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1. Introduction and notation. In 1929 W. Tartakowsky [T] proved
a remarkable result which stated that all forms in a genus of positive def-
inite integral quadratic forms in five or more variables represent the same
sufficiently large numbers. Namely

THEOREM 1.1. Let f(z) = f(x1,...,2m), m > 5, be a positive definite
integral quadratic form. Let N be a natural number such that N is p-adically

represented by f(z) for all prime numbers p. Then there exists a constant
C such that if N > C the equation f(x) = N is soluble in 7.

Tartakowsky’s work does not lead to any estimate for the size of C.
Effectiveness of this result was first addressed by G. L. Watson in 1960 [W].
Watson proved, using a combination of analytic and arithmetic methods,
that if N satisfies the conditions in Tartakowsky’s Theorem but f(z) = N
is not soluble in Z then N < |d|*/(m=D+1/m if 5 < m <9, and N < |d|
when m > 10. Here d denotes the determinant det f.

In Watson’s work the implied constants were not explicitly given. In
fact, the question of estimating them was posed in Kitaoka’s book [Ki3|
(Problem 2, p. 254), and this seems not to have been addressed before. The
aim of this paper is to present an explicit estimate for the size of the constant
C' in Tartakowsky’s Theorem (see Theorem 3.1 and Corollary 3.1), thereby
answering the case n = 1 of Kitaoka’s question. This is done by using purely
arithmetic arguments as opposed to Tartakowsky’s and Watson’s previous
work which rely on analytic results.
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Although the basic approach is to follow the arithmetic proof in [Kn] (see
also [HKK]), exploiting the particular case at hand of representing numbers
(instead of forms), it still requires substantial effort (for us) to actually bear
down the numerous details. For the local integral representations we use
O’Meara’s results in [OM1], [OM2]. Keeping careful tracks of the detailed
estimates occurring at various stages we produce the needed global estimate.
Once we have obtained this initial global estimate we go further on refining
some of the local arguments involved to improve them (see table (16) below).
These new improvements involve rather non-trivial and necessarily tedious
arguments. However, they allow us on the one hand to obtain a better value
for the exponent of the determinant in Watson’s work for m = 5,6 and on
the other hand, for those forms whose determinants do not involve primes
with too large exponents, our improved results yield still better estimates.
As Kitaoka pointed out to us, our main result already can be applied to
his Theorem in [Ki2] (see also [Ki3], Problem 2 (C2), p. 254) to obtain
for n = 2 an exponent of 25 instead of the value 32.2 stated there. Our
refinement applied to the case m = 5 further improves this value to 21.4.

We took particular care in the proofs in these sections so that the results
remain valid over any dyadic unramified prime. It follows then that our main
theorem and the refinement arguments also remain valid for any totally
real algebraic number field whose absolute discriminant is an odd integer.
This is an added advantage of the present approach whereas the analytic
component of Watson’s does not as easily render this extension without
more measurable effort.

In general we follow the terminology and notations from [OM2]. It is
convenient to introduce the following notations. Since we are concerned with
positive definite spaces we always use p to refer to a finite prime. By («)
we mean either a rank one local or a global free lattice (depending on the
context) with a basis vector u such that Q(u) = «, and by [a] we mean a
corresponding local or global space. Similarly, if X is a subset of a lattice
then (X)), resp. [X], denotes the sublattice, resp. subspace generated by X.
If o« and 8 are two non-zero scalars, then o =  means that (a) = ().

Let O be the ring of integers in an unramified dyadic local field F' (i.e.,
the element 2 is a prime element of O), and let A be an ideal of O. Then
an 2A-modular O-lattice L is proper if its norm nlL equals 2; otherwise, it is
improper. For convenience, we shall also refer to L as v-modular if the order
ord, 2 is v. When v = 0 it is called unimodular.

Recall from [OM2] that A(«, 5) denotes the inner product matrix of a
free binary unimodular lattice J = Oz + Oy where Q(z) = a, Q(y) = S,
B(z,y) = 1. Denote by H the hyperbolic plane A(0,0) and by A the
anisotropic 20-maximal lattice A(2,2p). If a lattice L has an inner prod-
uct matrix A, then the scaled lattice L* has aA for its inner product ma-
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trix. A binary unimodular O-lattice is of one of three types: (i) A(1,0) and
A(1,4p) are even, (ii) H and A are odd, and (iii) A(e,26) is mized.

2. Some lemmas. We give in this section some lemmas which are needed
for the proof of the main result. Unless otherwise stated, all lattices are
non-degenerate and are defined over Z and their scales are contained in Z.

LEMMA 2.1. Let L be a positive definite lattice of rank | > 3, and q
a prime such that Ly is isotropic. There is a positive integer v such that
L represents every lattice N which is representable by some member in the
spinor genus spnq” L. If 1 > 4 then spnq” L may be replaced by gen q" L.

Proof. The first part is Lemma 1.2 of [HKK]. The second assertion is
because in the extra condition on the dimension of L, every integer repre-
sentable by the genus is automatically representable by every spinor genus. =

LEMMA 2.2. Let M be a positive definite lattice of rank m > 4 and
determinant D. For each prime p, we have

Q(M,) D plorde D/(m=3)7, if p£2,
Q(M,) D 2lord2 D/(m=3)I+17,  if p =2,

Proof. If p # 2 then M), = (p*'p1) L ... L (p°" ) where s; < ... <
sm and p;’s € Z;. By the theory of non-dyadic integral local representa-
tions (see [OM1]) we conclude that Q((p**p1) L ... L (p**pu4)) contains
plorde D/(m—3)}Zp‘

The case p = 2 is quite a bit more complicated and we leave it for
Section 5. m

LEMMA 2.3. Let K be a sublattice of L of index t on a space V' of dimen-
sion greater than one. There is a class number relation h(K) < A(t)h(L),
where \(t) is the number of sublattices of L of index t.

