Density of M-sets in arithmetic progression

by

Soma Gupta and Amitabha Tripathi (New Delhi)

Following Motzkin, for a given set M of positive integers, a set S of nonnegative integers is called an M-set if $a, b \in S$ implies $a - b \notin M$. In an unpublished problem collection, Motzkin posed the problem of determining the quantity

$$\mu(M) = \sup_{S} \overline{\delta}(S),$$

where the supremum is taken over the class of all M-sets S. As usual, the upper density of $S, \bar{\delta}(S)$, is defined by $\limsup_{n\to\infty} S(n)/n$, where S(x) denotes the number of elements in S less than or equal to x.

Cantor and Gordon [1] solved the problem for the cases where M has at most two elements besides obtaining partial results for the general case. Haralambis [2], besides giving some general estimates, determined $\mu(M)$ for most members of the families $\{1, j, k\}$ and $\{1, 2, j, k\}$. In this note, we determine $\mu(M)$ in the case where the elements of M are in arithmetic progression.

We recall the following results proved by Cantor and Gordon [1]:

LEMMA A. If $M_1 = \{m_1, m_2, \ldots\}$ and $M_2 = \{dm_1, dm_2, \ldots\}$, where d is a positive integer, then $\mu(M_1) = \mu(M_2)$.

LEMMA B. Let $M = \{m_1, m_2, \ldots\}$ and let c and m be positive, relatively prime integers with

$$d = \min_{k} |cm_k|_m,$$

 $d = \min_{k} |cm_k|_m,$ where $|x|_m$ denotes the absolute value of the absolutely least remainder of x \pmod{m} . Then $\mu(M) > d/m$.

This implies that for any set $M = \{m_1, m_2, \ldots\},\$

$$\mu(M) \ge \sup_{\gcd(c,m)=1} \frac{1}{m} \min_{k} |cm_k|_m.$$

1991 Mathematics Subject Classification: Primary 11B05.

LEMMA C. Let M be a given set of positive integers, $\alpha \in [0,1]$, and suppose that for any M-set S with $0 \in S$ there exists a positive integer k (possibly dependent on S) such that $S(k) \leq (k+1)\alpha$. Then $\mu(M) \leq \alpha$.

Theorem. If $M=\{a,a+d,a+2d,\ldots,a+(n-1)d\}$ with $\gcd(a,d)=1$ and $n\geq 1$, then

$$\mu(M) = \begin{cases} \frac{2a + (n-1)(d-1)}{2\{2a + (n-1)d\}} & \text{if } d \text{ is odd}, \\ \frac{1}{2} & \text{if } d \text{ is even}. \end{cases}$$

Proof. By Lemma A, it suffices to consider the case where gcd(a, d) = 1. If d is even, then $\{1, 3, 5, ...\}$ is an M-set, and $\mu(M) = 1/2$.

Suppose now that d is odd. If we write m for 2a + (n-1)d, then gcd(d,m) = 1, and so $dx_0 \equiv 1 \pmod{m}$ for some integer x_0 . Let $dx_0 = 1 + mq$. Then x_0 and mq, and hence x_0 and (n-1)q, are of opposite parity, and so

$$ax_0 = \frac{m - (n-1)d}{2}x_0$$

$$= \frac{m\{x_0 - (n-1)q\} - (n-1)}{2} \equiv \frac{m - (n-1)}{2} \pmod{m}.$$

Therefore, for $0 \le k \le n-1$,

$$(a+kd)x_0 \equiv \frac{m}{2} + \left(k - \frac{n-1}{2}\right) \pmod{m},$$

and by Lemma B, we have

$$\mu(M) \ge \frac{2a + (n-1)(d-1)}{2\{2a + (n-1)d\}}.$$

Conversely, let S be any M-set with $0 \in S$, and for m = 2a + (n-1)d let

$$\bigcup_{i=1}^{(m-n-1)/2} A_i \cup B$$

be a partition of $\{0, 1, \ldots, m-1\}$, where $B = \{0, a, a+d, \ldots, a+(n-1)d\}$ and $A_i = \{id, a+(n+i-1)d\}, 1 \le i \le (m-n-1)/2$, the elements of A_i taken modulo m. Hence, $|S \cap B| = 1$ and $|S \cap A_i| \le 1$ for each i.

Therefore,

$$S(m-1) \le 1 + \frac{m - (n+1)}{2} = \frac{2a + (n-1)(d-1)}{2}$$

for any M-set S.

Thus, by Lemma C, $\mu(M) \leq \{2a + (n-1)(d-1)\}/(2m)$. Therefore,

$$\mu(M) = \frac{2a + (n-1)(d-1)}{2\{2a + (n-1)d\}}. \blacksquare$$

We observe that the results of Cantor and Gordon [1] for $\mu(M)$ when $|M| \leq 2$ follow easily from this theorem. Also, as $n \to \infty$, $\mu(M) \to (d-1)/(2d)$ if d is odd and to 1/2 if d is even.

References

- [1] D. G. Cantor and B. Gordon, Sequences of integers with missing differences, J. Combin. Theory Ser. A 14 (1973), 281–287.
- [2] N. M. Haralambis, Sets of integers with missing differences, ibid. 23 (1977), 22-33.

Department of Mathematics Indian Institute of Technology Hauz Khas New Delhi 110 016, India

E-mail: atripath@maths.iitd.ernet.in