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Construction of the real dihedral
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1. Introduction. We use class field theory to construct the real dihedral
fields. This construction is reduced to that of primitive characters on the
ring class groups of real quadratic fields which are then used to compute
the relative class numbers of dihedral CM-fields of degree 4p, p any odd
prime.

We first fix some notation. Let K be a normal real number field (consid-
ered as a subfield of the field of complex numbers) of degree 2n with Galois
group D2n = 〈a, b : an = b2 = 1, bab−1 = a−1〉, the dihedral group of
order 2n. Let L denote the real quadratic subfield of K fixed by the cyclic
subgroup of order n generated by a, and let E denote any one of the n
non-normal subfields of degree n of K fixed by the n non-normal subgroups
of order two {1, akb} of G, 0 ≤ k ≤ n − 1. We let AL, dL, εL > 1 and
χL denote the ring of algebraic integers, the discriminant, the fundamen-
tal unit and the primitive quadratic character modulo dL associated with
L, respectively. In order to use continued fraction expansions to compute
εL, we specify a generator of AL: let gL denote the unique rational inte-
ger with the same parity as dL such that

√
dL − 2 < gL <

√
dL and set

ωL = (gL +
√
dL)/2, whose continued fraction expansion is purely peri-

odic. Finally, dF denotes the absolute value of the discriminant of a number
field F .

Let M be an integral ideal of L, let IL(M) denote the subgroup of the
group IL of fractional ideals of L generated by the integral ideals relatively
prime to M, and let PL(M) denote the subgroup of IL(M) generated by
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the principal ideals of the form (α) where α ∈ AL satisfies α ≡ 1 (mod M).
The ray class group for the modulus M is the quotient group ClL(M) =
IL(M)/PL(M). According to class field theory, for any abelian extension
K/L of conductor dividing M the kernel H = kerΦK/L of the surjective
Artin map ΦK/L : IL(M) → Gal(K/L) is a congruence subgroup for the
modulus M, that is, PL(M) ⊆ H ⊆ IL(M). Conversely, according to the
Existence Theorem of class field theory, for any congruence subgroup H
for the modulus M there exists a unique abelian extension K/L, all whose
ramified primes are finite and divideM, such that H = kerΦK/L. This field
K is called the class field of L for the congruence subgroup H. Of particular
importance is the case where H = PL,Z(M) is the group generated by the
principal ideals of the form (α) where α ∈ AL satisfies α ≡ a (mod M)
for some integer a relatively prime to M, in which case Existence Theorem
provides us with the so-called ring class field HL(M) of L for the modulus
M. Let ClL,Z(M), the ring class group for the modulusM, be the quotient
group ClL,Z(M) = IL(M)/PL,Z(M).

2. Real dihedral fields and ring class fields

Proposition 1. Let L be a real quadratic field. If K is a real dihedral
field of degree 2n cyclic over L, then the conductor FK/L of the cyclic ex-
tension K/L is invariant under the action of Gal(L/Q) and kerΦK/L is a
subgroup of IL(FK/L) containing PL,Z(FK/L) such that the quotient group
IL(FK/L)/kerΦK/L is cyclic of order n. Conversely , if the modulus F is in-
variant under the action of Gal(L/Q) and if H is a congruence subgroup of
IL(F) containing PL,Z(F) such that the quotient group IL(F)/H is cyclic
of order n, then its associated class field K is a real dihedral field of degree
2n and the conductor FK/L of the extension K/L divides F .

P r o o f. For any prime ideal QF of a normal field F which is unramified
in F/Q we let [F/Q,QF ] denote the Frobenius automorphism of QF (see
[Jan]). Assume that K is dihedral and let q be a rational prime not in
FK/L. We must prove that ΦK/L((q)) = 1. First, if (q) = Q2

L is ramified in
L then (ΦK/L(QL))−1 = bΦK/L(QL)b−1 = ΦK/L(b(QL)) = ΦK/L(QL) and
ΦK/L((q)) = ΦK/L(QL)ΦK/L(QL) = ΦK/L(QL)(ΦK/L(QL))−1 = 1. Second,
if (q) = QLQ′L splits in L then since the restriction of b to L is non-trivial
we get (ΦK/L(QL))−1 = bΦK/L(QL)b−1 = ΦK/L(b(QL)) = ΦK/L(Q′L) and
we get ΦK/L((q)) = ΦK/L(QL)ΦK/L(Q′L) = ΦK/L(QL)(ΦK/L(QL))−1 = 1.
Finally, if (q) = QL is inert in L and ifQK is any prime ideal ofK lying above
QL, then ΦK/L((q)) = ΦK/L(QL) = [K/L,QL] = [K/L,QK ] = [K/Q,QK ]2