Proof. Let K = Kj,..., K, be lattices from the distinct classes in the
genus of K. Then K; = A;K for some A; € Jy. Set L; := A;L. Upon
replacing A; by o/; for a suitable o € Py = OT(V), we may suppose that
Li = Lj if and only if LZ = Lj.

We observe that if [L : K] = t, then clearly [L; : K;] = ¢ for all j. On
the other hand, should K; C L; then still [L; : K;] = t. To see this, note
that

K;CL;CL¥ CK}.
We also have
K;CL;C LY CKT.
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It follows that
det Kj =det Lj - [Lj : Kj)[K] + L] = det L; - 2
and
det K; = det Lj - [L; « Ki][K} : L¥] =det L; - [L; : Ki]*.
Since det K; = det K, the claim follows, and hence also the assertion of the
lemma. =

LEMMA 2.4. Let M be an integral Z-lattice, N a sublattice and K = N+
in M. Then det K divides det M - det N.

Proof. This is well known. See Lemma 2.26 of [Kil]. m

LEMMA 2.5. Let p # 2 and M, be a Zy-lattice of rank m > 5 and
determinant D. Assume the scale sM), equals Z,. Then:

(i) if ordy D < m — 2 then Q(M,) = Zy;
(ii) if ord, D < m —4 and v is a primitive vector in M, with o, :=
ord, Q(v) = 0,1 then Q((v)*) =Z,.

Proof. (i) If ord, D < m — 3, then M, contains a ternary unimodular
component so that Q(M,) = Z,. If ord, D = m — 2, then M, = M,(0) L X
where M,(0) denotes the first (unimodular) Jordan component of M, of
rank mg > 2. The assertion is clear if mqg > 3. Should mg = 2 then X is a
pZy-modular lattice of rank m — 2 and Q(X) 2 pZ, .

(ii) The assertion is clear if mo = rank(M,(0)) > 5. So, assume that
ord, D = m — 4,mo = 4 and rank(X) = m — 4. Set K(v) := (v)* in M,,.
For m > 6, we have K(v) O (binary unimodular) L (binary pZ,-modular)
and then Q(K (v)) = Z,.

For m = 5, the assertion is easy to see if the Witt index of M,(0) is 2.
But, if M,(0) = A(0,0) L (1,—-A) then X = (pe) for some € € Z. Here A
is a non-square unit in the notation of [OM2]. Write v = u + 2z, u € M,(0),
z € X. If u is a primitive vector then we may assume that v = u by a suitable
basis change and then by the hypothesis on Q(v), the conclusion is clear. If u
is imprimitive then z must be primitive and so o, = ord, Q(z) = 1. A change
of basis allows us to assume that v € A(0,0) and then K (v) = (-=Q(v)) L
(1,—A) L (pe) and we have the desired conclusion. m

LEMMA 2.6. Let My = M5(0) L X, where M5(0) is an initial (unimodu-
lar) Jordan component of a 2-adic lattice My. Assume that nMs(0) = 2Z,.
Then:

(i) if M2(0) 2 A and v € My has orda(Q(v)) = 1 then Q(My) =
Q((v) L (v)h);

(ii) if M2(0) = H and nX = 2Zy then the same conclusion as in (i)
holds;
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(iil) if v; € H (j = 1,2) and ord2 Q(vj) = j then Q({v1) L (v1)t)U
Q(v2) L (v2)") = Q(H) = 2Zs.

Proof. (i) Select v € M such that B(v,v) = 1 and Zyv+Zov = A. This
is possible because the orthogonal group O(Ms) acts transitively on the set
of vectors whose lengths have order 1. The assertion follows from the fact
that Q(A) = Q((v) L (v —Q(v)v)).

(ii) This follows from the equivalence of H L (2¢) and A L (2eA), for
e € Z5 and A = det A by Theorem 93.29 of [OM2].

(iii) Let {¢,n} be a hyperbolic pair representing H. Since ords Q(v;) = j,
j = 1,2, we see that v; is primitive in H, and (v;) L (v;)* is isometric
to 27A(1,0). Now, Q({v1) L (vi)t) = 2Z5 U 8Zy and Q((v2) L (vg)?)
contains 475 , yielding the assertion. m

3. The main result. Let

fln, mm) = Y awy;,  ag €l

1<i<j<m

be a positive definite primitive integral quadratic form; i.e., ged(a; ;) = 1.
If f is classic (i.e., a;; € 2Z for i # j) the associated inner product matrix
is certainly a primitive integer matrix. If f is non-classic then the matrix
corresponding to 2f is primitive. Consider therefore a positive Z-lattice M
of rank m > 5 which is primitive in the sense that its scale sM is Z. This
implies that at every prime p the initial component M,(0) of each Jordan
decomposition of M, is unimodular. Let D = det M. We fix a prime ¢ not
dividing 2D and let T := {p|2D : ord, D > m — 3} U {q}. From Lemma 2.2
we have

lord, D/(m73)]Zp for p 7& 2’

QM) 2p
ZLg for p = gq,

Q(M,)
Q(My) D 2lord2 D/(m=3)[+17,  for p = 2.

