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Conditions under which K2(OF ) is not generated
by Dennis–Stein symbols
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Kevin Hutchinson (Dublin)

Introduction. Let F be a number field, and OF its ring of integers.
Much is now known about the structure of K2(OF ) but explicit computa-
tions are still quite rare. In part, the difficulty lies with the need to find
sufficiently many explicit elements of K2(OF ). Although K2(OF ) is nat-
urally identified with the tame kernel—i.e., the kernel of the tame map
K2(F )→⊕

k(p)∗ (see Section 1)—it is clearly preferable, for the purposes
of an explicit computation, to describe it in terms of generators which are
identifiable elements of St(OF ) and not just products of symbols in K2(F )
which vanish under the tame map. In this way we obtain presentations of
the special linear groups Sl(n,OF ), n ≥ 3, for instance.

While K2(F ) is generated by symbols {u, v}, u, v ∈ F ∗, this is not gen-
erally true for arbitrary commutative rings. In particular, K2(OF ) is rarely
generated by symbols (see [4], for example). However, Mulders has proven
in [8] that if OF contains nontorsion units then it is very often the case that
K2(OF ) is generated by Dennis–Stein symbols. Like the symbols {u, v},
these are also described explicitly in terms of generators of the Steinberg
group (see Section 1 again). Furthermore, except in the case of imaginary
quadratic fields (where there are too few units), almost all explicit com-
putations of K2(OF ) are given in terms of Dennis–Stein symbols (see, for
instance, the computations in [3]–[5] and [8]). These results raise the ques-
tion of whether it is always possible to generate K2(OF ) by Dennis–Stein
symbols if there are infinitely many units available.

The purpose of this note is to answer this question in the negative;
namely, we show that under certain (very rare) conditions (other than the
obvious case of imaginary quadratic fields) K2(OF ) is not generated by
Dennis–Stein symbols. In particular, for certain biquadratic fields we prove
(in Section 4) that K2(OF ) is not generated by Dennis–Stein symbols. Thus,
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to describe K2(OF ) for such fields it will be necessary to find other types of
explicit elements.

1. Preliminaries: Symbols in K2. We begin by recalling some of the
basic facts about K2 (see [7] for more details). For any ring R, the Steinberg
group of R, St(n,R) (n ≥ 3), is the group with generators xij(a), with a ∈ R
and i, j distinct integers between 1 and n, and subject to the relations

xij(a)xij(b) = xij(a+ b)

and

[xij(a), xkl(b)] =
{
xil(ab) if j = k, i 6= l,
1 if j 6= k, i 6= l.

There is a natural surjective map φn : St(n,R)→ E(n,R), where E(n,R) is
the subgroup of Gl(n,R) generated by elementary matrices Eij(a), sending
xij(a) to Eij(a). K2(n,R) is defined to be the kernel of φn and K2(R) =
limn→∞K2(n,R). It follows from the definition that a set of generators of
K2(R) will yield a presentation of E(R) (the infinite elementary group). If
R = OF , the ring of integers in a number field F which is not imaginary
quadratic, then it is known that K2(n,R) = K2(R) for n ≥ 3 (see [13])
and that E(n,R) = Sl(n,R) for all n ≥ 3 (see [7]). Thus in this case a set
of generators for K2(R) belonging to K2(3, R) will give a presentation of
Sl(n,R) for all n ≥ 3.

Now suppose that R is a commutative ring. Given a pair of units u, v ∈
R∗, one can construct the symbol {u, v} ∈ K2(R) as follows: Let

wij(u) = xij(u)xji(−u−1)xij(u), hij(u) = wij(u)wij(−1).

Then {u, v} = h12(uv)h12(u)−1h12(v)−1.
These symbols satisfy the following relations:

(a) {u1u2, v} = {u1, v}{u2, v} for u1, u2, v ∈ R∗,
(b) {u, v}{v, u} = 1 for u, v ∈ R∗,
(c) {u, 1− u} = 1 if u, 1− u ∈ R∗.
The theorem of Matsumoto says that for a field F , K2(F ) has the fol-

lowing presentation: The generators are the symbols {u, v} with u, v ∈ F ∗
and the relations are (a), (b), (c) above.

