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On a positivity property of the Riemann ξ-function
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1. Introduction. The Riemann ξ-function is

(1.1) ξ(s) :=
1
2
s(s− 1)π−s/2Γ

(
s

2

)
ζ(s),

where ζ(s) is the Riemann zeta function. The function ξ(s) is an entire
function of order one which is real-valued on the real axis and satisfies the
functional equation

(1.2) ξ(s) = ξ(1− s).
It is well known that

(1.3) ξ(s) =
1
2

∏
%

′
(

1− s

%

)
,

where the product is taken over all nontrivial zeros of the Riemann zeta
function, and ′ indicates that the product is to be taken combining products
of complex conjugate pairs of zeros. This paper starts from the observation
that

(1.4) Re
(
ξ′(s)
ξ(s)

)
> 0 when Re(s) > 1,

and that the Riemann hypothesis is equivalent to the positivity condition

(1.5) Re
(
ξ′(s)
ξ(s)

)
> 0 when Re(s) >

1
2
.

These facts are known, and appear in Hinkkanen [4] for example. If we let

(1.6) Hα := {s : Re(s) > α},
then the observations above assert that f(s) := ξ′(s)/ξ(s) satisfies f(H1) ⊆
H0 and that the Riemann hypothesis is equivalent to f(H1/2) ⊆ H0. Hinkka-
nen [4, Theorem 1] gives sufficient conditions for the property h(Hα) ⊆ H0
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to hold for a general function h(s) which is of bounded type (1) in a half-
plane, which consist of an infinite set of inequalities asserting positive semi-
definiteness of an associated set of matrices. In [4, Theorem 2] he then
gives (2) necessary and sufficient conditions for f(H1/2) ⊂ H0.

The positivity condition (1.4) and conditional result (1.5) follow from a
simple function-theoretic result given below, which applies to a large class of
entire functions. Consider an arbitrary discrete set Ω in C which represents
the set of zeros of an entire function fΩ(z) counted with multiplicity. We
call a set Ω admissible if complex conjugate zeros % and % occur with the
same multiplicity, and the zeros satisfy the convergence condition

(1.7)
∑

%∈Ω

1 + |Re(%)|
1 + |%|2 <∞.

Let n(%) denote the multiplicity of the zero at %. The admissibility con-
dition implies that the product

(1.8) fΩ(s) := sn(0)
∏

%∈Ω
% real

(
1− s

%

)n(%) ∏

%∈Ω
Im(%)>0

[(
1− s

%

)(
1− s

%

)]n(%)

converges uniformly on compact subsets of C to an entire function fΩ(s).
Furthermore the Mittag-Leffler expansion

(1.9)
f ′Ω(s)
fΩ(s)

=
∑

%∈Ω
% real

n(%)
(

1
s− %

)
+

∑

%∈Ω
Im(%)>0

n(%)
(

1
s− % +

1
s− %

)

converges uniformly on compact subsets of C \ Ω. The assumptions also
guarantee that fΩ(s) is real on the real axis.

Theorem 1.1. Let Ω be an admissible zero set in C. The following two
conditions are equivalent.

(i) All elements % ∈ Ω have Re(%) ≤ θ.
(ii) The function f ′Ω(s)/fΩ(s) satisfies the positivity condition

(1.10) Re
(
f ′Ω(s)
fΩ(s)

)
> 0 for Re(s) > θ.

(1) A function of bounded type on a region U is a function which is expressible as the
quotient of two bounded analytic functions on U , with the denominator nonzero on U .

(2) Hinkannen [4, pp. 125–126] notes that ξ′(s)/ξ(s) is of bounded type in the half-
plane H1+δ for each δ > 0, and that the Riemann hypothesis is equivalent to (1.5). His
Theorem 2 shows that the property f(H1/2) ⊆ H0 can be tested for by behavior of the
function on any suitable infinite sequence of points arbitrarily far away from the boundary
of the half-plane H1/2.
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This result has an extremely simple proof, which appears at the begin-
ning of Section 2. The assumption that the zeros are symmetric about the
real axis can be relaxed, but one then needs a stronger convergence condi-
tion on the zeros because they cannot be grouped in conjugate pairs as in
(1.8) and (1.9).

Theorem 1.1 applies to ξ(s) by (1.3), since the nontrivial zeros of the
Riemann zeta function form an admissible set in the above sense. This gives
the Riemann hypothesis equivalence (1.5), and the positivity property (1.4)
follows from the zero-free region given by the Euler product. Theorem 1.1
also applies to analogous functions associated with zeta functions of alge-
braic number fields and algebraic function fields over a finite field.

The main object of this paper is to study a quantitative version of the
positivity condition (1.10) obtained by minimizing Re(f ′Ω(s)/fΩ(s)) on ver-
tical lines, i.e. by studying the function

(1.11) hΩ(σ) := inf
{

Re
(
f ′Ω(σ + it)
fΩ(σ + it)

)
: −∞ < t <∞

}
.