V)

For each p € T\ {2, ¢} select a primitive vector v(p) € M, such that
Q(v(p)) € Z,. At g, choose v(q) € M, to be one of the four vectors so that
ord, Q(v(g)) <1 and Q(v(q)) spans ZX U ¢Zy mod Z}?. If nMy = Zy then
we may also select v(2) with Q(v(2)) € Z5. Otherwise, the initial Jordan
component M(0) of Ms is improper unimodular. There are two cases to
distinguish. First, whenever M5(0) D A, we select a vector v(2) € My with
Q(v(2)) = 2. Lemma 2.6(i) shows that Q((v(2)) L (v(2))t) = Q(My).
Lemma 2.6(ii) says this case also includes the set-up where M2(0) = H and
n(Mz(0)1) = 2Z,. On the other hand, when n(M(0)1) C 4Z;, the isometry
class of M5(0) is uniquely determined by Theorem 93.29 of [OM2]|. Then
there are two choices for the vector v(2) := v;(2) € H (j = 1,2) according
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to Lemma 2.6(iii). Hence, for p € T we see that

0 if I‘IMQ = ZQ,
(1) ords Q(v(2)) =<1 if M5(0) D A,
1,2 if My(0) = H, n(Mo(0)+) C 4Zo,.

Let p € T. By the Chinese Remainder Theorem, select v € M such that
v(p) (mod pM,) if p#2,q,

v(q) (mod ¢*M,) ifp=gq,
v(2) (mod 2My) if p=2, M>(0) 2 H,

v;(2) (mod 27 M) if p=2, Ma(0) 2 H, n(M(0)) C 4Zs.
Note that ord, Q(v) = ord, Q(v(p)) for all p € T.

Let M := Zei + ...+ Ze,, be expressed in a Minkowski reduced basis
(Chap. XII of [C], §1.3 of [Kil]). Write v = ) b;e;, b; € Z. The requirements
from (2) on v are such that we can choose v so that
(3) 0 < b; < 2¢*(Rad D)

for each i, where Rad D := HmD,peT p. We have
Q(v) = Blei, €;)bib;.
2

From reduction theory (Lemma 1.3.3 of [Kil]), one sees that
(B(ei, e;)) < mdiag(Q(er), -, Qem)) < mQ(em) .

Therefore,
Q(v) < m*Q(e,,) max b?.

Since Q(en,) < I}, D, where

, g m m 2 ? m—4
(@) - <W> {F<2+ 2)} )
it follows that

(5) Q(v) < m*I,2*°¢*D(Rad D).

Let K (v) = (v)* and define for this vector v € M the sublattice N (v) :=
"W K (v) L (v) where r(v) satisfies the conditions of Lemma 2.1. (Note that
at most eight vectors v € M are used! See also the remark at the end of this
section.) We claim that

Q(gen M) = | JQ(gen N(v)).

To see this, let a € Q(genM). If p ¢ T then 0 = ord, D < m — 4 and
q¢"WK(v), = K(v), and then from Lemma 2.5(ii) we have Q(K(v),) = Zp.
If pe T\ {2,q} then Q(M,) = Q(N(v),) by the construction of v close to
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v(p). At p = ¢, any element from Z, belongs to the square-class of one of
the four values Q(v(q)) constructed above. At p = 2, the claim follows from
Lemma 2.6.

Next, we want to show that for each vector v so constructed, one has
Q(gen N(v)) C Q(M) apart from finitely many exceptions.

By Lemma 2.4, we have ord, det K (v) < ord, D + ord, Q(v) for all p.
Applying Lemma 2.2 to K (v) we have for p € T the following:

Q" VK (v), )320"1”d » Dm0z, p# 2,4,
(6) Q" K (v)g) = ¢°"Zy, P=4
Qlq r(v)K( )2) 2 2(2+ord2 D)/m=)+17,  p=2.

For p ¢ T, (¢"™K(v)), = K(v), contains at least a ternary unimodular
component so that Q(¢"" K (v),) = Z,.

Since Q(q" WK (v)p) contains an ideal according to Lemma 2.2, each
element of Q(N(U)p) belongs to a finite number of sets of the form

Q" E()p) +Qu)ey,  0# ¢, €Zy.

For each p define h,, to be the least integer such that p"*Z, C Q(¢"") K (v),).
It follows from Lemma 2.2 that

hp =0 iftpegT,
M) < lord, D/(m — 4)] if peT\{2,q},
h 2r if p=gq,

z [(24+orde D)/(m—4)]+1 ifp=2.

Select « € Z such that = ¢, (mod pr), p € T except when p = 2 and
nMy = Zsy in which case we require that x = ¢y (mod 2"2+1). Then

where
(9) Ry (r,q, D) == 2'm’T},q"" ™ D(RadD)* ] »™

pET\{q}

Here r is the maximum value of the r(v)’s.

Suppose next that A € Q(gen M). Then there exists a v such that A
belongs to Q(q" ™ K (v),) + Q(U)cf) for some 0 # ¢, € Z, at each p € T.
Suppose further that A > R,,(r,q, D). We have

(10) 0<A-Q)a* =A—Q(v)e, +Qv)(c; — a?),

which belongs to Q(q¢"K(v),) for p € T\ {2,¢q} by the choice of = and
Hensel’s lemma.
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Consider p = 2. Suppose first that nMy = Zs. Then ordy(Q(v(2))) =0
and hy < [orde D/(m — 4)]. If A — Q(v)c3 & 2"2Zy then from (9) and
c2—2% = (co—2)(ca—2+22) =0 (mod 2"2%2) when x = ¢ (mod 2"271), we
see that A —Q(v)z? is represented by (¢"(") K (v))s. A similar argument goes
through when nM, C 2Z,, needing only that x = ¢, (mod 2"2). Therefore,
we see that A — Q(v)2? is always represented by the genus gen(¢" ") K (v)),
and hence by spn(q"(") K (v)) since m > 5. It follows that K (v) represents
A — Q(v)z? by Lemma 2.1, and A is represented by K(v) L (v) C M as
long as A > R, (r,q, D).

