

as $n \to \infty$. It then yields a number of results concerning the asymptotic distributions of one-dimensional characteristics.

Assume that $y_{0,n}=0$, $y_{n+1,n}=1$ and let $y_{k,n}$ $(k=1,\ldots,n)$ be the members of $W_n(\theta)$ arranged in increasing order. Define

(1)
$$\delta_n(\theta) = y_{1,n} = \min_{k=1,\dots,n} x_k, \quad \Delta_n(\theta) = 1 - y_{n,n} = 1 - \max_{k=1,\dots,n} x_k$$

and consider the partition of [0,1) generated by $W_n(\theta)$:

$$\mathcal{P}_n(\theta) = \bigcup_{k=0}^{n} I_{k,n}, \text{ where } I_{k,n} = [y_{k,n}, y_{k+1,n}).$$

It is a well known property of the Weyl sequence (see e.g. [3], [4]) that for any $n \geq 1$ the partition $\mathcal{P}_n(\theta)$ of [0,1) contains the intervals $I_{k,n}$ whose lengths $|I_{k,n}|$ can only get two or three different values, namely, $\delta_n(\theta)$, $\Delta_n(\theta)$ and perhaps $\delta_n(\theta) + \Delta_n(\theta)$.

¹⁹⁹¹ Mathematics Subject Classification: Primary 11K55.

Set

$$\alpha_n(\theta) = \min_{k=1,\dots,n} |I_{k,n}| = \min\{\delta_n(\theta), \Delta_n(\theta)\}, \quad A_n(\theta) = \max_{k=1,\dots,n} |I_{k,n}|,$$
$$\beta_n(\theta) = \max\{\delta_n(\theta), \Delta_n(\theta)\}, \quad \gamma_n(\theta) = \delta_n(\theta) + \Delta_n(\theta), \quad \xi_n(\theta) = \alpha_n(\theta)/\beta_n(\theta).$$

All these quantities, namely $\delta_n(\theta)$, $\Delta_n(\theta)$, $\alpha_n(\theta)$, $A_n(\theta)$, $\beta_n(\theta)$, $\gamma_n(\theta)$ and $\xi_n(\theta)$, give a rather complete description of the partition $\mathcal{P}_n(\theta)$. We are interested in their asymptotic behaviour as $n \to \infty$. The main result of the paper is formulated in Theorem 1 below and presents the joint asymptotic distribution for $(n\delta_n(\theta), n\Delta_n(\theta))$. In Corollaries 1–4 and Theorem 2 we derive the one-dimensional asymptotic distributions for all characteristics introduced above.

As demonstrated in Section 2, there is a close relationship between the Weyl and Farey sequences, and the quantities introduced above also characterize certain properties of the Farey sequences. (For example, $\alpha_n(\theta)$, whose asymptotic distribution has been derived in [2], characterizes the error in approximation of θ by the Farey sequence of order n (see (11)).) The present paper thus also studies some distributional properties of the Farey sequences.

In what follows "meas" stands for the Lebesgue measure on [0,1), $\{\cdot\}$ and $\lfloor \cdot \rfloor$ denote the fractional and integer part operations respectively, $\varphi(\cdot)$ is the Euler totient function and $\operatorname{dilog}(\cdot)$ is the dilogarithm function:

$$\operatorname{dilog}(t) = \int_{1}^{t} \frac{\log s}{1 - s} \, ds.$$

Also, we shall say that a sequence of functions $\psi_n(\theta)$, $\theta \in [0, 1)$, converges in distribution as $n \to \infty$ to a probability measure with a density $q(\cdot)$ if for any t > 0,

$$\lim_{n\to\infty} \operatorname{meas}\{\theta\in [0,1): \psi_n(\theta)\leq t\} = \int\limits_0^t q(s)\,ds.$$

The rest of the paper is organized as follows: the main results are formulated in Subsection 1.2, a relationship between the Weyl and Farey sequences is discussed in Section 2, all proofs are given in Section 3.