If θ := sup{Re(σ) : σ ∈ Ω} then hΩ(σ) is defined and continuous for σ > θ,
and hΩ(σ) ≥ 0. The behavior of hΩ(σ) depends on the vertical distribution
of the zeros. For example, if Ω contains finitely many zeros, then hΩ(σ) is
identically zero and the infimum in (1.11) is not attained.

We consider the special case where Ω are the nontrivial zeros of ζ(s),
where we set

(1.12) hQ(σ) := inf
{

Re
(
ξ′(σ + it)
ξ(σ + it)

)
: −∞ < t <∞

}
.

More generally, we consider the case where Ω are the nontrivial zeros of the
Dedekind zeta function ζK(s) of an algebraic number field K. The corre-
sponding function generalizing ξ(s) is

(1.13) ξK(s) := 1
2s(s− 1)(AK)sΓ (s/2)r1Γ (s)r2ζK(s)

in which AK := π−r1/2(2π)−r2 |dK |1/2 , where dK is the discriminant of K,
and nK = [K : Q] = r1 + 2r2, where r1 and r2 are the number of real and
complex conjugate fields of K, respectively. We set

(1.14) hK(σ) := inf
{

Re
(
ξ′K(σ + it)
ξK(σ + it)

)
: −∞ < t <∞

}
.

In Section 2 we prove that for all sufficiently large σ the infimum in (1.14)
is attained on the real axis.

Theorem 1.2. Let K be an algebraic number field of degree nK =
[K : Q]. For

(1.15) σ ≥ 1 + 9/n1/3
K
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one has

(1.16) hK(σ) =
ξ′K(σ)
ξK(σ)

.

This result gives

(1.17) hK(σ)→∞ as σ →∞.
The positivity of hK(σ) for some σ already implies that ζK(s) has infinitely
many complex zeros. This shows that Theorem 1.2 is not a pure function-
theoretic result but depends on specific properties of Dedekind zeta func-
tions. For the Riemann zeta function the bound above applies for σ > 10.
This bound can certainly be lowered. It seems likely that given any fixed pos-
itive ε, the result for hQ(σ) can be established unconditionally for σ > 1+ε,
by a finite computation.

In Section 3 we prove the following conditional result for the Riemann
zeta function.

Theorem 1.3. If the Riemann hypothesis holds, then

(1.18) hQ(σ) =
ξ′(σ)
ξ(σ)

for 1/2 < σ <∞.

The proof of this result depends on the behavior of the nontrivial zeros
of the zeta function near the real axis; it rests on the fact that the largest
gap by far between these zeros occurs at the real axis.

Is there an analogue of Theorem 1.3 for arbitrary number fields K?
The truth of such an analogue for a given number field K depends on the
locations of the nontrivial zeros of ζK(s) near the real axis. Such an analogue
cannot hold for any field K whose Dedekind zeta function has a zero at
s = 1/2, and it is known that some algebraic number fields K do have
ζK(1/2) = 0. This objection very likely does not apply to abelian extensions
of Q, because it is believed that all Dirichlet L-functions are nonzero at
s = 1/2. Various results and conjectures about the zeros of Dirichlet L-
functions with quadratic characters that lie near the real axis appear in
Katz and Sarnak [5, Section 4]. E. Bombieri has observed (3) that these
conjectures suggest that there exists a quadratic field whose Dedekind zeta
function does not satisfy the analogue of Theorem 1.3.

To summarize: Theorem 1.2 holds for all algebraic number fields, while
a generalization of Theorem 1.3 fails for some algebraic number fields. Could
it be the case that for all algebraic number fields K the infimum of

(3) The conjectures of Katz and Sarnak [5, Section 4] for quadratic characters seem to
suggest that for a positive proportion of primes q ≡ 1 (mod 4) the gap between the zeros
of L(s, χq) that are closest and second closest to the real axis will be 10 times the gap
between the closest zero and the real axis. Here χq is the quadratic character associated
with q.
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Re(ξ′K(s)/ξK(s)) is attained on the real axis outside the critical strip, i.e.
for σ > 1?

In connection with this question, one may note that in the formulation of
the Riemann hypothesis as (1.5) the critical strip 1/2 < Re(s) ≤ 1 appears
“invisible”. Is there any behavior of the function ξ′(s)/ξ(s) that distinguishes
the “critical strip” region 1/2 < Re(s) < 1 from the absolute convergence
region Re(s) > 1?

One can consider analogues of these results for zeta functions of complete
nonsingular projective curves defined over a finite field Fq, or, equivalently,
of zeta functions attached to an algebraic function field K in one variable
over Fq. Here there seems to be no nice analogue of either Theorem 1.2 or
Theorem 1.3. We discuss this situation in Section 4.

Theorem 1.3 implies, assuming the Riemann hypothesis, that

1
h(σ)

=
ξ(σ)
ξ′(σ)

.