and since q is inert in L it follows that [K/Q,QK ] = akb is not in the
cyclic group 〈a〉 = Gal(K/L), which implies [K/Q,QK ]2 = (akb)2 = 1 and
ΦK/L((q)) = 1.
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Conversely, the trickiest step for proving the last assertion is to prove
that for any σ ∈ Gal(HL(F)/Q) such that the restriction σ/L is not triv-
ial we have σ2 = 1 (the remainder of the proof being similar to that of
[Cox, Lemma 9.3]). Set H = HL(F). To prove this assertion we use the
Chebotarev Density Theorem (see [Jan, Theorem 10.4]) according to which
σ = [H/Q,QH ] for some prime ideal QH of H unramified in H/Q. Since
σ/L = [H/Q,QH ]/L = [L/Q,QL] is not trivial (where QL = QH ∩ AL),
QL = (q) is inert in L and we get σ2 = [H/Q,QH ]2 = [H/L,QH ] =
[H/L,QL] = [H/L, (q)] = ΦH/L((q)) = 1 (for we have (q) ∈ PL,Z(F) =
kerΦH/L).

If M′ divides M then the canonical map s : ClL(M) → ClL(M′) is
surjective and any character χ′ on ClL(M′) may be construed as a charac-
ter on ClL(M). A character χ on a ray class group ClL(M) is primitive if
it is not induced by any character χ′ on the ray class group ClL(M′) for
any proper divisor M′ of M. Noticing that there is a bijective correspon-
dence between the characters of order n on an abelian group G and the
subgroups H of index n of G such that the quotient group G/H is cyclic of
order n, according to Proposition 1 and Galois and Class Field theories we
obtain:

Theorem 2. Let M be a modulus of a real quadratic field L which is
invariant under the action of Gal(L/Q). Then there is a bijective correspon-
dence between the real dihedral fields K of degree 2n containing L and such
that the conductor FK/L of the extension K/L is equal toM and the groups
of order n generated by the primitive characters of order n on ClL(M) which
are trivial on the image of PL,Z(M) in this group.

Let χ be a character on ClL,Z(M). Then α 7→ χ((α)) defines a character
χ0 on (AL/M)∗ which is called the modular character associated with χ.
Notice that this modular character must be trivial on εL and on the image
of Z in (AL/M)∗. IfM′ dividesM then the canonical map s : (AL/M)∗ →
(AL/M′)∗ is surjective and any modular character χ′0 on (AL/M′)∗ may
be construed as a modular character on (AL/M)∗.

We say that a modular character χ0 on (AL/M)∗ is primitive if it is not
induced by any modular character χ′0 on (AL/M′)∗ for any proper divisor
M′ ofM. One can easily check that a modular character χ0 on (AL/M)∗ is
primitive if and only if for any proper divisorM′ ofM there exists α ∈ AL
coprime with M such that α ≡ 1 (mod M′) but χ0(α) 6= 1. Moreover, if
M =

∏QeQ is the prime ideal factorization of M, then according to the
Chinese Remainder Theorem we may factorize χ0 canonically as a product
of modular characters χQ on (AL/QeQ)∗, and χ0 is primitive if and only if
each component χQ is primitive. For the remainder of this paper we let χ, χ0

and φ denote a character on ClL,Z(M), its associated modular character on
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(AL/M)∗ and any component of χ0, respectively. Notice that χ is primitive
if and only if χ0 is primitive. In particular, we have

Lemma 3. If there exists a real dihedral field K of degree 2n cyclic over
a real quadratic field L and such that the conductor of the extension K/L
is equal to F , then there exists a primitive modular character χ0 of order
dividing n on (AL/F)∗ which is trivial on the εL and on the image ImZ of
Z in this group.

Theorem 4. If K is a real dihedral field containing L then there exists a
positive rational integer fK/L such that the conductor of the cyclic extension
K/L is given by FK/L = (fK/L).

P r o o f. If (q) = Q2 is ramified in L/Q and φ is a character on
(AL/Q2f+1)∗ which is trivial on ImZ then φ is not primitive. Indeed, if α ≡ 1
(mod Q2f ), then α = 1 + qfβ for some β ∈ AL. Since the canonical map
Z/qZ → AL/Q is bijective, there exists a ∈ Z such that β ≡ a (mod Q),
which yields α ≡ 1 + qfa (mod Q2f+1) and φ(α) = φ(1 + qfa) = +1 for φ
is trivial on ImZ. Hence, according to Lemma 3, FK/L is invariant under
the action of Gal(L/Q) and the exponents in the prime ideal factorization
of FK/L of the prime ideals Q of L which are ramified in L/Q are even.

3. Conductors of real dihedral fields of degree 2ps

Lemma 5. Let p be an odd prime. Let q be a prime. Set

Gqe = (AL/(qe))∗/Im((Z/qeZ)∗)

and notice that the order of the group Gqe is qe−1(q − χL(q)).