A Steinberg symbol on a field F is a map

c : F ∗ × F ∗ → A

where A is an abelian group, having the property that c is bimultiplicative,
c(x, y)c(y, x) = 1 and c(x, 1−x) = 0 if x 6= 0, 1. Thus Matsumoto’s theorem
says that given a Steinberg symbol c on F , there is a unique homomorphism
K2(F )→ A carrying the symbol {x, y} to c(x, y); or, equivalently, the map
F ∗ × F ∗ → K2(F ), (x, y) 7→ {x, y} is the universal Steinberg symbol.
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For any number field F the inclusion OF → F induces a monomorphism
%F : K2(OF ) → K2(F ). For any nonzero prime ideal p of OF , let τp :
K2(F ) → k(p)∗ be the tame symbol (it is a Steinberg symbol), determined
by the formula

τp(a, b) = (−1)vp(a)vp(b)avp(b)b−vp(a) (mod p)

where k(p) is the residue field at p and vp is the p-adic valuation on F . Now
let

TF : K2(F )→
⊕

p prime

k(p)∗

be the map z 7→ {τp(z)}p. Then TF is surjective and %F induces a natural
isomorphism from K2(OF ) onto Ker(TF ), the tame kernel.

For a commutative ring R, if a, b ∈ R with 1+ab ∈ R∗, the Dennis–Stein
symbol 〈a, b〉 ∈ K2(R) is defined by the formula

〈a, b〉 = x21

( −b
1 + ab

)
x12(a)x21(b)x12

( −a
1 + ab

)
h12(1 + ab)−1

(see [1], [2]). These are related to the symbols {u, v} by the formulae

〈a, b〉 =
{ {−a, 1 + ab} if a ∈ R∗,
{1 + ab, b} if b ∈ R∗.

Thus the symbol

{u, v} =
〈
− u, 1− v

u

〉
=
〈
u− 1
v

, v

〉

is also a Dennis–Stein symbol if u, v ∈ R∗ − {1}.

2. The homomorphism I. Let n ∈ N and suppose that F is a number
field containing the nth roots of unity and let S be a finite set of primes
containing the infinite primes of F and the primes of F which divide n. Let
µn ⊂ F be the group of nth roots of unity. For an abelian group A, we write
A/n for A⊗ Z/nZ.

Based on the ideas of Tate in [12], Keune in [6] introduced a homomor-
phism

I : µn ⊗ Cl(OS)→ K2(OS)/n
(where OS is the ring of S-integers of F ) defined as follows:

I(ζ ⊗ [a]) = zn (mod K2(OS)n)

where z ∈ K2(F ) is any element satisfying τp(z) ≡ ζvp(a) (mod p) for all
p 6∈ S. He proved (see Section 3 of [6]) that this map is injective and,
furthermore, it fits into an exact sequence

0→ µn ⊗ Cl(OS) I→ K2(OS)/n λ→
⊕

p∈S0

µn → µn → 0.
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Here S0 denotes the set of finite and infinite real primes of S and λ is
induced by the Hilbert symbols of order n for each of the primes of S0.
Thus, I is an isomorphism precisely when S0 is a singleton. Furthermore,
from the construction of I (see [6], Section 3) it follows that the image of I
is precisely the group

K2(OS) ∩K2(F )n

K2(OS)n
.

The case of immediate interest in this paper is when n = pr with p prime
and r ≥ 1 and S consists of the infinite primes of F together with the finite
primes which divide p. In this case Cl(OS) = Cl(OF [1/p]) and K2(OS) =
K2(OF [1/p]). However, from the localisation sequence for K-theory, we de-
duce that the natural map K2(OF )→ K2(OF [1/p]) is injective and induces
an isomorphism on p-Sylow subgroups (since the order of k(p)∗ is prime to
p if p | p). Thus, in this case, the exact sequence above takes the form

0→ µpr ⊗ Cl
(
OF
[

1
p

])
I→ K2(OF )/pr λ→

⊕

p∈S0

µpr → µpr → 0.