This function is real-analytic and has convexity properties reminiscent of
partition functions in lattice gas models in statistical mechanics. It raises
the question whether there is any statistical mechanics model that produces
ξ(β)/ξ′(β) as a partition function in the real variable β = 1/(kT ). Knauf
[6] has formulated a sequence of one-dimensional lattice models on finite
lattices which has ζ(s− 1)/ζ(s) arising as a partition function in the ther-
modynamic limit (for Re(s) > 2), and Bost and Connes [1] have formulated a
C∗-dynamical system which has ζ(s) as a “partition function”. The analogy
with statistical mechanics would suggest that a value σ at which the infimum
of Re(ξ′K(s)/ξK(s)) jumps off the real axis should be regarded as marking
a “phase transition”, because hK(σ) will not be real-analytic at that point.

Finally, we note that the criterion (1.5) for the Riemann hypothesis is
equivalent to the assertion that the function

(1.19) g(τ) := i
ξ′(1/2 + iτ)
ξ(1/2 + iτ)

,

is a Pick function, i.e. a function holomorphic in the upper half-plane H =
{z : Im(z) > 0} such that Im(g(τ)) > 0 for all τ ∈ H. Pick functions have a
well-known integral representation which characterizes them (see Donoghue
[2, Chapter 2]). Such functions are associated with the moment problem on
the line. One can give an interpretation of the Riemann hypothesis in terms
of a trigonometric moment problem, after a change of variable s = 1/(1− z)
which maps the half-plane H1/2 into the open unit disk {z : |z| < 1}.

We mention one related result concerning ξ′(s)/ξ(s). Levinson and Mont-
gomery [7] used the nonpositivity of Re(ξ′(s)/ξ(s)) on Re(s) = 0 in proving
their Theorem 1 relating the number of zeros of ζ(s) and ζ ′(s) in the region
Re(s) < 1/2 (see their equation (2.3)).
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2. Positivity conditions. In this section we prove Theorems 1.1 and
1.2. The essential observation leading to Theorem 1.1 is that if c is a positive
real number, then

(2.1) Re
(

c

z − %
)

=
c(x− σ)

(x− σ)2 + (y − γ)2

where z = x+ iy and % = σ + iγ, so that

(2.2) Re
(

c

z − %
)
> 0 if Re(z) > Re(%).

The hypotheses of Theorem 1.1 ensure that f ′Ω(s)/fΩ(s) has a convergent
Mittag-Leffler expansion consisting entirely of terms of the form (2.1). If f(s)
were a general entire function of order 1 with f(1) 6= 0, then the Mittag-
Leffler expansion of f ′(s)/f(s) would ordinarily contain an extra additive
term As+B, and we need A = B = 0. (Actually when θ ≥ 0, the condition
that A and B both be nonnegative real numbers suffices.)

Proof of Theorem 1.1. (ii)⇒(i). This is immediate, since (1.19) implies
f ′Ω(s)/fΩ(s) is defined, so has no poles in Re(s) > θ.

(i)⇒(ii). By hypothesis f ′(s)/f(s) has a Mittag-Leffler expansion of the
form

(2.3)
f ′Ω(s)
fΩ(s)

=
∑

% real

1
s− % +

∑

Im(%)>0

(
1

s− % +
1

s− %
)
,

which converges uniformly on compact subsets of C disjoint from Ω. For
Re(s) > θ we can apply (2.2) term-by-term to conclude that

(2.4) Re
(
f ′Ω(s)
fΩ(s)

)
> 0 if Re(s) > θ,

as desired.

In what follows we consider the quantitative version of the positivity
condition (2.4) given by

(2.5) hΩ(σ) := inf
{

Re
f ′Ω(σ + it)
fΩ(σ + it)

: −∞ < t <∞
}
.

Lemma 2.1. Let Ω be an admissible set of zeros in C such that each zero
% satisfies 0 ≤ Re(%) ≤ 1, and set

θΩ := sup{Re(%) : % ∈ Ω}.
If the vertical distribution of the zeros has bounded gaps, then

(2.6) hΩ(σ) > 0 for all σ > θΩ .
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Furthermore if all % ∈ Ω have Re(%) = θΩ then

(2.7) lim
σ↘θΩ

hΩ(σ) = 0.

P r o o f. For the first assertion, the bounded gaps condition asserts that
there is a constant C such that for each real T the box

(2.8) {s : 0 ≤ Re(s) ≤ 1 and T ≤ Im(s) < T + C}
contains a zero in Ω. Given T let %0 = σ0 + iγ0 be a zero in the box (2.8).
Then by nonnegativity of each zero we have

(2.9)
f ′Ω(σ + iT )
fΩ(σ + iT )

≥ σ − σ0

(σ − σ0)2 + (T − γ0)2 ≥
σ − θΩ

(σ − 1)2 + C2 .

Thus

hΩ(σ) ≥ σ − θΩ
(σ − 1)2 + c2

> 0.