Using the notations of hy,r,q, I}, Rm(r, ¢, D) explained in this section,
our main result is the following:

THEOREM 3.1. Let M be a positive definite primitive integral quadratic
Z-lattice of rank m > 5 and determinant D, and A a positive integer rep-
resentable by M, for every prime p. There is a constant R, (r,q,D) from
(9) in the notation of this section such that if A > Ry, (r,q, D) then A is
represented by M. m

REMARKS. (i) Consider the quantity

P(m,D):=(RadD)* [] »*
q7#p€eT

appearing in the definition of R,,(r,q,D). From (7) and the fact that
ord, D > m — 3 we have

(11) P(m,D) < 9(2m—4)/(m—4) p2/(m—4)+2/(m-3)

(ii) We may take r(v) to be the number of steps in the g-neighborhood
constructions of all the classes in the spinor genus of K (v) from a single ver-
tex. While r(v) < hs(K(v)) — 1, where hs(K (v)) is the number of classes in
the spn(K (v)), in practice r(v) is often significantly smaller than hs(K(v)).
Since the rank of K (v) > 4, any number which is representable by gen(K (v))
is representable by every spinor genus. This means that we can use hs(K (v))
to be h(K(v))/g, where g is the number of (proper) spinor genera within
the genus of K (v), a number which is readily computable in practice. Us-
ing the estimate of Q(v) from (5) the index ¢ = [M : (v) L K(v)] can be
estimated, and then Lemma 2.3 provides an estimate for r(v), hence for r
in terms of factors only from M. It is unnecessary to give such an explicit
r since, as mentioned above, the determination of  in practice can be com-
puted either directly from the graph-neighbor method or from the upper
bound h(K(v))/g cited. See the example given at the end of Section 4. In
fact, we may take r = 1 if ¢ is sufficiently large (see [BH]). But, this latter
method, although still effective in principle, involves estimates from density
theorems of class field theory which may be regarded as not purely algebraic
or arithmetic, in addition to being not very explicit.
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(iii) When M5(0) = H and n(M(0)1) C 4Z,, instead of using the two
vectors vj(2), j = 1,2, one may select a single vector v(2) € M2(0)* such
that Q(v(2))Za = n(My(0)1). (Of course, ords(Q(v(2))) can then exceed 2.)
In this situation one needs just four vectors v instead of eight.

(iv) When ord, D < m —4 for all p|2D, i.e. T = {q}, then the proof of
Theorem 3.1 shows that the constant R,,(r,q, D) = m?I,¢*"**D(Rad D)?
may be used.

Using the previous remarks we may state our main theorem in

COROLLARY 3.1. Let M be a positive definite primitive integral quadratic
Z-lattice of rank m > 5 and determinant D, and A a positive integer repre-
sentable by M, for every prime p. Let r,q and I}, be as stated in the previous
theorem. Then A is represented by M provided that

A> 4(3m—lO)/(m—4)m2FT/TLq47’+4D1+2/(m—4)+2/(m—3). -

Finally we note here that for m = 5 our exponent of the determinant
in the constant R,,(r,q, D) yields D* while Watson gives D52. For m = 6
both Watson’s and ours give the value D?67. For larger m, Watson’s values
are better. We can make some refinements which improve these values. See
Section 4. A main point here is that our arithmetic estimate for the constant
R, (r,q, D) can be given explicitly while the implied constant in [W] does
not. We shall look at an example in the next section.

4. Refining estimates on h, and an example. In this section even
though references are to the rings Z, all the local arguments at primes p
apply to any local field in which p is either a unit or p = 2 is an unramified
dyadic prime. In other words, we do not use at all the property that the
residue class field at 2 has just two elements, a property which could have
simplified some of the proofs below. This is aimed at making the results of
this paper applicable to more general number fields (see Appendix). The
refined estimates will be useful, especially at the smaller dimensions where
our exponents of the determinants of the quadratic forms will be sharper
than those of Watson’s. Furthermore, for those forms whose determinants do
not involve primes with too large an exponent, our improved estimates yield
still better estimates. As mentioned in the Introduction, Kitaoka pointed
out to us that these improvements, particularly for dimension 5, give the
better value of 21.4 instead of 32.2 in his Theorem in [Ki2]. We also note that
our theorem by itself improves this value only down to 25. The refinements
make it necessary to get into rather technical and non-trivial structure and
classification results for lattices over local rings.

Recall that h,, is defined as the smallest integer such that Q(q"") K (v),)
contains the ideal p"»Z,, and (7) provides an estimate. Some further im-
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provements can be made. We still write M, = M,(0) L X where M,(0) is
the initial component of a Jordan decomposition of M, with rank my.

(I) Consider first the case when ord, D = m — 3. If p # 2, ¢, then by the
choice of v(p) and the construction of v in (2) one sees that Q((v)) = Z,
so that we may use h, = 0 instead of [(m — 3)/(m — 4)] from (7).