3. Main results. Throughout this section, p will denote a fixed prime
number and F will denote a number field containing the prth roots of unity
(r ≥ 1). ζ = ζpr denotes a fixed primitive prth root of unity in F and
µ = µpr the cyclic group generated by ζ. For any number field K, HK will
denote the maximal abelian unramified extension of K in which all primes
dividing p split completely. For an abelian extension K/L of number fields
and any prime p of L which does not ramify in K,

(K/L
p

) ∈ Gal(K/L) will
denote the Frobenius of p.

In [8] and in his Ph.D. thesis (University of Nijmegen, 1992), Mulders
proved the following: if r = 1 and p

√
ζ 6∈ F , and if F ( p

√O∗F ) 6⊂ HF and
F is not imaginary quadratic then the image of I is generated by classes
of Dennis–Stein symbols. In this section we prove our main result; namely,
that if p

√
ζ 6∈ F , but F ( pr

√O∗F ) ⊂ HF and if, furthermore, for each u ∈ O∗F
if L = F ( pr

√
u) then L( p2r√

u) ⊂ HL, then the image of I is not generated by
Dennis–Stein symbols (see Section 4 for examples of fields in which these
conditions hold).

For any number field L containing F and any prime ideal p of L, define
εp by

εp =
{ |k(p)∗|/pr if p does not divide p,

0 if p divides p.

(If p does not divide p, then the map µ 7→ k(p) is injective and so pr divides
|k(p)∗|.)
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Lemma 3.1. Suppose that L/F is a finite extension and x ∈ L∗. Let
K = L( pr

√
x) and for any prime ideal p of L which does not ramify in K

define lp ∈ Z/prZ by the formula
(
K/L

p

)
( p
r√
x) = ζlp pr

√
x.

Then

(i) xεp ≡ ζlp (mod p).
(ii) If K/L is unramified then

∑
lpvp(a) ≡ 0 (mod pr) for all a ∈ L∗.

P r o o f. (i) Let P be a prime ideal of K lying over p. Then

ζlp pr
√
x =

(
K/L

p

)
( p
r√
x) ≡ (p

r√
x)|k(p)| (mod P)

and thus
ζlp ≡ ( p

r√
x)|k(p)∗| (mod P).

If p does not divide p, this gives

ζlp ≡ xεp (mod p)

(since pr then divides |k(p)∗|) proving (i). If p divides p then ζ ≡ 1 (mod p)
and (i) holds by definition.

(ii) Since K/L is unramified, there are well defined homomorphisms

Cl(OL)→ Gal(K/L)→ Z/prZ, [p] 7→
(
K/L

p

)
7→ lp.

Part (ii) of the lemma simply says that this map is trivial on principal ideals.

Note that if p does not divide p then there is a natural isomorphism
µ→ µpr (k(p)). Since εp = 0 if p divides p, it follows that for all p there is a
well-defined homomorphism %p : k(p)∗ → µ satisfying

xεp ≡ %p(x) (mod p)

for all x ∈ k(p)∗. Let Φ = ΦL : K2(L) → µ be the map z 7→ ∏
%p(τp(z)).

(Thus, if p does not divide p, then %p ◦ τp is just the map induced on K2 by
the Hilbert symbol of order pr—see [10], Section III.5—and Φ is the product
of these over all primes of L not dividing p.)

For A,B ⊆ L∗, let {A,B} denote the subgroup of K2(L) generated by
symbols {a, b}, a ∈ A, b ∈ B.

Lemma 3.2. Suppose that W ⊂ O∗L is a subgroup with the property that
L( p

r√
W ) ⊂ HL. Then

{W,L∗} ⊂ Ker(ΦL).

P r o o f. Suppose that z = {u, a} with u ∈W , a ∈ L∗. Let K = L( pr
√
u).