1.2. Formulation of the main results. For $0 \le s, t < \infty$ define

$$\Phi_n(s,t) = \max\{\theta \in [0,1) : n\delta_n(\theta) \le s, \ n\Delta_n(\theta) \le t\}.$$

One can interpret $\Phi_n(\cdot,\cdot)$ as the two-dimensional cumulative distribution function (c.d.f.) of the random variables $n\delta_n(\theta)$ and $n\Delta_n(\theta)$, assuming that θ is uniformly distributed on [0,1).

THEOREM 1. The sequence of functions $\Phi_n(\cdot,\cdot)$ pointwise converges, as $n \to \infty$, to the c.d.f. $\Phi(\cdot,\cdot)$ with density

(2)
$$\phi(s,t) = \frac{d^2 \Phi(s,t)}{dsdt}$$

$$= \frac{6}{\pi^2 st} \begin{cases} s+t-1 & \text{for } 0 \le s, t \le 1, \ s+t \ge 1, \\ s(1-s)/(t-s) & \text{for } 0 \le s \le 1 \le t, \\ t(1-t)/(s-t) & \text{for } 0 \le t \le 1 \le s, \\ 0 & \text{otherwise.} \end{cases}$$

This means that for all measurable sets A in \mathbb{R}^2 ,

$$\lim_{n \to \infty} \max \{ \theta \in [0, 1) : (n\delta_n(\theta), n\Delta_n(\theta)) \in A \} = \int_A \phi(s, t) \, ds \, dt.$$

COROLLARY 1. The sequences of functions $n\delta_n(\theta)$ and $n\Delta_n(\theta)$ converge in distribution, as $n \to \infty$, to the probability measure with density

(3)
$$\phi_{\delta}(t) = \frac{6}{\pi^2} \begin{cases} 0 & \text{for } t < 0, \\ 1 & \text{for } 0 \le t < 1, \\ \frac{t-1}{t} \log \frac{t-1}{t} + \frac{1}{t} & \text{for } t \ge 1. \end{cases}$$

The proof of Corollary 1 consists in computation of $\int_0^\infty \phi(s,t) ds$ where $\phi(\cdot,\cdot)$ is defined in (2).

COROLLARY 2. The sequence of functions $n\alpha_n(\theta)$ converges in distribution, as $n \to \infty$, to the probability measure with density

(4)
$$\phi_{\alpha}(t) = \frac{12}{\pi^2} \begin{cases} 1 & \text{for } 0 \le t < 1/2, \\ \frac{1-t}{t} \left(1 - \log \frac{1-t}{t}\right) & \text{for } 1/2 \le t < 1, \\ 0 & \text{otherwise.} \end{cases}$$

(Note again that Corollary 2 has been proved in [2], by different arguments.)

COROLLARY 3. The sequence of functions $n\beta_n(\theta)$ converges in distribution, as $n \to \infty$, to the probability measure with density

(5)
$$\phi_{\beta}(t) = \frac{12}{\pi^2} \begin{cases} 0 & \text{for } t < 1/2, \\ \frac{1-t}{t} \log \frac{1-t}{t} - \frac{1}{t} + 2 & \text{for } 1/2 \le t < 1, \\ \frac{t-1}{t} \log \frac{t-1}{t} + \frac{1}{t} & \text{for } t \ge 1. \end{cases}$$

COROLLARY 4. The sequences of functions $n\gamma_n(\theta)$ and $nA_n(\theta)$ converge in distribution, as $n \to \infty$, to the probability measure with density

(6)
$$\phi_{\gamma}(t) = \frac{12}{\pi^2} \begin{cases} 0 & \text{for } t < 1, \\ \frac{t-2}{2t} \log|t-2| - \frac{t-1}{t} \log(t-1) + \frac{1}{2} \log t & \text{for } t \geq 1. \end{cases}$$

To make the difference between the asymptotic behaviour of δ_n , β_n and γ_n transparent, we provide Figure 1 which depicts the densities ϕ_{δ} , ϕ_{β} and ϕ_{γ} .