(i) If q 6= p and there exists a primitive character φ of order ps on
(AL/(qe))∗ which is trivial on the image of (Z/qeZ)∗ in this group then
e = 1 and q ≡ χL(q) (mod ps).

(ii) If there exists a primitive character φ of order ps on (AL/(pe))∗

which is trivial on the image of (Z/peZ)∗ in this group then e ∈ {s, s+ 1}.
Moreover , if p does not divide dL then e = s+ 1.

(iii) (a) If p ≥ 5 divides dL, then the group Gpe of order pe is cyclic and
generated by 1 +

√
dL.

(b) If dL ≡ 3 (mod 9) then the group G3e of order 3e is cyclic and
generated by 1 +

√
dL.

(c) If dL ≡ 6 (mod 9) and e ≥ 2 then the group G3e of order 3e is
isomorphic to (Z/3Z)× (Z/3e−1Z) and generated by 1 + ae

√
dL

of order 3 and 1 + 3
√
dL of order 3e−1. Here, ae is any solution

of the equation a2
edL ≡ −3 (mod 3e). Hence, we may choose

a2 = 1.
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(iv) If p ≥ 3 divides dL, then there exists a primitive character of order
ps on (AL/(pe))∗ which is trivial on the image of Z if and only if

(a) p ≥ 5 and e = s,
(b) p = 3, dL ≡ 3 (mod 9) and e = s,
(c) p = 3, dL ≡ 6 (mod 9), s ≥ 2 and e = s+ 1,
(d) p = 3, dL ≡ 6 (mod 9), s = 1, and e = 1 or e = 2.

P r o o f. If p divides dL, we let P denote the prime ideal of AL above p.
We let also νP and νp denote the P-adic and p-adic valuations on AL and Z,
respectively.

(i) If e > 1 and α = 1 + qe−1β ≡ 1 (mod (qe−1)) then α ≡ (1 + γqe−1)p
s

(mod (qe)) for any γ satisfying psγ ≡ β (mod (q)), which yields φ(α) = +1
and proves that φ is not primitive. Now, if there exists a primitive character
φ of order ps on (AL/(q))∗ which is trivial on the image of (Z/qZ)∗ then ps

divides the order q − χL(q) of Gq, which yields the desired second result.
(ii) If e ≥ s + 2 then for any α = 1 + pe−1β ≡ 1 (mod (pe−1)) we

have α ≡ (1 + βpe−s−1)p
s

(mod (pe)) and φ(α) = +1. Therefore, φ is not
primitive. Indeed, for k ≥ 2 and p ≥ 3 we have k ≥ 2 +νp(k), and we obtain
νp(Ckpsp

k(e−s−1)) = s−νp(k)+k(e−s−1) = (k−1)(e−s)−k−νp(k)+e ≥
2(k − 1) − k − νp(k) + e = k − 2νp(k) − 2 + e ≥ e. Now, if there exists a
primitive character φ of order ps on (AL/(pe))∗ which is trivial on the image
of (Z/peZ)∗ then ps divides the order pe−1(p− χL(p)) of Gpe , which yields
the desired second result.

(iii) (a) As (1 +
√
dL)p

k ≡ 1 + pk
√
dL (mod (pk+1)), it follows that

1 +
√
dL has order pe in the group Gpe of order pe.

(b) If dL ≡ 3 (mod 9) then (1 +
√
dL)3 ≡ 1 + 6

√
dL (mod 9). Hence

(1 +
√
dL)3k ≡ 1 + 2 · 3k√dL (mod 3k+1) for k ≥ 1, and 1 +

√
dL has order

3e in G3e .
(c) Since (1+3

√
dL)3k ≡ 1+3k+1

√
dL (mod (3k+2)) for k ≥ 0, it follows

that 1 + 3
√
dL has order 3e−1 in G3e . Moreover, if dL ≡ 6 (mod 9) then

there exists as such that a2
sdL ≡ −3 (mod 3s+1) and for such an as the

element 1 + as
√
dL has order three in G3e and does not lie in the cyclic

subgroup generated by 1 + 3
√
dL. Hence, we get the desired result.

(iv) ker((AL/P2e)∗ → (AL/P2e−1)∗) = {1 + pe−1y
√
dL : 0 ≤ y ≤ p− 1}.