By definition of HL, K/L is unramified and primes above p split in this
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extension. For a prime ideal p of L, τp(z) ≡ uvp(a) (mod p). Thus τp(z)εp ≡
uεpvp(a) ≡ ζlpvp(a) (mod p) by Lemma 3.1(i). It follows that for p not di-
viding p, %p(τp(z)) = ζlpvp(a) ∈ µ. On the other hand, if p divides p then
lp = 0 since p splits in K and this formula also holds in this case. Thus

Φ(z) =
∏
p

%p(τp(z)) =
∏
p

ζlpvp(a) = ζ
∑

p lpvp(a) = 1

by Lemma 3.1(ii). This proves the lemma.

We will also need the following property of the map Φ:

Lemma 3.3. For any extension L/F , the diagram

K2(L) µ

K2(F ) µ

trL/F
²²

ΦL //

=

²²ΦF //

commutes, where trL/F : K2(L)→ K2(F ) is the K-theory transfer.

P r o o f. For a number field E, let T = TE : K2(E) → ⊕
p k(p)∗ be the

tame homomorphism. For any extension L/F it is known that the diagram

K2(L)
⊕

q k(q)∗

K2(F )
⊕

p k(p)∗

trL/F

²²

TL //

NL/F
²²

TF //

commutes, where NL/F is the map {αq}q 7→ {
∏

q|pN
q
p (αq)}p and Nq

p =
Nk(q)/k(p) (see [6], Section 4, for properties of the transfer).

Thus, in view of the definition of Φ, we reduce to showing that for any
prime p of F not dividing p we have

∏
q|p(αq)εq =

∏
q|pN

q
p (αq)εp . This

follows from the fact that for q | p and x ∈ k(q)∗, Nq
p (x)εp = xεq , which is

easily verified.

With these preliminaries, we can prove our main theorem:

Theorem 3.4. Suppose that F ( pr
√O∗F ) ⊂ HF , pr

√
ζ 6∈ F and L( p2r√

u) ⊂
HL for any u ∈ O∗F where L = F ( pr

√
u). Then the image of I is not generated

by Dennis–Stein symbols.

P r o o f. Let E = F ( pr
√
ζ) and note that the Artin map induces a surjec-

tive homomorphism

Cl(OF [1/p])→ Gal(E/F ), [p] 7→
(
E/F

p

)
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(well-defined since primes above p split in E). Let C denote the kernel of this
map. Then Cl(OF [1/p])/C is isomorphic to Gal(E/F ) which is a nontrivial
cyclic group of order ps for some s with 1 ≤ s ≤ r and thus the image of
µ⊗ C → µ⊗ Cl(OF [1/p]) has index ps.

We will show the following: If x ∈ K2(OF ) is of the form {u, a} for some
u ∈ O∗F and x ≡ I(y) (mod K2(OF )p

r

) for some y ∈ µ⊗Cl(OF [1/p]), then
y ∈ µ ⊗ C. (In particular, if I(y) is represented by a Dennis–Stein symbol
then y ∈ µ⊗ C.)

Suppose, to the contrary, that p is a prime ideal of F such that
(E/F

p

) 6=
1 (and hence p does not divide p and ζ ⊗ [p] is a nontrivial element of
µ ⊗ Cl(OF [1/p])) and I(ζ ⊗ [p]) ∼= {u, a} (mod K2(OF )p

r

) with u ∈ O∗F .
We will show this leads to a contradiction.

By construction of I, there exists z ∈ K2(F ) satisfying

(1) τq(z) =
{
ζ (mod q) if q = p,
1 (mod q) if q 6= p,

and zp
r ≡ {u, a} (mod K2(OF )p

r

).
Thus zp

r

= {u, a}wpr for some w ∈ K2(OF ), and replacing z by zw−1 if
necessary, we can assume that zp

r

= {u, a} (while still satisfying (1)). Now
let L = F ( pr

√
u). Then a = NL/F (b) for some b ∈ L (by [7], Corollary 15.11)

and {u, a} = trL/F ({u, b}) = (trL/F { pr
√
u, b})pr . Hence trL/F ({ pr√u, b}) =

z{ζ, c} for some c ∈ F ∗, since z−1trL/F ({ pr√u, b}) lies in the pr-torsion
subgroup of K2(F ) which equals {ζ, F ∗} by [11], Theorem 1.8.