Fig. 1. Asymptotic densities for $n\delta_n(\theta)$, $n\beta_n(\theta)$ and $n\gamma_n(\theta)$

THEOREM 2. The sequence of functions $\xi_n(\theta)$ converges in distribution, as $n \to \infty$, to the probability measure with density

(7)
$$\phi_{\xi}(t) = -\frac{12}{\pi^2} \left(\frac{\log t}{1-t} + \frac{\log(1+t)}{t} \right), \quad t \in [0,1).$$

Theorem 2 can certainly be deduced from Theorem 1. This however would require evaluation of an unpleasant integral; in Section 3 we instead give a straightforward proof.

2. Relationships with the Farey sequences and continued fractions

2.1. Relationship with the Farey sequences. The Farey sequence of order n, denoted by \mathcal{F}_n , is the collection of all rationals p/q with $p \leq q$, gcd(p,q) = 1 and $1 \leq q \leq n$. The numbers in \mathcal{F}_n are arranged in increasing order, and 0 and 1 are included in \mathcal{F}_n as 0/1 and 1/1 respectively. There are $|\mathcal{F}_n| = N(n) + 1$ points in \mathcal{F}_n where

(8)
$$N(n) = \sum_{q=1}^{n} \varphi(q) = \frac{3}{\pi^2} n^2 + O(n \log n), \quad n \to \infty.$$

The following well known statement establishes an important relationship between the Weyl and Farey sequences.

LEMMA 1 (e.g. [3]). Let θ be an irrational number in [0,1) and $W_n(\theta)$ be the Weyl sequence of order n. Let $\{q\theta\}$ and $\{q'\theta\}$ correspond respectively to

the smallest and largest members of $W_n(\theta)$:

$$y_1 = \delta_n(\theta) = \{q\theta\}, \quad y_n = 1 - \Delta_n(\theta) = \{q'\theta\}.$$

Define $p = \lfloor q\theta \rfloor$ and $p' = 1 + \lfloor q'\theta \rfloor$. Then p/q and p'/q' are the consecutive fractions in the Farey sequence \mathcal{F}_n such that $p/q < \theta < p'/q'$.

Let us rewrite the quantities (1) in terms of the Farey fractions p/q and p'/q' introduced in Lemma 1:

(9)
$$\delta_n(\theta) = \{q\theta\} = q\theta - |q\theta| = q\theta - p,$$

(10)
$$\Delta_n(\theta) = 1 - \{q'\theta\} = 1 + |q'\theta| - q'\theta = p' - q'\theta.$$

This in particular implies

(11)
$$\alpha_n(\theta) = \min_{p/q \in \mathcal{F}_n} |q\theta - p|.$$

2.2. An asymptotic property of the Farey sequences. In the sequel we shall use an asymptotic property of the Farey sequences formulated as Lemma 2.

If p/q and p'/q' are two consecutive Farey fractions in \mathcal{F}_n then we call (q, q') a neighbouring pair of denominators. It is easy to verify that for a fixed n the set of all neighbouring pairs of denominators is

$$Q_n = \{(q, q') : q, q' \in \{1, \dots, n\}, \gcd(q, q') = 1, q + q' > n\},\$$

and these pairs, properly normalised, share the asymptotic two-dimensional uniformity. Specifically, the following result holds.

LEMMA 2 (see [1]). Let ν_n be the two-variate probability measure assigning equal masses 1/N(n) to the pairs (q/n,q'/n), where (q,q') take all possible values in Q_n . Then the sequence of probability measures $\{\nu_n\}$ weakly converges, as $n \to \infty$, to the uniform probability measure on the triangle $T = \{(x,y) : 0 \le x, y \le 1, x+y \ge 1\}$, that is, for any continuous function f on \mathbb{R}^2 ,

$$\frac{1}{N(n)} \sum_{(q,q') \in Q_n} f(q/n, q'/n) \to 2 \iint_T f(x, y) \, dx \, dy, \quad n \to \infty.$$

2.3. Association with continued fractions. Let us now indicate an interesting analogy between the quantity $\xi_n(\theta)$ and the residuals in the continued fraction expansions.