According to the proof of the previous point, if p ≥ 5, or if p = 3 and
dL ≡ 3 (mod 9) then this kernel is the cyclic subgroup of order p generated
by (1 +

√
dL)p

e−1
. Hence, if there exists a primitive character φ of order ps

on (AL/(pe))∗ then (φ(1 +
√
dL))p

e−1 6= 1 and s ≥ e, which according to (ii)
yields e = s. If p = 3, dL ≡ 6 (mod 9) and s ≥ 2 then according to (ii) and
(iii) we have s+ 1 ≥ e ≥ s ≥ 2 and e− 1 ≥ s, and get e = s+ 1. The proof
of the last point is easy.
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Theorem 6 (see also [Has], [Mar], [Por]). If K is a real dihedral field
of degree 2ps (p any odd prime) then fK/L = pa

∏r
i=1 qi where the qi’s are

distinct primes 6= p satisfying qi ≡ χL(qi) (mod p) and where 0 ≤ a ≤ s+1.
Moreover , if s = 1 then either a = 0 or

a =





2 if p does not divide dL,
1 if p ≥ 5 divides dL,
1 if p = 3 and dL ≡ 3 (mod 9),
1 or 2 if p = 3 and dL ≡ 6 (mod 9)

(if dL ≡ 6 (mod 9) and a = 2 we call fK/L an exceptional conductor).
Conversely , let f > 1 be a given positive rational integer. Set

φL(f) = f
∏

q|f

(
1− χL(q)

q

)
,

nL(f)=min{k≥ 1 : ∃a∈Z, εkL≡ a (mod (f))} and iL(f)=φL(f)/nL(f).

Then iL(f) is a positive integer and if there exists a real dihedral field Kps of
degree 2ps, cyclic over L and such that FKps/L = (f) then p divides iL(f).
Moreover , if the cyclic subextension Kp/L of degree p of Kps/L is ramified
at at least one finite prime then ps divides iL(f). Notice that ClL,Z(f) has
order hLiL(f) (see [Cox]).

P r o o f. For the first part, use Lemma 3, Theorem 4 and Lemma 5.
Let us now prove the second part. The canonical map i : H = (Z/fZ)∗ →
(AL/(f))∗ = G is injective. Hence, the factor group G/i(H) has order φL(f)
and nL(f) is the order of εL in this group. Hence, iL(f) is a positive integer.
Now, as any character on (AL/(f))∗ which is trivial on the image of Z may
be construed as a character on G/i(H), if there exists a character of order
p on (AL/(f))∗ which is trivial on the image of Z and on εL then p divides
iL(f), and we finally use Lemma 3.

4. Primitive modular characters of order p. The Chinese Remain-
der Theorem reduces the construction of primitive modular characters χ0 of
order p on (AL/(f))∗ which are trivial on the image of Z to the construction
of primitive modular characters φ of order p on (AL/(qe))∗ which are trivial
on the image of Z, and we may assume 1 ≤ e ≤ 2 and e = 1 if q 6= p
(see Theorem 6). Since in Section 6 we will use such characters to perform
practical computations of the relative class numbers of dihedral CM-fields
of degree 4p, we want to present fully explicit constructions.

Proposition 7. Let φ be a primitive character of order p on (AL/(f))∗,
trivial on the image of Z in this group. Let α′ be the conjugate of α ∈ L.

(i) If f = q ≡ 1 (mod p) splits in L, say (q) = QQ′, then there exists a
character ψ of order p on the cyclic group (AL/Q)∗ of order q− 1 such that
φ(α) = ψ(α/α′) = ψ(α)ψ(α′) for any α ∈ AL prime to (q).
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(ii) If f = q ≡ −1 (mod p) is inert in L, then any primitive character
φ of order p on the cyclic group (AL/(q))∗ is trivial on ImZ and is viewed
as a character of order p on the cyclic group (AL/(q))∗/ImZ of order q+ 1.

(iii) If f = p2 and (p) = PP ′ splits in L, then there exists a character ψ
of order p on the group (AL/P2)∗ of order p(p−1) such that for any α ∈ AL
relatively prime to (p) we have φ(α) = ψ(α/α′) = ψ(α)ψ(α′).

(iv) If f = p2 and p is inert in L, then φ may be viewed as a character
of order p on the group (AL/(p2))∗/ImZ of order p(p+ 1).

(v) If f = p divides dL, then any primitive character of order p on
the group (AL/(p))∗ of order p(p− 1) is trivial on ImZ and is viewed as a
character of order p on the cyclic group (AL/(p))∗/ImZ of order p.

(vi) Assume that dL ≡ 6 (mod 9), let φ(3) be the primitive cubic char-
acter on (AL/(3))∗ which is trivial on the image of Z and such that
φ(3)(1+

