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imaginary quadratic fields and
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1. Introduction and statement of results. For a number field k and
a prime number l, we denote by h(k) the class number of k and by λl(k)
the Iwasawa λ-invariant of the cyclotomic Zl-extension of k, where Zl is the
ring of l-adic integers.

Let l be an odd prime number. Using the Kronecker class number relation
for quadratic forms, Hartung [3] proved that there exist infinitely many
imaginary quadratic fields k whose class numbers are not divisible by l. For
the case l = 2, this is an immediate consequence of Gauss’ genus theory. For
the case l = 3, Davenport and Heilbronn [2] proved the stronger result that
a positive proportion of imaginary quadratic fields has class number coprime
to 3. Recently, using Sturm’s work [11] on the congruence of modular forms,
Kohnen and Ono [7] obtained a lower bound for the number of Dk, −X <
Dk < 0, where Dk is the discriminant of an imaginary quadratic field k such
that h(k) 6≡ 0 (mod l) and X is a sufficiently large positive real number.
Using the same method, subject to a mild condition on l, Ono [9] obtained
similar results for real quadratic fields.

On the other hand, using the idea of Hartung and Eichler’s trace formula
combined with the l-adic Galois representation attached to the Jacobian
variety J = J0(l) of the modular curve X = X0(l), Horie [4] proved that
there exist infinitely many imaginary quadratic fields k such that l does not
split in k and l does not divide h(k). Later Horie and Onishi [5] obtained
more refined results. By a theorem of Iwasawa [6], these results imply that
there exist infinitely many imaginary quadratic fields k with λl(k) = 0.
For the case l = 2, this is also an immediate consequence of Gauss’ genus
theory. For the case l = 3, by refining Davenport and Heilbronn’s result
[2], Nakagawa and Horie [8] gave a positive lower bound on the density of
imaginary quadratic fields k and real quadratic fields k with λl(k) = 0.
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Recently, Taya [12] improved the result of Nakagawa and Horie on real
quadratic fields for the case l = 3 and Ono [9] obtained a lower bound on the
number of real quadratic fields k with λl(k) = 0 for the case 3 < l < 5000.

In this note, refining Kohnen and Ono’s method [7, 9], we obtain a lower
bound for the number of Dk, −X < Dk < 0, where Dk is the discriminant
of an imaginary quadratic field k such that h(k) 6≡ 0 (mod l) and l does
not split in k and X is a sufficiently large positive real number. Similarly,
by a theorem of Iwasawa [6], this is also a lower bound for the number of
imaginary quadratic fields k with λl(k) = 0.

Theorem 1.1. Let l > 3 be an odd prime and p be an odd prime such that
p ≡ 1 (mod 8), p ≡ −2 (mod l) and

(
t
p

)
= 1 for all prime t, 2 < t < l. Then

there exists an integer dlp, 1 ≤ dlp ≤ 3
4 (l+ 1)(p+ 1), such that dlplp 6= nlp2

for any n, 1 ≤ n ≤ l, and if we let k = Q(
√−dlplp) be the imaginary

quadratic field , then h(k) 6≡ 0 (mod l) and l does not split in k.

Corollary 1.2. Let l > 3 be an odd prime and ε > 0. Let Dk be the
discriminant of an imaginary quadratic field k with λl(k) = 0. Then for all
sufficiently large X > 0,

]{Dk : −X < Dk < 0} �l

√
X/ logX.

2. Proof of results

Proof of Theorem 1.1. Let l and p be odd primes. Let θ(z) :=
∑
n∈Z q

n2

be the classical theta function, where q = e2πiz, z ∈ C. Define r(n) by
∞∑
n=0

r(n)qn := θ3(z) = 1 + 6q + 12q2 + 8q3 + 6q4 + 24q5 + . . .

It is well known that

(1) r(n) =





12H(4n) if n ≡ 1, 2 (mod 4),
24H(n) if n ≡ 3 (mod 4),
r(n/4) if n ≡ 0 (mod 4),
0 if n ≡ 7 (mod 4),

where H(N) is the Hurwitz–Kronecker class number for a natural number
N ≡ 0, 3 (mod 4). If −N = Dkf

2 where Dk is the discriminant of an
imaginary quadratic field k, then H(N) is related to the class number of k
by the formula (see [1])

(2) H(N) =
h(k)
ω(k)

∑

d|f
µ(d)

(
Dk

d

)
σ1(f/d),

where ω(k) is half the number of units in k = Q(
√
Dk), σ1(n) denotes the

sum of the positive divisors of n, and µ(d) is the Möbius function defined
by µ(d) = (−1)k if d is equal to a product of k distinct primes (including
k = 0) and µ(d) = 0 otherwise.
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Define (Ulpθ3)(z), (Vlpθ3)(z) and (UlVpθ3)(z) in the usual way, i.e.,

(3)

(Ulpθ3)(z) :=
∑

n≥0

r(lpn)qn = 1 +
∑

n≥1

r(lpn)qn,

(Vlpθ3)(z) :=
∑

n≥0

r(n)qlpn = 1 +
∑

n≥1

r(n)qlpn,

(UlVpθ3)(z) :=
∑

n≥0

r(nl)qnp = 1 +
∑

n≥1

r(nl)qnp.

Then Ulpθ
3, Vlpθ3, and UlVpθ

3 are modular forms of weight 3/2 on Γ0(4lp)
with character

( 4lp
·
)

(see [10]).
To prove Theorem 1.1, we need the following lemmas.

Lemma 2.1. Let l and p be odd primes. If
(−np

l

)
= 1 for some n, 1 ≤

n ≤ p, then r(npl2) ≡ 0 (mod l).