Let θ be an irrational number in [0,1). We denote by $\theta = [a_1, a_2, \ldots]$ its continued fraction expansion and by $p_n/q_n = [a_1, a_2, \ldots, a_n]$ its *n*th convergent.

Let also

$$r_0 = \theta$$
, $r_n = \{1/r_{n-1}\}$ for $n = 1, 2, \dots$

be the associated dynamical system.

As is well known, the asymptotic density of $\{r_n\}$ is

$$p(t) = \frac{1}{\log 2} \cdot \frac{1}{1+t}, \quad 0 \le t < 1.$$

For every $n \geq 0$, $r_n = r_n(\theta)$ allows the following continued fraction expansion: $r_n(\theta) = [a_{n+1}, a_{n+2}, \ldots]$. It is not difficult to check (see e.g. [4]), that

$$r_n(\theta) = \frac{|q_n \theta - p_n|}{|q_{n-1} \theta - p_{n-1}|}, \quad n > 1.$$

The role of $r_n(\theta)$ for \mathcal{F}_n is played by

$$\xi_n(\theta) = \frac{\min(|q\theta - p|, |q'\theta - p'|)}{\max(|q\theta - p|, |q'\theta - p'|)} = \frac{\alpha_n(\theta)}{\beta_n(\theta)},$$

where p/q, p'/q' are the members of \mathcal{F}_n neighbouring to θ . Figure 2 compares the asymptotic densities for $r_n(\theta)$ and $\xi_n(\theta)$.

Fig. 2. Asymptotic densities for $r_n(\theta)$ and $\xi_n(\theta)$

3. Proofs

3.1. Proof of Theorem 1. Consider the two-variate function

$$\widetilde{\Phi}_n(s,t) = \max\{\theta \in [0,1) : n\delta_n(\theta) > s, \ n\Delta_n(\theta) > t\},$$

where $0 \leq s,t < \infty$. The c.d.f. $\Phi(s,t)$ is related to $\widetilde{\Phi}(s,t)$ through the inclusion-exclusion formula

(12)
$$\Phi(s,t) = 1 - \widetilde{\Phi}(s,0) - \widetilde{\Phi}(0,t) + \widetilde{\Phi}(s,t).$$

Let p/q and p'/q' be consecutive fractions in \mathcal{F}_n . Define points θ_1 , θ_2 in [p/q, p'/q'] such that

$$n\delta_n(\theta_1) = s, \quad n\Delta_n(\theta_2) = t.$$

It is easily seen that

$$\max\{\theta \in [p/q, p'/q'] : n\delta_n(\theta) > s, \ n\Delta_n(\theta) > t\}$$

$$= \begin{cases} \theta_2 - \theta_1 & \text{for } \theta_2 - \theta_1 > 0, \\ 0 & \text{for } \theta_2 - \theta_1 \leq 0. \end{cases}$$

We now try to find a simple expression for the difference $\theta_2 - \theta_1$. First, formulas (9) and (10) yield

$$\theta_1 = \frac{s/n + p}{q}, \quad \theta_2 = \frac{p' - t/n}{q'},$$

and therefore

$$\theta_2 - \theta_1 = \frac{p' - t/n}{q'} - \frac{s/n + p}{q} = \frac{1}{qq'} \left(1 - \frac{tq}{n} - \frac{sq'}{n} \right).$$