√
dL)=ζ3, and let φ(9) be the primitive cubic character on (AL/(9))∗

which is trivial on the image of Z and such that φ(9)(1 +
√
dL) = 1 and

φ(9)(1 + 3
√
dL) = ζ3. Then the six φi(9)φ

j
(3) with i ∈ {1, 2} and j ∈ {0, 1, 2}

are the only primitive cubic characters on (AL/(9))∗ which are trivial on
the image of Z, and we have:

k 1 2 3 4 5 6 7 8

φi(9)φ
j
(3)(1 + k

√
dL) ζj3 ζi+2j

3 ζi3 ζi+j3 ζ2i+2j
3 ζ2i

3 ζ2i+j
3 ζ2j

3

P r o o f. Let us, for example, prove (i). Let χ = ψψ′ be the factorization
of χ, where ψ and ψ′ are characters modulo Q and Q′, respectively. Let
λ ∈ AL satisfy λ ≡ 1 (mod Q) and λ ≡ 0 (mod Q′), which implies ψ(α) =
χ(λα + λ′), and λ′ ≡ 0 (mod Q) and λ′ ≡ 1 (mod Q′), which implies
ψ′(α) = χ(λ + λ′α) = χ((λα′ + λ′)′). Since χ is trivial on ImZ, we have
χ((λα′ + λ′)′) = χ(λα′ + λ′) = ψ(α′) and χ(α) = ψ(α)ψ′(α) = ψ(α)ψ(α′),
as desired.

In these five cases, we are reduced to the construction of all the characters
of order p on some abelian groups whose p-Sylow subgroups are cyclic. So,
let G be a multiplicative abelian group of order n and assume that p divides
n and the p-Sylow subgroup of G is cyclic. Then {χkG : 1 ≤ k ≤ p − 1} are
the p− 1 characters of order p on G where χG is the only character of order
p on G such that χG(αG) = ζp = exp(2πi/p) where αG is any fixed element
in G satisfying βG = α

n/p
G 6= 1. Since {x ∈ G : xn/p = 1} = kerχG is the

only subgroup of order p in G, for any α ∈ G we have

χG(α) = ζkαp where kα = min{k ≥ 0 : αn/p = βkG} ∈ {0, . . . , p− 1}
(indeed, χG(α) = ζkp if and only if α/αkG ∈ kerχG, hence if and only if
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(α/αkG)n/p = αn/p/βkG = 1). To compute efficiently αn/p we use the binary
expansion of exponent e = n/p which can be quite large. This enables us to
determine efficiently some αG such that αn/pG 6= 1, to compute fast βG and
store in some table of size p all the βkG, 0 ≤ k < p. For any given α ∈ G, we
then compute efficiently αn/p and look up in our previously computed table
to which βkG it is equal, which yields χG(α) = ζkp .

Now, in the five cases listed in Proposition 7, we explain in detail how we
use these χG to specify characters φ(qi) of order p on (AL/(qi))∗ trivial on
ImZ such that, in the simpler case where f is not an exceptional character,

Xp,L,f =
{
χ

(n)
0 =

r∏

i=1

φ
ai(n)+1
(qi)

: 0 ≤ n ≤ (p− 1)r − 1
}
,

is the set of all the primitive modular characters of order p on (AL/(f))∗

which are trivial on ImZ when f =
∏r
i=1 qi is as in Theorem 6. Here with

each n ∈ {0, . . . , (p − 1)r − 1} we associated its (p − 1)-adic development
n =

∑r
i=1 ai(n)(p − 1)i−1, ai(n) ∈ {0, 1, . . . , p − 2}. In particular, for any

given finite set E (containing εL), it is easy to compute numerically the
number np,L,f,E of primitive modular characters which are trivial on the
image of Z and on some finite set E (see Proposition 8 for an application).

(i) In case (i) of Proposition 7 where G = (AL/Q)∗ has order q − 1, we

determine Pq such that 4q divides dL − P 2
q and choose Q = qZ+ Pq+

√
dL

2 Z.
Since G is canonically isomorphic to (Z/qZ)∗, we may view χG as a character
of order p on the cyclic group (Z/qZ)∗ of order q − 1, and if α = (xα +
yα
√
dL)/2 then α ≡ xα − yαPq (mod Q) and α′ ≡ xα + yαPq (mod Q).

Therefore, φ is a power of the character

α 7→ φ(q)(α) = χG(nα) where nα =
xα − yαPq
xα + yαPq

in (Z/qZ)∗.

In that case, we determine αG ∈ (Z/qZ)∗ such that βG = α
(q−1)/p
G 6= 1

in (Z/qZ)∗, we precompute a table defined by Table(k) = βkG in (Z/qZ)∗,
0 ≤ k ≤ p− 1, and find that φ(q)(α) = ζkp if and only if n(q−1)/p

α = Table(k).
(ii) In case (ii) of Proposition 7 where G = (AL/(q))∗/ImZ has order

q + 1, we may assume that αG = xG + ωL and we determine the least
xG ≥ 0 such that XG + YGωL = βG = α

(q+1)/p
G = (xG + ωL)(q+1)/p 6≡ a

(mod (q)) for any rational integer a (i.e. such that YG 6≡ 0 (mod q)), and
we get that φ is a power of the character α 7→ φ(q)(α) = χG(α). Since
βkG = XG(k) + YG(k)ωL with YG(k) 6≡ 0 (mod q) for 1 ≤ k ≤ p − 1,
we can set Table(k) = XG(k)/YG(k) (computed modulo q), and for any
α = xα + yαωL we compute α(q+1)/p ≡ Xα + YαωL (mod (q)) to conclude
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that φ is a power of the character α 7→ φ(q)(α) = χG(α) where

φ(q)(α) = χG(α)

=
{

1 if Yα ≡ 0 (mod q),
ζkp if Yα 6≡ 0 (mod q) and Xα/Yα=XG(k)/YG(k)=Table(k).