For the second assertion, suppose that all %j = θΩ + iγj ∈ Ω. Choose t such
that θΩ + it 6∈ Ω and set σ = θΩ + u with u > 0. Then

(2.10) hΩ(σ) ≤ Re
(
f ′Ω(σ + it)
fΩ(σ + it)

)
=
∑

j

u

u2 + (γj − t)2 ≤ u
∑

j

1
(γj − t)2 .

The hypotheses guarantee that
∑
γj 6=0 1/γ2

j < ∞, hence
∑
j 1/(γj − t)2 <

∞, and (2.7) follows.

We now specialize to the case where Ω is the set of nontrivial zeros of
a Dedekind zeta function ζK(s) of a number field K. In this case fΩ(s) =
2ξK(s), where ξK(s) is given by (1.13) and satisfies

(2.11) ξK(s) =
1
2

∏
%

′
(

1− s

%

)
,

where the product is taken over all nontrivial zeros of ζK(s) and ′ indicates
that they are to be grouped in complex conjugate pairs in the product. The
zeros of ζK(s) have bounded gaps as a consequence of their asymptotics,
hence Lemma 2.1 gives

(2.12) hK(σ) > 0 for σ > θ0.

Proof of Theorem 1.2. We start from the identity

(2.13)
ξ′K(s)
ξK(s)

= logAK +
1
s

+
1

s− 1
+
r1

2
· Γ
′(s/2)
Γ (s/2)

+ r2
Γ ′(s)
Γ (s)

+
ζ ′K(s)
ζK(s)

.

Here

(2.14)
ζ ′K(s)
ζK(s)

= −
∞∑
n=1

ΛK(n)n−s,

in which ΛK(n) is the generalized von Mangoldt function. This function is
zero except at prime powers, and at a prime power pk takes a value m log p,
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in which m is a nonnegative integer depending on k and on how the ideal
(p) splits in the ring of integers of K. Now

(2.15) Re
(
ζ ′K(σ + it)
ζK(σ + it)

)
= −

∞∑
n=1

ΛK(n)n−σ cos(t log n)

and since |cos(θ)| ≤ 1 the infimum of Re(ζ ′K(s)/ζK(s)) is attained at t = 0.
The important feature here is the nonnegativity of ΛK(n). For σ > 1
the function ζ ′K(σ + it)/ζK(σ + it) is an almost periodic function on ver-
tical lines, and in particular there are values {tn} with tn → ∞ where
Re(ζ ′K(σ + itn)/ζK(σ + itn)) approaches arbitrarily closely to the value
ζ ′K(σ)/ζK(σ).

Next we consider the gamma factors. Recall that Γ ′(s)/Γ (s) has the
Mittag-Leffler expansion

(2.16) ψ(s) :=
Γ ′(s)
Γ (s)

= −γ − 1
s

+
∞∑
n=1

(
1
n
− 1
s+ n

)

(cf. Erdélyi et al. [3, Sect. 1.7]). We therefore have

Re
(

1
2
ψ

(
s

2

))
= −1

2
γ − Re

(
1
s

)
+ Re

( ∞∑
n=1

(
1

2n
− 1
s+ 2n

))
(2.17)

= −1
2
γ − σ

σ2 + t2
+
∞∑
n=1

(
1

2n
− σ + 2n

(σ + 2n)2 + t2

)
,

and a similar expression holds for Re(ψ(s)). The real part is maximized on
the real axis, since each term in parentheses of this expression increases as
|t| → ∞.

The two remaining terms in (2.13) are poles at s = 0 and s = 1. The
pole term at s = 1 in (2.13) contributes

(2.18) Re
(

1
s− 1

)
=

σ − 1
(σ − 1)2 + t2

,

hence these values decrease to 0 as |t| → ∞. A similar effect comes from the
pole at s = 0. The remainder of the proof shows that for large enough σ
these decreases are offset by the contribution from the poles of the gamma
factors at the nonpositive integers. We first observe that each gamma factor
contributes a pole at s = 0 with residue −1, and we can immediately use
one of these poles to cancel out the effect of the pole at s = 0. Offsetting
the effect of the pole at s = 1 requires more work. We define

(2.19) g0(s) :=
1

s− 1
+

1
s

+
r1

2
ψ

(
s

2

)
+ r2ψ(s).

Then we have
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(2.20) Re(g0(σ + it)− g0(σ))

=
(

σ − 1
(σ − 1)2 + t2

− 1
σ − 1

)
+ (r1 + r2 − 1)

(
1
σ
− σ

σ2 + t2

)

+ r1

∞∑
n=1

(
1

σ + 2n
− σ + 2n

(σ + 2n)2 + t2

)
+ r2

∞∑
n=1

(
1

σ + n
− σ + n

(σ + n)2 + t2

)

≥ t2
[ −1

(σ − 1)((σ − 1)2 + t2)
+
∞∑
n=1

nK
(σ + 2n)((σ + 2n)2 + t2)

]
.