Let p = 2. The condition ords D = m — 3 assures that the initial rank
mo > 3. If mg = 3, then Q(v(2)) € Z5 and X is a 2-modular component of
rank m — 3. Local theory tells us that M3(0) = B L (¢) where B = H or A.
We select v(2) € M2(0) with Q(v(2)) = €. By choosing the vector v € M
with v = v(2) (mod 2M5) from (2), one sees that Q(v(2)) = Q(v) and
()t = (v(2))* so that Q(¢"™ K (v)s) = 2Zy. Hence, hy = 1. In (8) we
may select © = ¢o (mod 2) instead of (mod 4). When my = 4 we may
decompose My such that M,(0) is isotropic. If M3(0) is proper then we
select v(2) € M2 (0) so that Q({v(2))1) = Z and hence hy = 0. Otherwise,
ho = 1. In either case, any choice of = suffices in (8). When mg > 5 the same
conclusions as in the mg = 4 case prevail. Summarizing, for ord, D = m — 3
we have:

hp, =0 for any x, p # 2,

hy <1 for z =cy (mod 2), mg =3,
ho =0 for any x, mo > 4, nMy = Zs,
ho =1 for any x, mg > 4, nMy = 2Z,.

(12)

(II) Now consider ord, D = m — 2. Let p # 2. Clearly when my > 4 we
have h, = 0. The same for mg = 3 since we can select our v(p) € M), so that
its orthogonal complement contains H. For my = 2, X must be a p-modular
component of rank m — 2 > 3. We select v(p) € X with Q(v(p)) € pZ;.
The choice of v in (2) is still valid since such a choice would still have (v)
splitting M,,. It follows that Q(K (v),) = Z,. Hence, h, = 0 and any choice
of  would do in (8).

At p = 2, we have mg > 2. Suppose first mg = 2 and M>(0) is im-
proper. Then select a vector v(2) € M(0) with ordy @(v(2)) = 1. This
means that (v(2))* is a proper 2-modular lattice of rank m — 1 > 4 and
therefore, Q(Mz) = Q({(v(2))t) = 2Zy and hy = 1. If My(0) is proper
then Q(v(2)) € ZJ. Local theory shows that (v(2))* contains an isotropic
(m — 2)-dimensional 2-modular component which may replace X. Hence,
Q(X) = 2Zs (resp. 4Z5) if X is proper (resp. improper), implying that
ha =1 (resp. 2). However, even if X is improper we may simply take x = ¢y
(mod 2) instead of (mod 4) in (8). This is because the right hand side of (10)
is represented by ¢"(") K (v) since Q(v)(c3 — x2) € 47Z.

Consider next mg = 3. Since the rank of X is m — 3 and orde D =
m — 2, by the properties of a Jordan decomposition X must contain a
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2-modular component, say, Ma(1). If Ms(1) is proper (e.g., when its rank,
say, m is odd) then M5(0) can be assumed to be isotropic by a suitable
basis change and then v(2) may be selected so that its orthogonal com-
plement in M>5(0) is H, which gives hy = 1. On the other hand, if M>(1)
is improper then m; is even, and v(2) may be chosen so that (v(2))+ =
(binary improper unimodular) L (binary improper 2-modular) L ... Hence,
hs = 1.

Finally, when my > 4 it is easy to see that hy = 1 always suffices.
Summarizing, for ord, D = m — 2 we have:

hp, =0 for any z, p # 2,
(13) he <2 for z =cy (mod 2), M5(0) binary proper,
he =1 for any x, M5(0) binary improper,

ho =1 for & = ¢y (mod 2), mg > 3.

(III) Consider ord, D = m — 1. Let p # 2. If my > 4, then clearly
hy, = 0. If mp = 3, one can select the vector v(p) so that its orthogonal
complement contains a copy of H, yielding h, = 0. If my = 2, then K(v),
contains a sublattice which represents pZ,,, giving h, = 1. If mg = 1, then
X is p-modular and represents pZ,, giving h, = 1. So, h, = 1 always
suffices.

Let p = 2. If mg = 1, then (v(2))* = X is 2-modular of rank m; > 4 so
that he < 2. Here the choice of z = ¢y (mod 2) suffices.

If mg = 2 then my = m —3 > 2 and mg = 1. Suppose M(0) is
proper; then (v(2))* contains a sublattice of the kind (binary 2-modular)
1 (a proper binary 4-modular) which represents at least 4Zy. It follows
that hy < 2. Otherwise, ord; Q(v(2)) = 1 and then (v) contains at least
a proper ternary isotropic 2-modular component so that Q((v)*) D 2Zs.
Hence, hy = 1.

Let mo = 3. Then M>(0) is either isometric to (¢) L A when anisotropic
or to (¢) L H when isotropic. If it is isotropic then hy = 1 by selecting v(2)
with Q(v(2)) = e. Consider the anisotropic case. Whenever m > 6 we have
my1 = m — 5 and mo = 2. Should m = 6, then nX = 2Z, and a suitable
basis change will make Mz (0) isotropic. When m > 6, Q({v(2))+) = 2Z,
and hy = 1.

The case of m = 5 has the worst possible scenario. Here my; = 0 and
ms = 2. S0, ho = 3 occurs when X is improper 4-modular; otherwise, ho = 2.
We may take x = ¢o (mod 4) in all these subcases.