We thus get

$$\widetilde{\varPhi}_n(s,t) = \sum_{(q,q')\in Q(n,s,t)} \frac{1}{qq'} \left(1 - \frac{tq}{n} - \frac{sq'}{n}\right),$$

where

$$Q(n, s, t) = \{(q, q') \in Q_n : 1 - tq/n - sq'/n > 0\}.$$

Using formula (8) we have

$$\widetilde{\varPhi}_n(s,t) = \frac{3}{\pi^2 N(n)} \sum_{(q,q') \in Q(n,s,t)} \frac{n^2}{qq'} \left(1 - \frac{tq}{n} - \frac{sq'}{n}\right) + O(n^{-1}\log n), \quad n \to \infty.$$

Applying Lemma 2 we get

(13)
$$\widetilde{\Phi}_n(s,t) \to \widetilde{\Phi}(s,t) = \frac{6}{\pi^2} \iint\limits_{Q(s,t)} \left(\frac{1 - tx - sy}{xy} \right) dx dy,$$

where

$$Q(s,t) = \{x, y : 0 \le x, y \le 1, \ x + y \ge 1, \ 1 - tx - sy > 0\}.$$

The formula for the integral on the right-hand side of (13) can be rewritten differently in 5 different regions:

1. For $s + t \le 1$:

$$\widetilde{\varPhi}(s,t) = \frac{6}{\pi^2} \int_{0}^{1} \int_{1-y}^{1} \left(\frac{1 - tx - sy}{xy} \right) dx \, dy = 1 - \frac{6}{\pi^2} (s+t).$$

2. For $0 \le s, t \le 1, s + t > 1$:

$$\widetilde{\varPhi}(s,t) = \frac{6}{\pi^2} \int_{0}^{(1-s)/t} \int_{1-y}^{1} \left(\frac{1-tx-sy}{xy}\right) dx \, dy$$

$$+ \frac{6}{\pi^2} \int_{(1-s)/t}^{1} \int_{1-y}^{(1-yt)/s} \left(\frac{1-tx-sy}{xy}\right) dx \, dy$$

$$= -\frac{12}{\pi^2} + \frac{6}{\pi^2} \left(s+t+(1+\log s-s)\log\frac{1-s}{t}\right)$$

$$+ (1+\log t-t)\log\frac{1-t}{s} + \log s \log t + \operatorname{dilog} s + \operatorname{dilog} t .$$

3. For s > 1, $t \le 1$:

$$\widetilde{\varPhi}(s,t) = \frac{6}{\pi^2} \int_{(s-1)/(s-t)}^{1} \int_{1-y}^{(1-yt)/s} \left(\frac{1-tx-sy}{xy}\right) dx \, dy$$

$$= 1 - \frac{6}{\pi^2} + \frac{6}{\pi^2} \left(t + (s - \log s - t) \log \frac{s-t}{s-1} + (1-t) \log \frac{s-1}{s} - \operatorname{dilog}(1-t) + \operatorname{dilog} \frac{s(1-t)}{s-t} - \operatorname{dilog} \frac{1-t}{s-t}\right).$$

4. For $s \leq 1, \ t > 1$: Analogously to the previous case with the replacement $s \leftrightarrow t$.

5. For
$$s > 1$$
, $t > 1$: $\widetilde{\Phi}(s, t) = 0$.

Using formula (12) we can find the density

$$\phi(s,t) = \frac{d\Phi(s,t)}{dsdt} = \frac{d\widetilde{\Phi}(s,t)}{dsdt}$$

of the joint asymptotic distribution. Calculation then gives (2).

3.2. Proof of Corollary 2. The function $\alpha_n(\theta) = \min\{\delta_n(\theta), \Delta_n(\theta)\}$ is measurable with respect to \mathcal{B} , the σ -algebra of Borel subsets of [0,1), and it can be associated with the probability measure $d\Phi_n^{\alpha}(t)$, $0 \leq t < \infty$, where

$$\begin{split} \Phi_n^{\alpha}(t) &= \max\{\theta \in [0,1) : n\alpha_n(\theta) \le t\} \\ &= 1 - \max\{\theta \in [0,1) : n\min(\delta_n(\theta), \Delta_n(\theta)) > t\} \\ &= 1 - \max\{\theta \in [0,1) : n\delta_n(\theta) > t, \ n\Delta_n(\theta) > t\}. \end{split}$$