Thus ΦL{pr
√
u, b} = ΦF (z)ΦF {ζ, c} by Lemma 3.3. Now ΦF {ζ, c} = 1 by

Lemma 3.2 and ΦF (z) = ζεp by (1). However, by Lemma 3.1(i) we get

ζεp ≡ ζep (mod p)

where ep ∈ Z/prZ is defined by
(
E/F

p

)
pr
√
ζ = ζep pr

√
ζ

and thus ep 6= 0 by choice of p. Furthermore since p does not divide p, ζ has
order pr in k(p)∗ and thus

ΦL{pr
√
u, b} = ζεp = ζep 6= 1,

contradicting Lemma 3.2 since L( p
r
√

pr
√
u) = L( p2r√

u) ⊂ HL by hypothesis.
This proves the theorem.

Note that the proof establishes the slightly stronger fact that, under the
given hypotheses, the image of I is not generated by elements of the form
{u, a} with u ∈ O∗F . We also obtain immediately:
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Corollary 3.5. If F satisfies the conditions of the last theorem and if
furthermore F is totally imaginary and there is only one prime of F above
p, then K2(OF ) is not generated by Dennis–Stein symbols.

P r o o f. The hypotheses imply that S0 is a singleton (see Section 2) and
thus I is an isomorphism. So K2(OF )/pr, and hence K2(OF ) itself, is not
generated by Dennis–Stein symbols.

In the positive direction, however, we can prove the following result,
which guarantees that a large part of the image of I will be generated by
Dennis–Stein symbols, even under the conditions of the last theorem:

Theorem 3.6. Suppose that F is not imaginary quadratic, p
√
ζ 6∈ F and

pr
√O∗F ⊂ HF . Let E = F ( pr

√
ζ) and let C be the kernel of the Artin map

Cl(OF [1/p]) → Gal(E/F ). Then I(µ ⊗ C) is generated by Dennis–Stein
symbols.

P r o o f. Let φ denote the isomorphism from Cl(OF [1/p]) to Gal(HF /F )
and for any intermediate fieldK let φK be the map x 7→ φ(x)|K ∈Gal(K/F ).
So C = Ker(φE).

Fix a unit u ∈ O∗F such that u 6∈ 〈ζ〉(O∗F )p. Let L = F ( pr
√
u). By choice of

u, E/F and L/F are linearly disjoint subextensions ofHF /F , and Gal(L/F )
and Gal(E/F ) are cyclic extensions of order pr. Let G be the unique sub-
group of Gal(L/F ) of index p. Then C 6⊂ φ−1

L (G) since we can choose
τ ∈ Gal(HF /F ) with τ |L 6∈ G but τ |E = 1 so that φ−1(τ) ∈ C − φ−1

L (G).
Thus C1 = φ−1

L (G) ∩ C has index p in C so C is generated as a group by
C − C1.

Now let x ∈ C − C1. Let σ = φ(x). So σ|E = 1 and σ|L has order pr.
Choose σ1 ∈ Gal(H/F ) such that σ1|E has order pr.

Choose distinct primes p, p1 and p2 not dividing p such that x = [p] and
φ([p1]) = σ1 and [p2] = ([p][p1])−1 in Cl(OF ). Let σ2 = φ([p2]).

Since φE([p]) = 1, ζεp ≡ 1 (mod p) by Lemma 3.1(i) and hence pr

divides εp and thus p2r divides |k(p)∗|. On the other hand, φL([p]) has
order pr and so uεp ≡ ζlp (mod p) where lp is a generator of Z/prZ (by
Lemma 3.1(i) again) and thus p2r divides the order of u ∈ k(p)∗.

For i = 1, 2, φE([pi]) = σi|E has order pr and thus ζεpi ≡ ζepi (mod pi)
where epi is a generator of Z/prZ. Thus εpi is not divisible by p. It follows
that pr is the exact power of p dividing |k(pi)∗| for i = 1, 2. Thus the order
of u in k(pi)∗ is of the form pkisi where 0 ≤ ki ≤ r and p does not divide si.