(iii) In case (iii) of Proposition 7 where G = (AL/P2)∗ has order p(p−1),
we determine Pp such that 4p2 divides dL − P 2

p and choose P = pZ +
Pp+
√
dL

2 Z, which yields P2 = p2Z + Pp+
√
dL

2 Z. Since G is canonically iso-
morphic to (Z/p2Z)∗, we may view χG as a character of order p on the
cyclic group (Z/p2Z)∗ of order p(p− 1). Since α = (xα + yα

√
dL)/2 implies

α ≡ xα− yαPp (mod P2) and α′ ≡ xα + yαPp (mod P2), we infer that φ is
a power of the character

α 7→ φ(p2)(α) = χG(nα) where nα =
xα − yαPp
xα + yαPp

in (Z/p2Z)∗.

In that case, we determine αG ∈ (Z/p2Z)∗ such that βG = αp−1
G 6= 1 in

(Z/p2Z)∗, we precompute a table defined by Table(k) = βkG in (Z/p2Z)∗,
0 ≤ k ≤ p − 1, and conclude that φ(p2)(α) = ζkp if and only if np−1

α =
Table(k).

(iv) In case (iv) of Proposition 7 where G = (AL/(p2))∗/ImZ has order
p(p + 1), we may choose αG = 1 + pωL for which βG = αp+1

G = αG. If
α = xα + yαωL and αp+1 ≡ Xα + YαωL (mod (p2)), then using αp+1 ≡
NL/Q(α) (mod (p)) we get Xα 6≡ 0 (mod p), Yα ≡ 0 (mod p) and χG(α) =

ζ
(Yα/p)/Xα
p . That is, φ is a power of the character

α 7→ φ(p2)(α) = ζ(Yα/p)/Xα
p .

(v) In case (v) of Proposition 7 where G = (AL/(p))∗/ImZ has order p,
we may choose αG = 1 +

√
dL for which βG = αG and βkG = 1 + k

√
dL. If

α = (xα+ yα
√
dL)/2 then χG(α) = χG(1 + (yα/xα)

√
dL) = ζ

yα/xα
p . That is,

φ is a power of the character

α 7→ φ(p)(α) = ζyα/xαp .

Notice that in cases (iv) and (v) we do not precompute any table. Notice
also that

(xα + yα
√
dL) = (xα − gLyα)/2 + yαωL

and

xα + yαωL = ((2xα + gLyα) + yα
√
dL)/2.

5. Primitive characters on ring class groups. Since in Section 6 we
will use such characters to perform practical computations of the relative
class numbers of dihedral CM-fields of degree 4p, here again we shall be
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dwelling upon a completely explicit construction of all the primitive char-
acters χ of order p on ClL,Z(f). To begin with, write hL = psL(p)h with
gcd(p, h) = 1, let rL(p) denote the p-rank of ClL, let

Cl
(p)
L =

rL(p)∏

i=1

Cpei

with
∑rL(p)
i=1 ei = sL(p) be the p-Sylow subgroup of ClL and let Ji, 1 ≤ i ≤

rL(p), be rL(p) integral ideals of AL of norms relatively prime to f , whose
ideal classes have order pei , respectively, and such that the subgroup of ClL
generated by the rL(p) ideal classes of these Ji is equal to Cl(p)L (here, Cn
denotes the cyclic group of order n > 1). We let αi ∈ AL be such that

(1) Jp
ei

i = (αi).

From a practical point of view, and since as explained in the introduction
we will first fix L and p and then determine all the real dihedral fields K
containing L such that fK/L is less than or equal to some prescribed upper

bound, we compute rL(p) generators of the p-Sylow subgroup Cl
(p)
L which

are ideal classes of prime ideals Ji above rational primes li which split in L
and satisfy li 6≡ 1 (mod p). In that case, the norms li of these generators
are relatively prime to any possible fK/L (see Theorem 6). Now, for any
integral ideal I of AL of norm relatively prime to f there exists only one

~kI = (k1, . . . , krL(p)) ∈
rL(p)∏

i=1

{0, . . . , pei − 1}

such that

(2) Ih
rL(p)∏

i=1

Jkii = (βI)

is principal. Finally, let h′ ≥ 1 satisfy hh′ ≡ 1 (mod p).
Let now χ be a primitive character of order p on ClL,Z(f) and α 7→

χ0(α) = χ((α)) be its associated primitive modular character of order p on
(AL/(f))∗. Setting ψ0 = χh

′
0 , we get

(3) χ(I) = χhh
′
(I) = χh

′
(Ih) = ψ0(βI)χ~ζ(

~kI)

where ~ζ = (ζ1, . . . , ζrL(p)), where each ζi = χh′(Ji) is a pth complex root of
unity and where

χ~ζ(
~kI) =

rL(p)∏

i=1

ζkii .