Therefore, for all $0 \le t < \infty$,

$$\Phi_n^{\alpha}(t) \to \Phi^{\alpha}(t) = 1 - \widetilde{\Phi}(t,t), \quad n \to \infty.$$

Calculation gives

$$\Phi^{\alpha}(t) = \begin{cases}
\frac{12}{\pi^2} t & \text{for } 0 \le t < 1/2, \\
\frac{12}{\pi^2} \left(-t + \log \frac{1-t}{t} (t - \log t - 1) + \operatorname{dilog} \frac{1}{t} \right) + \frac{12}{\pi^2} + 1 \\
& \text{for } 1/2 \le t < 1, \\
1 & \text{for } t \ge 1.
\end{cases}$$

Differentiation gives the expression (4) for the density $\phi_{\alpha}(t) = d\Phi^{\alpha}(t)/dt$.

3.3. Proof of Corollary 3. The function $\beta_n(\theta) = \max\{\delta_n(\theta), \Delta_n(\theta)\}$ is \mathcal{B} -measurable. We then have, for all $0 \le t < \infty$,

$$\begin{split} & \Phi_n^{\beta}(t) = \max\{\theta \in [0,1) : n\beta_n(\theta) \le t\} \\ & = \max\{\theta \in [0,1) : n\delta_n(\theta) \le t, \ n\Delta_n(\theta) \le t\}. \end{split}$$

Therefore, for all $0 \le t < \infty$,

$$\Phi_n^{\beta}(t) \to \Phi^{\beta}(t) = \Phi(t, t), \quad n \to \infty.$$

Calculation gives

$$\Phi^{\beta}(t) = \begin{cases}
0 & \text{for } 0 \le t < 1/2, \\
\frac{12}{\pi^2} \left(2t - \log \frac{1-t}{t} (t - \log t - 1) - \operatorname{dilog} \frac{1}{t} \right) - \frac{12}{\pi^2} - 1 \\
& \text{for } 1/2 \le t < 1, \\
\frac{12}{\pi^2} \left(\log \frac{t-1}{t} (t - \log t - 1) + \operatorname{dilog} \frac{1}{t} \right) + \frac{12}{\pi^2} - 1 \\
& \text{for } t \ge 1.
\end{cases}$$

Differentiation gives the expression (5) for the density $\phi_{\beta}(t) = d\Phi^{\beta}(t)/dt$.

3.4. Proof of Corollary 4. Analogously to the proofs of Corollaries 2 and 3, the sequence of c.d.f.

$$\Phi_n^{\gamma}(t) = \max\{\theta \in [0,1) : n\gamma_n(\theta) \le t\}, \quad 0 \le t < \infty,$$

pointwise converges to the c.d.f.

$$\varPhi^{\gamma}(t) = \iint\limits_{S(t)} \phi(x,y) \, dx \, dy, \quad \ 0 \leq t < \infty,$$

where

$$S(t) = \{(x, y) : 0 \le x, y \le 1, 1 \le x + y \le t\}.$$

Calculation yields (6).

The convergence of the sequence $nA_n(\theta)$ to the asymptotic distribution with density ϕ_{γ} follows from the just proved convergence of the sequence $n\gamma_n(\theta)$ to the same distribution and the fact that $A_n(\theta) = \gamma_{n+1}(\theta)$ for all $\theta \in (0,1)$ and all $n \geq n(\theta) = \max\{1/\theta, 1/(1-\theta)\}$.