For my > 4 we can decompose My so that M2(0) is isotropic. Selecting
v(2) € M2(0) so that its orthogonal complement contains a copy of H implies
that ho < 1. Summarizing, for ords D = m — 1 we have:
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h, <1 forz=¢, (modp), p+#2,

he =3 for z =cy (mod 4), m =5, my =3, ordy D = 4,
M>(0)* improper,

he <2 for z =co (mod 4), mg =2, M5(0) proper,

he =1 for z =co (mod 2), mg =2, M>(0) improper,

(14)

he <1 for z =co (mod 4), my > 3 otherwise.

Using the values of h), from (12)—(14) we can refine the estimates for

Pn(r,D)< [ »**
q#p€eT

The exponent 2 comes from (Rad D)? in (5) whereas the exponent 2h,
comes from the selection of the scalar z in (8). Let D), be the p-part of D
and P,,(r, D), be the p-part of P, (r, D).

Suppose ord, D = m—3. By (12), any z is permissible but for one excep-
tional case. This means that Pp,(r, D), is just (Rad D,)? = p* but for one
exceptional case where an extra factor of 22 is needed. For ord, D = m—2 we
see from (13) that a factor of 2* is needed. Hence, P,,(r, D), < 2*(Rad D,)>.
When ord, D = m — 1 formulas from (14) show that P,,(r, D), < 2*p?* al-
ways suffices. [Actually, the importance of 2 supercedes those of h,, by virtue
of (8) so that a further small improvement can be made using the estimates
of = (instead of those of hy,) from (12)-(14).] Finally, for ord, D > m we use

the original estimates (7). Summarizing, we have:
22 p2/(m=%) when ord, D =m — 3,

4 1H2/(m=2) o
(15) Po(r.D), < 2 DZ/(m—l) when ord, D = m — 2,
24D, when ord, D = m — 1,
24/(m_4)D12)/(m_4)+2/m when ord, D > m.

The powers of 2 only enter when dealing with P, (r, D)2. These refinements
improve the estimates for the exponents of D in the constant R,,(r,q, D),
especially, when ord, D < m — 1 for p| D; namely, we have the table:

m any D ordpD<m—-3 ordpD<m-—-2 ordpD<m-—1 Watson

5 3.4 2 2 2 5.2
(16) 6 2.34 1.67 1.67 1.8 2.67

7 1.953 1.5 1.5 1.67 1.81

8 1.75 1.4 1.4 1.572 1.375

9 1.623 1.34 1.34 1.5 1.112

Since the local analysis is treated in a manner which remains valid for
the ring of integers of any local field in which the element 2 is either a unit
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or a prime, the general number field case (whose absolute discriminant is an
odd integer) can be treated similarly.

Let us look at an explicit example. This example is selected merely to
illustrate that the method discussed here is effective and that our refinements
do imply a substantial improvement in the exponent of the determinant. It
is a “simplest example” in the following sense. From the quaternary tables
([N], p. 23) pick the smallest genus (D = 24) with class number exceeding 1.
This gives the forms

f=X24+Y%+ 224+ 2W? 4+ XY,
g=X*+Y? 4+ 224+ 3W? + XY + X Z.

Let the integral lattice associated with 2f be F' and set M := F 1 (1).
Write M = (e1,e2) L (e3) L (eq) L (e5) where Q(e1) = Q(e2) = Q(es) = 2,
Qeq) =4, Q(es) =1, B(er,e2) = 1. Let T'= {2,5}. Here ¢ = 5. Define the
following vectors of M : vy := e5, va 1= €3, v3 := eg+e5, v4 1= ez+eg+2e5. If
K(v;) := (v;)* and N (v;) := 5" ") K (v;) L (v;), one easily sees the following
holds:

K(vy) = (e1,ea) L (e3) L (eq), det(K(v1)) =24, h=2,
an K(vy) = (e1,ea) L (eq) L (e5), det(K(vg)) =12, h=1,
K(v3) = (e1,ea) L (e3) L (eq —e5), det(K(v3)) =120, h =3,
K(vy) = (e1,e2) L (e3 —e5,e4 —2e5), det(K(vq)) =60, h=4.

The last column in (17) gives the class number of the lattice. The first two
values can be read off directly from [N], and so is the third value after scaling
the lattice by 1/2. The fourth one is out of the range of these tables; we owe
it to Gordon Nipp who communicated to us its value and the class number
h(M) = 4. (The latter value does not play a direct role here.) Hence, we
have r := max,, r(v;) = max,, h(K(v;)) — 1 = 3.

According to (9) and (15) we have
R5(3,5,24) = 2% .52 . T} - 5'9. 24 . P5(5,24)y = 2! - 3. 5% . [,

and I'} ~ 17.6847. So, Rs5(3,5,24) ~ 7.33 - 1018.

On the other hand, from the proof of the main theorem, one sees that
the constant R,,(r,¢, D) in (8) is built from two factors: sizes of Q(v) and
of the scalar z. The estimate in (5) is a general estimate which does not
exploit the particular nature of the approximating vector v. In practice, this
feature can be improved. For instance, in the present example, Q(v;) < 10
for 1 <1 < 4. As for z, we have hg = 1 from (13). Since hs = 2r = 6, we
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have < 2-55 and so in (8) we have Q(v)z? < 10-2% .52 = 9.7656 - 10°
which is clearly a more preferable bound.

5. Completion of proof of Lemma 2.2. The purpose here is to give
a proof for the second part of Lemma 2.2 in a slightly more general setting.
Throughout below we shall assume O is the ring of integers in a local field
F in which 2 is a prime element. We need the following extra notation.