Since Jp
ei

i = (αi), we must have χ((αi)) = χ0(αi) = +1. Conversely, let
χ0 be a given primitive character on (AL/(f))∗ which is trivial on εL and
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the image of Z, assume that χ0(αi) = +1 for 1 ≤ i ≤ rL(p), set ψ0 = χh
′

0 ,
and let ~ζ = (ζ1, . . . , ζrL(p)) be given, where each ζi is a pth complex root of
unity. Then

χ(I) = ψ0(βI)χ~ζ(
~kI)

clearly defines a primitive character on ClL,Z(f) whose associated modular
character ψh0 is equal to χ0. We have proved:

Proposition 8. Fix some primitive character χ0 of order p on (AL/(f))∗

which is trivial on εL and the image of Z.

(i) If some χ0(αi) is not equal to +1 for some 1 ≤ i ≤ rL(p), then
there is no primitive character χ on ClL,Z(f) of order p whose associated
modular character is equal to χ0.

(ii) If all the χ0(αi) are equal to +1 for 1 ≤ i ≤ rL(p), then there
are precisely prL(p) primitive characters χ on ClL,Z(f) of order p whose
associated modular characters are equal to χ0.

Corollary 9. For f > 1 let N(p, L, f) denote the number of primitive
modular characters of order p on (AL/(f))∗ which are trivial on the image
of Z, on εL and on all the αi, 1 ≤ i ≤ rL(p). If N(p, L, f) > 0 then p − 1
divides N(p, L, f). Moreover , the number Nd(p, L, f) of real dihedral fields
K of degree 2p containing L and such that FK/L = (f) is given by

Nd(p, L, f) =
{
N(p, L, f)prL(p)/(p− 1) if f > 1,
(prL(p) − 1)/(p− 1) if f = 1.

6. Actual computations. Let p ≥ 3 be a given odd prime and let L be
a given real quadratic field. For a given f ≥ 1 as in Theorem 6, we explain
how we construct all the real dihedral fields K of degree 2p which contain
L and for which fK/L = f .

First, we recall that εL = ql−1ωL + ql−2 where l ≥ 1 is the length of the
purely periodic continued fraction expansion ωL = [ a0, a1, . . . , al−1 ] of ωL
and where q−2 = 1, q−1 = 0 and qk = akqk−1 + qk−2, k ≥ 0. This enables
us to compute easily εL modulo f and nL(f), and then compute iL(f) and
check whether p divides iL(f) (see Theorem 6).

Second, in order to use (1), (2), (3) or Proposition 8, we must be able to
compute an explicit generator of a given principal ideal, and we explained
how to do it in [Lou].

Third, let us give one example. Choose p = 3 and L = Q(
√

229) for which
hL = 3. The least f ’s such that Nd(3, L, f) > 0 are f = 1, 118, 194, 197, 207,
226, 251, 281, 302, . . . Moreover, f = 23246, 24426, 29618, . . . are the least
f ’s such that Nd(3, L, f) > 3 (and in these three cases Nd(3, L, f) = 6).
Finally, f = 18, 19, 29, . . . are the least f ’s as in Theorem 6 such that p = 3
divides iL(f) but for which Nd(3, L, f) = 0.
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Finally, we explain how to use the technique developed above to compute
the relative class number h−N of any dihedral CM-field N of degree 4p. We
let M denote the imaginary biquadratic bicyclic subfield of N , let L0 and L1

denote the two imaginary quadratic subfields of M and keep the notation as
above: L is the real quadratic subfield of M , and the maximal totally real
subfield K = N+ of N is a real dihedral field of degree 2p cyclic over L. We
let ∞1 and ∞2 denote the infinite places of L.

Proposition 10 (see [LOO], [LP]). Let N be a dihedral CM-field of
degree 4p. Then h−M divides h−N and h−N/h

−
M = (h−N/M )2 is a perfect square.

Moreover , fM/L =
√
dL0

dL1
/dL is a positive integer , and the conductor of

the quadratic extension M/L is equal to FM/L = ∞1∞2(fM/L). If we let
FN/L = lcm(FN+/L,FM/L) = ∞1∞2lcm((fK/L), (fM/L)) = ∞1∞2(fN/L)
denote the conductor of the extension N/L and set AN =

√
dLf

2
N/L, then

(4) h−N/M =
(p−3)/2∏

j=0

AN
4π2L(1, χ2j+1

N/L )

where χN/L denotes any of the p − 1 Hecke characters of degree one and
order 2p associated with the cyclic extension N/L of degree 2p.