It follows that there exists t ∈ Z such that ut ≡ ζ (mod p) and ut ≡ 1
(mod pi) for i = 1, 2. Let w = ut and let a ∈ OF be a generator of the
principal ideal pp1p2. Let z = {a,w} ∈ K2(F ). Then τp(z) = w (mod p) = ζ
(mod p) while τpi(z) = w (mod pi) = 1 (mod pi) and if q 6= p, p1, p2 then
q does not divide a and τq(z) = 1. Thus I(ζ ⊗ [p]) = I(ζ ⊗ x) ≡ zp

r
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(mod (K2(OF ))p
r

). But

zp
r

= {a,wpr} =
〈
− a, 1− wpr

a

〉

since wp
r ≡ 1 (mod a). So I(ζ⊗x) is represented by a Dennis–Stein symbol

as required.

Corollary 3.7. If the hypotheses of Theorem 3.4 are satisfied and p
√
ζ 6∈

F then the subgroup of the image of I generated by Dennis–Stein symbols is
precisely I(µ⊗ C) and has index pr = [E : F ].

P r o o f. This follows from the proof of Theorem 3.4 where it is shown
that the subgroup of the image of I which is generated by Dennis–Stein
symbols is contained in I(µ⊗ C), together with Theorem 3.6

Remarks. Consider again the case where r = 1. Suppose that the
hypotheses of Theorem 3.6 do not hold, in the sense that p

√
ζ 6∈ F and

p
√O∗F 6⊂ HF . Then Mulders shows (in [9], Section 2.4) that the image of I is
generated by Dennis–Stein symbols. However, if p

√
ζ 6∈ F but p

√O∗F ⊂ HF
then the methods used in the proof of Theorem 3.4 can be used to show
that the image of I is not generated by Dennis–Stein symbols of the type
constructed by Mulders (namely Dennis–Stein symbols of the form {a, up}
with u ∈ O∗F ). However, Theorem 3.4 only proves that the image of I is not
generated by Dennis–Stein symbols of any kind under stronger hypotheses;
namely p

√
ζ 6∈ F but p

√O∗F ⊂ HF and for all u ∈ O∗F , F ( p2√
u) ⊂ HL. Thus

it remains open whether the image of I can be generated by Dennis–Stein
symbols under the hypotheses of Theorem 3.6.

4. Examples. In order to construct examples of fields satisfying the
hypotheses of Theorem 3.4, it suffices to find fields in which the primes
above p split in appropriate extensions.

Lemma 4.1. Suppose that F is totally imaginary , ζ ∈ F and p
√
ζ 6∈ F .

Let u1, . . . , us be a system of fundamental units of F . Then F satisfies the
hypotheses of Theorem 3.4 if and only if every prime above p in F splits
completely in each of the extensions F ( p2r√ui) and in F ( p2r√

ζ).

P r o o f. It follows from the hypotheses that every prime above p
splits completely in the Galois extension F ( p2r√

ζ, p2r√u1, . . . , p
2r√us) =

F ( p2r√O∗F )/F . Now, if L is any field containing ζ and if u is a unit of
L, then L( pr

√
u)/L is an abelian extension and the only primes that may

ramify in L are primes above p or primes at infinity. Thus if it is known
that these primes split completely in L(pr

√
u) then L( pr

√
u)/L is unramified

abelian and thus contained in HL. Thus F ( pr
√O∗F )/F is unramified and for

each u ∈ O∗F , the abelian extension F ( p2r√
u)/F ( pr

√
u) is unramified.
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In the case p = 2, r = 1 we can construct biquadratic fields with the
necessary properties:

Lemma 4.2. Suppose that d ≡ 1 (mod 8), d > 1 (and squarefree) and
suppose that f ≡ 7 (mod 8), f > 0 (squarefree) with the property that if u
is a fundamental unit of K = Q(

√
f) then the prime above 2 in K splits

completely in K( 4
√
u). Then the biquadratic field

F = Q(
√
−2d,

√
f)

satisfies the conditions of Theorem 3.4 for p = 2, r = 1.

P r o o f. Clearly the prime 2 totally ramifies in F since 2 ramifies in
each of the quadratic subextensions Q(

√−2d), Q(
√
f) and Q(

√−2df). So
2OF = p4 for some prime ideal p of OF .