3.5. Proof of Theorem 2. The function $\xi_n(\theta)$ is \mathcal{B} -measurable. Define

$$\Phi_n^{\xi}(t) = \max\{\theta \in [0,1) : \xi_n(\theta) \le t\}, \quad 0 \le t \le 1.$$

Let p/q, p'/q' be consecutive fractions in \mathcal{F}_n . Consider the behaviour of $\xi_n(\theta)$ in the interval [p/q, p'/q']. Define the mediant m = (p+p')/(q+q'). Then for θ in [p/q, m) we have $\delta_n(\theta) < \Delta_n(\theta)$, and for θ in (m, p/q) we have $\delta_n(\theta) > \Delta_n(\theta)$ and $\delta_n(m) = \Delta_n(m)$, that is, $\xi_n(m) = 1$.

If $t \in [0,1]$ is fixed then there is a unique point θ_t in [p/q,m] such that

(14)
$$\xi_n(\theta_t) = \frac{\delta_n(\theta_t)}{\Delta_n(\theta_t)} = t.$$

Fig. 3. Behaviour of the function $\xi_n(\theta)$ in the interval [p/q, p'/q']

An easy observation shows (see Fig. 3) that

$$\max\{\theta \in [p/q, m] : \xi_n(\theta) \le t\} = \theta_t - p/q.$$

Formula (14) implies

$$q\theta_t - p = t(p' - q'\theta_t), \quad \theta_t = \frac{p + tp'}{q + tq'}.$$

Therefore,

$$\max\{\theta \in [p/q, m] : \xi_n(\theta) \le t\} = \frac{p + tp'}{q + tq'} - \frac{p}{q} = \frac{t}{q(q + tq')}.$$

We then get, for all $0 \le t \le 1$,

$$\max\{\theta \in [0,1) : \xi_n(\theta) \le t\}$$

$$=2\sum_{(q,q')\in Q_n} \frac{t}{q(q+tq')} = 2\sum_{(q,q')\in Q_n} \int_0^t \frac{d\tau}{(q+\tau q')^2}$$

$$=2\int_{0}^{t} \left(\sum_{(q,q')\in Q_n} \frac{1}{(q+\tau q')^2}\right) d\tau,$$

where the factor 2 is due to the cases when $\delta_n(\theta) > \Delta_n(\theta)$.

Therefore, we can write, for all $0 \le t \le 1$,

$$\Phi_n^{\xi}(t) = \int_0^t \phi_n^{\xi}(\tau) d\tau, \text{ where } \phi_n^{\xi}(\tau) = 2 \sum_{(q,q') \in Q_n} \frac{1}{(q + \tau q')^2}.$$

Using formula (8) write

$$\phi_n^{\xi}(\tau) = \frac{6}{\pi^2 N(n)} \sum_{(q,q') \in Q_n} \frac{n^2}{(q + \tau q')^2} + O(n^{-1} \log n), \quad n \to \infty.$$

Applying Lemma 2 we get

$$\phi_n^{\xi}(\tau) \to \phi_{\xi}(\tau) = \frac{12}{\pi^2} \iint_{\substack{0 \le x, y \le 1 \\ x+y > 1}} \frac{1}{(x+\tau y)^2} \, dx \, dy, \quad n \to \infty.$$

Calculation of the integral gives the expression (7) for the density.

References

- P. P. Kargaev and A. A. Zhigljavsky, Asymptotic distribution of the distance function to the Farey points, J. Number Theory 65 (1997), 130-149.
- [2] H. Kesten, Some probabilistic theorems on Diophantine approximations, Trans. Amer. Math. Soc. 103 (1962), 189-217.
- [3] N. B. Slater, Gaps and steps for the sequence $n\theta \mod 1$, Proc. Cambridge Philos. Soc. 63 (1967), 1115–1123.
- [4] V. T. Sós, On the distribution mod 1 of the sequence $n\alpha$, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 1 (1958), 127–134.

School of Mathematics Cardiff University Senghennydd Road Cardiff CF2 4YH, U.K.

E-mail: ZhigljavskyAA@cardiff.ac.uk

Institute of Mathematics Polish Academy of Sciences P.O. Box 137 00-950 Warszawa, Poland E-mail: iskander@impan.gov.pl

Received on 18.11.1997 and in revised form on 19.1.1999 (3299)