Let M be an integral O-lattice (i.e., sM C O) and rank M = m > 5.
Suppose M = M; L ... L M,;is a Jordan splitting of M with m; := rank M,
and o; := ordy(sM;). We write M ~ (s1,S2,...,8y) where 51 =sg = ... =
Sy =01y s Smy_141 = -+ = Smy_14+m, = Sm = 0¢. If a Jordan component
M; is proper then we decompose M; into an orthogonal basis. Otherwise,
M; is an orthogonal sum of binary improper o;-modular sublattices. Let
M be either a 4-dimensional or a 5-dimensional sublattice of M appearing
in the initial components of a Jordan decomposition of M. Since 2 is a
prime the norm ideals of a Jordan splitting of M are invariants. While M
depends on the choice of the Jordan decomposition, its rank is uniquely
determined. Note that rank M = 5 occurs only when (s4, $5) is an improper
binary modular lattice. Hence, M is either ~ (81,.+.,84) OF ~ (S1,...,85).
If rank M = 5 then the last Jordan component, of M is improper and is
either (s4,s5) or (s, 83, 54, S5)-

We now assume that M is an integral O-lattice with sM = O. Then M
is either a 4- or 5-dimensional sublattice of M. Here o1 = 0.

Suppose first that rank M = 5. Since

54 < |:S4+...+Sm:| < |:OI‘d2D:|,

m—3 m—3

it suffices to prove that Q(M) D 2%4H1 O, Now (s4, s5) is an improper binary
modular component which is either 2¢H or 2*A where o = s4. In the former
case, we have Q((s4,55)) 2 291 O. If s = ... = s5 then (s2, 53,54, 55)
~2%2.(H L ...). Therefore, we consider the case where s3 < s4 and (s4, s5)
& 284,

Let L :~ (s1,82,83). If L represents 2%¢T1le for some ¢ € O then a
suitable basis change for M will convert (s4,55) into 2°+H. We have three
cases.

(1) Suppose s1 < s < s3. If 51 = s9 = s3 (mod 2) then (s1, s2, s3) con-
tains a 3-dimensional 2°3-modular lattice which surely represents an element
from 2541 O If exactly two such s; have the same order parity then some
s; has the same order parity as s4 + 1 in which case (s;, s4,55) D 2%H.

(2) Suppose s1 < $3 = 83, 51 Z S4+1 (mod 2) and s3 = s4+1 (mod 2).
If (sq,s3) is proper then it represents an element from 2510, If on
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the other hand (sg,s3) &~ 2°2A then (sg, s3,84,85) 2 257 1A | 2%A. But
Q2517 1A L 2%1A) = 240,

(3) Finally, the case of 57 = s9 < 83, s3 Z 84+ 1 (mod 2) and s1 = 5 =
sy +1 (mod 2) goes through as case (2).

Consider next the case of rank M = 4. We separate into two subcases
depending on M being (I) diagonalizable or (IT) non-diagonalizable. We shall
show that Q(M) contains 2¢O in subcase (I) and that it contains 25410
in subcase (II), which is sufficient for our purpose.

Consider now (I). If M is unimodular, then s; = oy = 0. An exami-
nation of Table IT of [OM1] shows that M represents 20 = 254+10. If M
contains a 3-dimensional Jordan component, then either M ~ (0,0,0,s4) or
~ (0,02,092,02). In the former case, M contains a quaternary 2%+-modular
sublattice when s4 is even, and it contains a ternary isotropic 2%~ !-modular
sublattice by a suitable change of basis. In either situation, the assertion of
(I) holds. Next, in the latter case, 05 = s4. Here M contains a quaternary
2%4+-modular sublattice when s, is even, and it contains (after a suitable basis
change) a ternary isotropic 2°4-modular sublattice when s4 is odd, and again
we see that the assertion of (I) holds. A similar argument shows the same
when at least three of the s;’s (i = 1,2, 3,4) have the same order parity.

Therefore, without loss of generality, we may assume that M contains
a full sublattice J = 2071 . (g1,e5) L 2P . (e3,€4). If J is anisotropic then
Q(J) = 2°710 D 254710, So, we take J to be isotropic and consider the
various possibilities of (e3,¢€4).

(a) First, let (e3,e4) = A(1,0). One sees that Q(J) = 28710 D 25+~10
when (e1,€2) is not of the mixed type. Otherwise, J contains a ternary
proper isotropic 280 D 5%+ 0.

(b) Let (e3,e4) = A(1,4p0). The same conclusion as (a) prevails.

(c) Let (e3,e4) be mixed, say, isometric to A((,2n). The following claim
can be shown by using [OM1]:

CLAIM. Let N be isometric to either A(1,0) L 2- A(e,20) or A(1,40) L
2 A(g,20). Then Q(N) = 0.

Returning to (c), in view of the claim we now need only consider the
subcase where (g1,¢5) is also of the mixed type. So, J = 2671 A(v,20) L
26 A(¢,2n), which contains a proper quaternary 2°-modular sublattice.
Hence, Q(J) 2 280 D 2%410. This completes the diagonal case of (I).

Consider the case (II) of a non-diagonalizable M. In view of what was

proved above, we may restrict ourselves to M = 201 A | 292 () L 2%3(us),
where max{ay, ag, ag} = sy4.
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Suppose that as = a3 (mod 2) and, say, as < as. Then M D 2%A |
293 (g, p3). If o = a3 (mod 2) then M contains 2% (A L (ug,ps)), which
is a proper 2%-modular lattice. Therefore, by part (I) it represents all of
2540,

Now, let ay # a3 (mod 2). One sees that if @3 > a3 then oy = s4 and
M D 2% (A L 2(ug,pug)) = 2%(H L ...). And if o < ag, then ag = s4
and M D 2%~ 1(A L 2(jy, p3)) = 2%~ 1(H L ...). In any case, assertion (II)
holds.