To obtain the last inequality, we dropped the (nonnegative) contribution
from the r1 + r2 − 1 poles at s = 0, and shifted the contribution of poles
at odd negative integers −2m+ 1 to the neighboring negative integer −2m,
using the inequality

(2.21)
1

τ + 1
− τ + 1

(τ + 1)2 + t2
≤ 1
τ
− τ

τ2 + t2

for τ > 0, thus producing a contribution of nK = r1 + 2r2 at each even
negative integer above.

It suffices to show that for σ > σ0 := 1 + 9/n1/3
K ,

(2.22) nK

∞∑
n=1

1
(σ + 2n)((σ + 2n)2 + t2)

≥ 1
(σ − 1)((σ − 1)2 + t2)

.

We claim that it suffices to verify (2.22) at σ = σ0 and t = 0. If so, then it
holds at any σ ≥ σ0 and t = 0, because the right side of (2.22) is multiplied
by a factor

(σ0 − 1)3

(σ − 1)3 =
(

1
1 + σ−σ0

σ0−1

)3

,

while the nth term on the left side is multiplied by the larger factor

(σ0 + 2n)3

(σ + 2n)3 =
(

1
1 + σ−σ0

σ0+2n

)3

.

Next, if σ is fixed and (2.22) holds for t = 0, then it holds for all t,
because for a given t the right side of (2.22) is multiplied by a factor
1/
(
1 +

(
t

σ−1

)2)
, while the nth term on the left side is multiplied by a larger

factor 1/
(
1 +

(
t

σ+2n

)2)
. This proves the claim.

Finally, (2.22) holds for σ = σ0 and t = 0 by taking the first five terms
on the left side and using σ0 ≤ 10 to get

(2.23) nK

(
1

1728
+

1
2744

+
1

4096
+

1
5832

+
1

8000

)
≥ nK

729
,

as required.
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Remarks. (1) The proof of Theorem 1.2 gives

(2.24) lim
σ→∞

hK(σ) =∞.
Indeed, an easy calculation using (2.16) shows that

(2.25) ψ(σ) ≥ 1
2 log σ for σ ≥ 10,

which yields (2.24).
(2) The proof of Theorem 1.2 above implies that the infimum defining

hK(σ) is attained for σ > 1. For each fixed σ > 1 the sum in (2.20) is
nonnegative for all sufficiently large t.

(3) The inverse cube-root dependence on nK in (1.15) seems to be best
possible using the gamma factor information alone. To improve this result
towards σ > 1 it seems necessary to make use of an extra nonnegative
contribution coming from Re(ζ ′K(s)/ζK(s)) near the real axis. This in turn
depends on how small primes (p) split in the field K.

3. Proof of Theorem 1.3. Our object in this section is to show, under
the assumption of the Riemann hypothesis, that

(3.1) Re
(
ξ′(σ + it)
ξ(σ + it)

)
≥ ξ′(σ)

ξ(σ)
for all σ > 1/2.

In fact we show that equality holds only when t = 0. We have

Re
(
ξ′(σ + it)
ξ(σ + it)

)
=

∑

%=β+iγ

σ − β
(σ − β)2 + (t− γ)2 ,

where % = β + iγ runs over all nontrivial zeros of ζ(s). Under the Riemann
hypothesis, % = 1/2 + iγ, and we have

(3.2) Re
(
ξ′(σ + it)
ξ(σ + it)

)
=
(
σ − 1

2

) ∑

%=β+iγ

1
(σ − 1/2)2 + (t− γ)2 .

The proof of Theorem 1.3 requires a number of different estimates, which
are presented in a series of lemmas. The proof of Theorem 1.2 established
(3.1) unconditionally when σ ≥ 10, with equality holding only if t = 0. We
therefore need only consider the region 1/2 ≤ σ ≤ 10.

We first consider values of t near the real axis with |t| < 21.

Lemma 3.1 (Unconditional). For t 6= 0, the condition

(3.3)
1

σ2
0 + (t+ γ)2 +

1
σ2

0 + (t− γ)2 ≥
2

σ2
0 + t2

holds if and only if

(3.4) 3γ2 ≥ σ2
0 + t2.

The cases of equality coincide.
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P r o o f. Since t 6= 0 the right side of (3.3) is finite, hence the inequality
holds if any denominator vanishes, and (3.4) holds in this case. Otherwise
we can clear denominators, to find that (3.3) is equivalent to

(σ2
0 + t2)(2σ2

0 + 2t2 + 2γ2) ≥ 2(σ2
0 + (t+ γ)2)(σ2

0 + (t− γ)2).

Dividing by two and simplifying yields

3γ2t2 ≥ σ2
0t

2 + t4.

Since t 6= 0 we can divide by t2 to obtain (3.4). All steps are reversible.