F is totally imaginary and so the rank of the group of units is 1. Fur-
thermore, u is clearly a fundamental unit of F because

√
u,
√−u 6∈ F (since

the prime above 2 in K ramifies in F but splits in K(
√
u) and K(

√−1) and
hence also in K(

√−u)). The conditions on f thus guarantee that p splits
completely in F ( 4

√
u).

p splits in F (
√−2) since F (

√−2) ⊃ Q(
√−2,

√−2d) ⊃ Q(
√
d) and 2

splits in this last field since d ≡ 1 (mod 8).
p splits in F (

√
2) since F (

√
2) = Q(

√
2,
√−2d,

√
f) ⊃ Q(

√−df) and 2
splits in this last field since −df ≡ 1 (mod 8).

Thus p splits completely in F (
√

2,
√−2) = F ( 4

√−1).
Since O∗F = 〈−1〉 × 〈u〉, it follows from Lemma 4.1 that F satisfies the

hypotheses of Theorem 3.4.

Remarks on Lemma 4.2. (i) Since there is exactly one prime above 2
in F and no real infinite primes, the map

I : µ2 ⊗ Cl(OF [1/2])→ K2(OF )/2

is an isomorphism in this case and thus K2(OF )/2, and hence K2(OF ) itself
is not generated by Dennis–Stein symbols.

(ii) According to the proof of Theorem 3.4 if p is a prime ideal of OF not
splitting in F (

√−1) then I(−1⊗[p]) is a nontrivial element of K2(OF )/2 not
represented by an element of the form {w, a} where w ∈ O∗F . In particular,
if I(−1⊗ [p]) is represented by z ∈ K2(OF ) then z 6∈ {−1, F ∗}, which is the
2-torsion part of K2(F ), and thus z has order divisible by 4.

(iii) The only number less than 2000 satisfying the conditions for f in
the lemma is f = 1751 = 17 · 103 (verified using the computer programme
PARI/GP) and thus the smallest example of such a field is

F = Q(
√−34,

√
1751) = Q(

√−34,
√−206).



K2(OF ) and Dennis–Stein symbols 199

References

[1] R. K. Dennis and M. R. Ste in, The functor K2: a survey of computations and
problems, in: Lecture Notes in Math. 342, Springer, 1973, 243–280.

[2] —, —, K2 of radical ideals and semi-local rings revisited , in: Lecture Notes in Math.
342, Springer, 1973, 281–303.

[3] M. Gei j sberts, On the generation of the tame kernel by Dennis–Stein symbols, J.
Number Theory 50 (1995), 167–179.

[4] J. Hurre lbr ink, On K2(O) and presentations of Sln(O) in the real quadratic case,
J. Reine Angew. Math. 319 (1980), 213–220.

[5] —, On the size of certain K-groups, Comm. Algebra 10 (1982), 1873–1889.
[6] F. Keune, On the structure of the K2 of the ring of integers of a number field ,

K-Theory 2 (1989), 625–645.
[7] J. Mi lnor, Introduction to Algebraic K-Theory, Ann. of Math. Stud. 72, Princeton

Univ. Press, 1971.
[8] T. Mulders, Generating the tame and wild kernels by Dennis–Stein symbols,

K-Theory 5 (1992), 449–470.
[9] —, On a map from K0 to K2, Ph.D. thesis, Katholiecke Universiteit Nijmegen,

1992.
[10] J. Neukirch, Class Field Theory, Springer, Berlin, 1986.
[11] A. A. Sus l in, Torsion in K2 of fields, K-Theory 1 (1987), 5–29.
[12] J. Tate, Relations between K2 and Galois cohomology, Invent. Math. 36 (1976),

257–274.
[13] W. van der Kal len, Stability for K2 of Dedekind rings of arithmetic type, in:

Lecture Notes in Math. 854, Springer, 1981, 217–248.

Mathematics Department
University College Dublin
Belfield, Dublin 4, Ireland
E-mail: Kevin.Hutchinson@ucd.ie

Received on 11.8.1998
and in revised form on 19.10.1998 (3440)