Finally, consider the case where ay # a3. We can assume that as = ay
(mod 2). Then M DO 2%(A L (uz)) L 2% (us) where o = max{ay,as}.
If @ > as, then M contains 2271 ((us) L 2(A L (ug))) = 27 1((uh) L
2(H L (us))), yielding Q(M) D 29710 = 2510, A similar argument goes
through for o < a3. This proves assertion (II).

Summarizing, we have proven the following;:

PRrROPOSITION 5.1. Let F' be a local field in which 2 is a prime element, O
its ring of integers, and M an O-lattice of rank m > 4. If M ~ (81,...,8m)
then Q(M) contains 25410, Furthermore, if M is a quaternary diagonal-
izable sublattice, then Q(M) 2 2%4O. m

6. Appendix: The number field case. In order to study the number
field version of the main result in Section 3, we first make some observa-
tions. With the obvious changes, Lemmas 2.1 and 2.3 follow immediately.
Lemma 2.2 for non-dyadic local fields goes through with the same proof;
the unramified dyadic case follows from Proposition 5.1. Lemma 2.4 for
number fields F' holds by replacing det with Np /g vol. Lemmas 2.5 and 2.6
remain valid for non-dyadic and unramified dyadic local fields respectively.
When passing from the classical case to number fields, we need to replace
Minkowski reduction with Humbert reduction. Also, we make use of the fact
that any integral lattice defined over a number field is sandwiched between
two free lattices with indices bounded by constants depending only on the
field.

Throughout this section F' will be a totally real number field in which 2
does not ramify, [F': Q] = [, O the ring of integers in F', and dr the absolute
discriminant of F. Let ¥ := {o;}!_; be the set of all real embeddings of F
into R, {sl}i;} a system of fundamental units of F', and {2 the set of all
integral bases w = {w;} of F'. We define

-1
o 2
(18) oi= [[maglo)

and
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1 = i i)l
(19) A= min max [o(wi)l
ceX
Let ¢1, c3 be two of the reduction constants defined in [Hul, p. 53. We have
the following number field version:

THEOREM 6.1. Let M be a primitive positive definite integral O-lattice
of rank m > 5 and A € O a totally positive integer representable by M, at
all p. There is a constant Ny, (r, q,vol M, F') from (25) in the notation of this
section such that if Npg(A) > 0'N,,(r,q,vol M, F) then M represents A.

Proof. The proof is similar to the classical case. We make the following
adaptations.

The primes p, q,2 are replaced by p, q, p2 where ps is a generic (dyadic)
prime above 2. Next, T = {p : p|2vol M,ord,(volM) > m — 3} U {q}.
The constructions of the local vectors v(p) and v(p2) are as before and in
formulas (1), (2) we only need to substitute Zs by the corresponding local
dyadic rings Oy, .

Let L C M be a free lattice with [M : L] = t < Ap, where Ap is
a constant depending only on the field F' (one may take \p = D}/Ql!/ll).
Suppose {e;}7"; is a Humbert reduced basis for the lattice L. Then tv =
S bie; with b; € O. By classical reduction theory, we have, for each
o€,

Q(tv)? < (b7)'mdiag(Q(er), .., Qem))7 (b5)
and also
diag(Q(el)7 ey Q(em))g S le(em)GIm7
where ¢; (depending only on F') is one of the Humbert reduction constants.

Formula (3) is replaced by
(20) Q(tv)? < m?c; Q(em)"(mjax 65)2.

Now, b; is chosen modulo 2q? [T, vor as P- Since {3- aw; : a; €Z, 0 < a; <p}
contains a full set of representatives for O/ ], p, by the definition of 3 in
(19) we have

(21) 0< @)’ <2°8¢" [] »*
pNZ=(p)
p| vol M

plp

From Humbert reduction there is a constant c3 depending only on the
base field F' such that

(22) Npo(Q(em)) < bNpjg(det L) < cht* Np g (vol M).
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Since we may take t = [Ar], putting v := (2%¢1c38%m? [D}J/zl!/ll}%l_l)/l)l,
inequality (5) becomes

(23) Nrjg(QW)) < 76" Npjgvol M) T p*

pNZ=(p)
q#ApeT

The discussions leading to (6) and (7) remain valid needing only to be
replaced by their natural number-theoretic assertions; in particular, (6) and
(7) have their p, q, po analogs.

Let

hy == le%ox hy = H;%)X
We select the integer € O so that = ¢, (mod p"»), p € T, p|p, and
T = ¢, (mod 2"271) in the exceptional cases. If we let Ty be the set of
primes of Q lying below 7', then in place of (8) and (9) we have

[om?,;(v_ol4 M)] |

(24) Npo(Q(v)a?) < Ny (r,q,vol M, F)

where

(25) No(r, g, vol M, F) := ¢*+4" N g (vol M) H p2t2he.
p€To\g

Again r is the maximal value of the r(v)’s.

If Npjg(A) > o' Ny (r,q,vol M, F) > o' Npg(Q(v)x?) then by Proposi-
tion 3.4 of [BI] there exists a unit e € O* such that (e24)° > (Q(v)z?)?
for all 0 € X, i.e. €24 — Q(v)x? € O is a totally positive integer. Then the
discussion from (10) to the end of the proof of Theorem 3.1 shows that 2 A4,
and hence also A itself, is represented by K(v) L (v) C M. m
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