Lemma 3.2. (Assume RH.) For 1/2 < σ ≤ 10, the inequality

(3.5) Re
(
ξ′(σ + it)
ξ(σ + it)

)
>
ξ′(σ)
ξ(σ)

,

holds for 0 < |t| ≤ 21.

P r o o f. Each nontrivial zero % = β+ iγ of ζ(s) has |γ| > 14.134. We will
apply Lemma 3.1 with conjugate complex pairs of zeros. For σ0 = σ − 1/2
and |t| ≤ 21 we have

3γ2 ≥ 3(14)2 > (10)2 + (21)2 = 541 ≥ σ2
0 + t2

so the condition (3.4) holds with strict inequality. Assuming the RH, the
formula (3.2) gives

(3.6) Re
(
ξ′(σ + it)
ξ(σ + it)

)

=
(
σ − 1

2

)∑
γ>0

(
1

(σ − 1/2)2 + (t− γ)2 +
1

(σ − 1/2)2 + (t+ γ)2

)

>

(
σ − 1

2

)∑
γ>0

2
(σ − 1/2)2 + γ2 =

ξ′(σ)
ξ(σ)

,

as required.

The next three lemmas deal with the range 1/2 ≤ σ ≤ 9/2 and |t| ≥ 21.

Lemma 3.3. (Assume RH.) For all σ ≥ 1/2,

(3.7) 0 ≤ ξ′(σ)
ξ(σ)

≤ 0.047
(
σ − 1

2

)
.

P r o o f. We have

(3.8)
ξ′(s)
ξ(s)

=
(
ζ ′(s)
ζ(s)

− 1
s− 1

)
+

1
2
· Γ
′(s/2)
Γ (s/2)

+
1
s
− 1

2
log π.

This yields

(3.9)
ξ′(1)
ξ(1)

=
1
2
γ − log 2 + 1− 1

2
log π ' 0.023095,
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where γ ' .57721 is Euler’s constant. Here we used

ζ ′(s)
ζ(s)

= − 1
s− 1

+ γ +O(s− 1),

and
1
2
· Γ
′(1/2)
Γ (1/2)

= −γ
2
− log 2

(see Erdélyi et al. [3, Sect. 1.7.3] and Patterson [8, p. 34]).
Under the Riemann hypothesis, we have

(3.10)
ξ′(σ)
ξ(σ)

=
∑
γ>0

{
1

σ − % +
1

σ − %
}

=
∑
γ>0

2(σ − 1/2)
(σ − 1/2)2 + γ2

where % = 1/2 + iγ runs over all nontrivial zeros of ζ(s) with γ > 0. This
gives

(3.11) 0 ≤ ξ′(σ)
ξ(σ)

≤
(∑
γ>0

2
γ2

)(
σ − 1

2

)
.

Substituting σ = 1 in (3.10) yields

(3.12)
∑
γ>0

2
γ2 + 1/4

= 2
ξ′(1)
ξ(1)

' 0.046190.

Since the smallest γ ' 14.134 has 4γ2 > 796, we obtain
∑
γ>0

2
γ2 ≤

∑
γ>0

2
γ2 + 1/4

(
γ2 + 1/4

γ2

)
≤ 797

796
(.046190) < 0.047,

as desired.

Lemma 3.4. (Assume RH.) If 1/2 ≤ σ ≤ 9/2, then for a given real t the
inequality

(3.13) Re
(
ξ′(σ + it)
ξ(σ + it)

)
>
ξ′(σ)
ξ(σ)

is valid if either of the following conditions hold.

(i) There is a nontrivial zero % = 1/2 + iγ of ζ(s) with |t− γ| ≤ 2.
(ii) There are two nontrivial zeros or a double zero of ζ(s) with |t−γ| ≤ 5.

P r o o f. Assuming the RH, we can use formula (3.2). Thus we have

(3.14) Re
(
ξ′(σ + it)
ξ(σ + it)

)
≥
(
σ − 1

2

)(∑

%∈S

1
(σ − 1/2)2 + (t− γ)2

)
,

where the sum runs over a given subset S of the zeta zeros, since all terms
discarded are nonnegative.
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In case (i) let the set S consist of the zero satisfying |t − γ| ≤ 2. It
contributes

1
(σ − 1/2)2 + (t− γ)2 ≥

1
42 + 22 =

1
20

= 0.05.

In case (ii) let the set S consist of the two zeros (or a double zero)
satisfying |t− γ| ≤ 5. These contribute

1
(σ − 1/2)2 + (t− γ1)2 +

1
(σ − 1/2)2 + (t− γ2)2 ≥

2
42 + 52 =

2
41

> 0.048.

In either case we obtain

Re
(
ξ′(σ + it)
ξ(σ + it)

)
≥ 0.048(σ − 1/2),

and Lemma 3.3 yields the result.

Lemma 3.5 (Unconditional). For each |t| ≥ 21 at least one of the follow-
ing two conditions hold.