P r o o f. From (2), we have

r(npl2) = r(np)
(
l + 1−

(−np
l

))
= r(np)l ≡ 0 (mod l).

Lemma 2.2. Let l be an odd prime such that l ≡ 5 or 7 (mod 8). Let p
be an odd prime such that p ≡ 1 (mod 8), p ≡ −2 (mod l) and

(
t
p

)
= 1 for

all prime t, 2 < t < l. Then r(nlp2) ≡ 0 (mod l) for all n, 1 ≤ n < l.

P r o o f. From the assumption on l and p, we easily see that
(−nl

p

)
= −1

for all n, 1 ≤ n < l. Thus from (2), we have

r(nlp2) = r(nl)
(
p+ 1−

(−nl
p

))
≡ 0 (mod l)

for all n, 1 ≤ n < l.

Similarly we have

Lemma 2.3. Let l be an odd prime such that l ≡ 1 or 3 (mod 8). Let p
be an odd prime such that p ≡ 1 (mod 8), p ≡ −2 (mod l) and

(
t
p

)
= 1 for

all prime t, 2 < t < l. Then r(nlp2) ≡ −2r(nl) (mod l) for all n, 1 ≤ n < l.

If g =
∑∞
n=0 a(n)qn has integer coefficients then define

ordl(g) := min{n : a(n) 6≡ 0 (mod l)}.
Let Mk(Γ0(N), χ) be the space of modular forms of weight k on Γ0(N)
with character χ. Sturm [11] proved that if g ∈ Mk(Γ0(N), χ) has integer
coefficients and

ordl(g) >
k

12
[Γ0(1) : Γ0(N)],

then g ≡ 0 (mod l). He proved this for integral k and trivial χ but Kohnen
and Ono [7] noted that this is also true for the general case.
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Now we can prove Theorem 1.1. From now on we assume that l > 3 is an
odd prime and p is an odd prime such that p ≡ 1 (mod 8), p ≡ −2 (mod l)
and

(
t
p

)
= 1 for all prime t, 2 < t < l.

Case I: l ≡ 5 or 7 (mod 8). First we claim that (Ulpθ3)(z) 6≡ (Vlpθ3)(z)
(mod l). To see this, by (3), it is enough to show that the coefficients of qlp

in (Ulpθ3)(z) and (Vlpθ3)(z) are not congruent modulo l, i.e., r(l2p2) 6≡ 6
(mod l). From (1) and (2), we see that

r(l2p2) = 12H(4l2p2) = 6
(
l + 1−

(−4
l

))(
p+ 1−

(−4
p

))
.

Thus from the choice of l and p, we have

r(l2p2) ≡
{

0 (mod l) if l ≡ 5 (mod 8),
−24 (mod l) if l ≡ 7 (mod 8),

which proves the claim.
Now we note that the relevant Sturm bound for the modular forms in

M3/2
(
Γ0(4lp),

( 4lp
·
))

is 3
4 (l + 1)(p+ 1). Then by applying Sturm’s theorem

[11] to the modular form g(z) = (Ulpθ3)(z) − (Vlpθ3)(z) in M3/2
(
Γ0(4lp),( 4lp

·
))

, we find that there exists an integer dlp, 1 ≤ dlp ≤ 3
4 (l+1)(p+1) < lp

(when l, p ≥ 7 or l = 5, p > 9), such that r(dlplp) 6≡ 0 (mod l). From Lemma
2.2, we know that for such dlp, dlplp 6= nlp2 for any n, 1 ≤ n < l. Further-
more from Lemma 2.1, we see that if k = Q(

√−dlplp) is the imaginary
quadratic field and Dk is the discriminant of k then

(
Dk
l

)
= 0 or

(
Dk
l

)
= −1,

i.e., l does not split in k. Thus we have the assertion of Theorem 1.1 for the
case l ≡ 5 or 7 (mod 8).

Case II: l ≡ 1 or 3 (mod 8). Let f(z) = (Ulpθ3)(z) + 2(UlVpθ3)(z)
and g(z) = 3(Vlpθ3)(z) be modular forms in M3/2

(
Γ0(4lp),

( 4lp
·
))

. Then we
can also show that f(z) 6≡ g(z) (mod l). Similarly to Case I, from Sturm’s
theorem, Lemma 2.1, and Lemma 2.3, we can prove the desired statement.

Proof of Corollary 1.2. Let l > 3 be an odd prime. First we note that
there exists a natural number r, 1 ≤ r ≤ 8l

∏
t, where the product runs over

all primes t, 2 < t < l, such that if a natural number s ≡ r (mod 8l
∏
t),

then s ≡ 1 (mod 8), s ≡ −2 (mod l) and s ≡ 1 (mod t) for all primes t,
2 < t < l. Then we easily see that if a prime p is in an arithmetic progression
such that p ≡ r (mod 8l

∏
t) then p satisfies the conditions in Theorem 1.1.

Let p1 < p2 < . . . be the primes in such an arithmetic progression in
increasing order. Then in the notation from the proof of Theorem 1.1, if
i < j < k and Di, Dj , Dk are the discriminants of the imaginary quadratic
fields associated with dlpi lpi, dlpj lpj , dlpk lpk by (1) and (2), then at least
two of them are different by Theorem 1.1. Moreover, it is obvious that
Di > −3lpi(l + 1)(pi + 1) > −4l2p2

i (when l, pi ≥ 7 or l = 5, pi > 9).
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Thus from Dirichlet’s theorem on primes in arithmetic progression, we have
the corollary.
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