We explained in [Lou] how to compute numerical approximations as
good as desired of L(1, χ) for Hecke L-functions L(s, χ) =

∑
n≥1 an(χ)n−s

associated with primitive Hecke characters χ on ray class groups of real
quadratic number fields L: letting Wχ denote the Artin root number which
appears in the functional equation of this L-function we have the following
absolutely convergent series expansion:

(5) L(1, χ) =
∑

n≥1

an(χ)
n

K1(n/Aχ) +Wχ

∑

n≥1

an(χ)
n

K2(n/Aχ)

where B 7→ K1(B) and B 7→ K2(B) are defined for B > 0 and satisfy
0 ≤ K2(B) ≤ K1(B) ≤ 2e−B . Moreover, if we let SM,χ denote the value
obtained by disregarding the indices n > M in (5), then

(6) |L(1, χ)− SM,χ| ≤ 4(log(Me) + 2)2e−M/Aχ .

Hence, (4)–(6) enable us to compute the relative class numbers of dihedral
CM-fields of degree 4p. Indeed, the Artin root numbers Wχ of dihedral CM-
fields N of degree 4p are equal to +1 (see [FQ]) and we explained in [Lou]
how to compute the coefficients an(χ).

In [Lef], [LL] and [Lou] we gave examples of relative class number com-
putations for dihedral CM-fields N of degree 4p. Here, we give more tricky
examples for which we have had to use all the machinery developed in this
paper.
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1. There are ten imaginary biquadratic bicyclic number fields M =
Q(
√
D1,
√
D2) with relative class number one such that the class numbers

hL of their real quadratic subfields L = Q(
√
D1D2) are divisible by some

odd prime p. For each of the ten possible triplets (M,L, p), we give in Table
1 the least f > 1 such Nd(p, L, f) = pN(p, L, f)/(p − 1) > 0. In these ten
cases Nd(p, L, f) = p, there are p fields K to consider, we set N = KM ,
notice that these p composita are dihedral CM-fields of degree 4p and for
each of the ten triplets (M,L, p) we give in Table 1 the values of h−N/M for
these p dihedral CM-fields N .

2. Choose M = Q(
√−1,

√−32009), for which h−M = 166, and notice that
L = Q(

√
32009) is the real quadratic field with the least discriminant for

which the 3-rank r3(L) of its ideal class group is ≥ 2. We have dL = 32009,
hL = 9 and rL(3) = 2. Therefore, Nd(3, L, 1) = 4 and we let K denote any
one of the four real sextic dihedral fields containing L for which fK/L = 1,
and set N = KM , a dihedral CM-field of degree 12. In Table 2 we give the
values of h−N/M for these four N ’s.

Now, f = 211 is the least positive integer for which N(3, L, f) > 0
and since f = 211 is prime we have N(3, L, 211) = 1, and Nd(3, L, 211) = 9,
and we let K denote any one of the nine real sextic dihedral fields
containing L for which fK/L = 211, and set N = KM , a dihedral
CM-field of degree 12. In Table 3 we give the values of h−N/M for these
nine N ’s.

3. Choose M = Q(
√−3,

√−35) and L = Q(
√

105). Let K9 be the
only real dihedral field of degree 18, cyclic of degree 9 over L for which
fK9/L = 27. Let K3/L be the cyclic cubic subextension of K9/L and no-
tice that K3 is a real dihedral field of degree 6 such that fK3/L = 9.
Set N12 = K3M and N36 = K9M . Then N12 and N36 are dihedral CM-
fields of degree 12 and 36 and relative class numbers 1 and 3272, respec-
tively.

Table 1

D1 D2 dL hL p f h−
N/M

=

−7 −67 469 3 3 62 24, 30, 45
−11 −43 473 3 3 85 27, 45, 108
−4 −235 940 6 3 91 36, 60, 72
−8 −163 1304 3 3 53 27, 30, 51
−4 −427 1708 6 3 227 66, 168, 270
−19 −267 5073 6 3 55 36, 81, 99

−19 −43 817 5 5 79 820, 1345, 4225, 6505, 12980
−67 −115 7705 10 5 55 6301, 6921, 24671, 33916, 34751
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Table 1 (cont.)

D1 D2 dL hL p f h−
N/M

=

−67 −91 6097 14 7 1189 765 104 081
4 066 653 227

10 008 078 059
13 699 296 569
13 721 986 264
16 694 290 249
16 782 950 947

−67 −427 28609 14 7 167 49 494 697
69 531 448

153 177 143
308 444 857
562 737 259
636 146 917
662 575 151

Table 2

Case 1 2 3 4
h−
N/M

16 16 16 37

Table 3

Case 1 2 3 4 5 6 7 8 9
h−
N/M

2932 2968 3073 3463 3712 3754 7684 8338 8491
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