(i) There exists a nontrivial zero % = β + iγ of ζ(s) with

(3.15) |t− γ| ≤ 2.

(ii) There exist two nontrivial zeros %j = βj + iγj (j = 1, 2) or a double
zero of ζ(s) such that

(3.16) |t− γj | ≤ 5 for j = 1, 2.

Remark. It is a result of Littlewood that the spacing between consec-
utive ordinates γj of zeta zeros goes to zero as T → ∞ (Titchmarsh [9,
Theorem 9.11]), so the result above holds for |t| exceeding some bound; the
lemma gives an explicit bound.

P r o o f (of Lemma 3.5). Since the zeros are symmetric around the real
axis, it suffices to consider the case t ≥ 21. We verify the lemma directly
for 21 ≤ t ≤ 168π + 5 < 525 by inspection of a table of zeta zeros; in fact
condition (i) is needed for 21 ≤ t ≤ 21.02 and after this there is no gap of
size 5 between any consecutive zeta zeros starting with γ2 ' 21.02.

For the remaining range we use numerical estimates of Turing [10]. Let
N(T ) count the number of zeros % with 0 < Im(%) < T and define the
quantity πS(T ) to measure the argument of ζ(1/2+iT ) obtained by analytic
continuation on a horizontal line from ∞+ iT . The quantity S(T ) satisfies
the equation

(3.17) N(T ) = 2κ
(
T

2π

)
+ 1 + S(T ),
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in which

(3.18) κ(τ) :=
1

4πi
log
(
Γ (1/4 + πiτ)
Γ (1/4− πiτ)

)
− 1

4
τ log π.

Turing [10, Theorem 1] observes that

(3.19) κ(τ) = 1
2τ log τ − 1

2τ − 1
4 + ε(τ)

with

(3.20) |ε(τ)| ≤ 0.006/τ for τ > 64.

Now set

(3.21) S1(T ) =
T\
0

S(u) du.

Turing [10, Theorem 4] shows that if

(3.22) t2 ≥ t1 ≥ 168π

then

(3.23) |S1(t2)− S1(t1)| ≤ 2.30 + 0.128 log
(
t2
2π

)
.

If there is no zeta zero with t1 < γ < t2 thenN(T ) is constant for t1 < T < t2
and so S(T ) must vary like −2κ

(
T
2π

)
. Assuming t2 − t1 is small compared

to t1, (3.19) shows that S(T ) decreases linearly with slope approximately
− 1

2π log t2
2π ; if carried on too long this will contradict (3.23).

We first show that if there is no ordinate of a zeta zero with t2 > γ >
t1 ≥ 168π and if S(T ) has one sign over this interval then

(3.24) t2 − t1 ≤ 10/3.

Suppose not, and consider t2 = t1 + 10/3. Since N(T ) is constant, we
obtain

S1(t1 + 10/3)− S1(t1) =
t1+10/3\

t1

S(u) du = −
10/3\

0

(
2κ
(
t1 + u

2π

)
− C0

)
du

where C0 = N(t1)− 1. Using the estimate (3.19) and the fact that S(u) has
one sign yields the estimate

|S1(t1 + 10/3)− S1(t1)| ≥
10/3\

0

u

2π

(
log
(
t1
2π

)
− 1
)
du− 3.5

(
0.006
t1

)
(3.25)

≥ 11.11
4π

(
log

t1
2π
− 1
)
− 0.0001

≥ 0.884 log
t1
2π
− .886.
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Now t1 ≥ 168π gives log t1
2π ≥ 4.4 and log t1

2π ≥ log t2
2π − .01, hence (3.25)

contradicts (3.23). Thus (3.24) follows.
Next suppose that t ≥ 168π + 5 and that (i) does not hold, so that

N(T ) is constant on the interval [t − 2, t + 2]. Inside this interval S(T )
must have a zero-crossing in each subinterval of length 10/3; hence it must
have a zero-crossing at some point t + x with |x| ≤ 4/3. Since S(T ) varies
like −κ( T2π

)
+ C0, (3.19) implies that all other zero-crossings of S(T ) in

[t− 2, t+ 2] are localized within a distance ε = 0.006/(t1 log(t1/2π)) of this
one.

We now assert that there must be a zeta zero with ordinate in each of
the intervals [t − 5, t] and [t, t + 5]. If there were no zero on [t − 5, t] then
N(T ) is constant there, hence S(T ) varies approximately linearly on the
interval, and its zero-crossings are located within .001 of t+ x (if t+ x falls
in the interval) and otherwise it has no zero-crossings. Since |x| ≤ 4/3, the
quantity S(T ) has constant sign on [t− 5, t− 5 + 10/3], and this contradicts
(3.24). Thus there is a zeta zero with ordinate in [t− 5, t− 2]. By a similar
argument there is a zeta zero with ordinate in [t + 2, t + 5], so that (ii)
holds.

Lemma 3.6 (Unconditional). If σ ≥ 9/2 and |t| ≥ 21, then

(3.26) Re
(
ξ′(σ + it)
ξ(σ + it)

)
>
ξ′(σ)
ξ(σ)

.

P r o o f. The proof of Theorem 1.2 showed that (3.26) holds whenever

(3.27)
∞∑
n=1

1
(σ + 2n)((σ + 2n)2 + t2)

>
1

(σ − 1)((σ − 1)2 + t2)

(see (2.20)). Consider the ratio of a given term on the left side of (3.27) to
the term on the right side, namely

R(σ1, t) :=
σ1t

2 + σ3
1

(σ1 + k)t2 + (σ1 + k)3 ,

in which we set σ1 = σ − 1 and k = 1 + 2n. For t > 0, we have

d

dt
R(σ1, t) =

2t(σ1(σ1 + k)3 − σ3
1(σ1 + k))

[(σ1 + k)t2 + (σ1 + k)3]2
> 0,

hence each ratio is minimized for fixed σ1 by minimizing t over the allowed
range. Also

d

dσ1
R(σ1, t) =

kt4 + k3t2 + 3kσ2
1(σ1 + k)2

[(σ1 + k)t2 + (σ1 + k)3t2]
> 0

so each ratio is minimized for fixed t > 0 by minimizing σ1. To prove the
lemma it therefore suffices to verify (3.27) at σ = 9/2, t = 21, and here
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one finds that the sum of the ratios for the first three terms already exceeds
one.

Proof of Theorem 1.3. Theorem 1.2 covers the range σ ≥ 10. Lemma 3.2
covers the range 1/2 ≤ σ ≤ 10 and |t| ≤ 21. Lemmas 3.4 and 3.5 together
cover the range 1/2 ≤ σ ≤ 9/2 and |t| ≥ 21. Lemma 3.6 covers the remaining
range 9/2 ≤ σ ≤ 10 and |t| ≥ 21.

4. Function fields over finite fields. In this section we briefly describe
without proof analogous results for zeta function of an algebraic function
field K of one variable over a finite field Fq, i.e. the zeta function of a
nonsingular projective curve defined over Fq. We have

(4.1) ζK(s) =
PK(u)

(1− u)(1− qu)
, where u = q−s,

and

(4.2) PK(u) =
2g∏

j=1

(1− θju) ∈ Z[u]

is a polynomial of degree 2g which satisfies

PK

(
1
qu

)
= q−gu−2gPK(u).

The Riemann hypothesis for curves, proved by Weil, asserts that |θj | = q1/2

for 1 ≤ j ≤ 2g.
The analogue of ξ(s) in the function field case is given by the function

(4.3) ξ̃K(s) := PK(q−s).

This function is periodic with period 2πi/ log q, and all its zeros lie on the
line Re(s) = 1/2. Theorem 1.1 applies to give

(4.4) Re
(
ξ̃′K(s)

ξ̃K(s)

)
> 0 for Re(s) > 1/2.

We set

h̃K(σ) := inf
{
ξ̃′K(σ + it)

ξ̃K(σ + it)
: −∞ < t <∞

}
.

One can prove that h̃K(σ) is identically zero if the curve has genus g = 0.
For genus g ≥ 1 one has h̃K(1/2) = 0 and h̃K(σ) is positive for σ > 1/2
and approaches the finite limiting value 2g as σ → ∞. (Presumably h̃K(σ)
is increasing for σ > 1/2 but I have not proved this.) The infimum defining
h̃K(σ) is attained at infinitely many values, which form a periodic set with
period 2πi/ log q.
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There is no obvious analogue of Theorem 1.2. The proof of that result for
Dedekind zeta functions used the effects of the poles coming from gamma
factors to compensate for the effect of the pole at s = 1. In the function field
case the poles at s = 0 and 1 are still present but there is no compensating
gamma factor.

One might consider that an analogue of Theorem 1.3 would be to require
that for Re(s) > 1/2 the minimum is attained on the line Im(s) = 0. One
can construct an abelian extension of Fq(T ) whose zeta function has a zero
at s = 1/2, so that this analogue of Theorem 1.3 fails. The example is
the function field of the elliptic curve Y 2 + Y = T 3 + a over F4, where
a does not lie in F2; similar examples exist over Fp2 . One can likely find
examples for prime p using the reduction (mod p) of the CM elliptic curve
Y 2 = T 3 − T , choosing p so that the curve has “few” points. A possible
analogue of “abelian extension” in the function field case for Theorem 1.3
would be extension of the field of constants. If the infimum defining h̃K(σ)
is attained on the line Im(s) = 0 then the same would hold under extension
of the field of constants of K.

Acknowledgements. I am indebted to E. Bombieri, B. Conrey and
I. Duursma for helpful comments. E. Bombieri and I. Duursma suggested
function field counterexamples to the analogue of Theorem 1.3 using elliptic
curves.
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