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1. The problem. P. Erdős, A. Ginzburg and A. Ziv [EGZ] proved in
1961 that from any finite sequence of 2n−1 integers (not necessarily distinct)
one can extract a subsequence of length n such that the sum of its n elements
is congruent to zero modulo n.

The sequence

(1) (0, . . . , 0, 1, . . . , 1),

formed by n − 1 zeros and n − 1 ones, has length 2n − 2 and we cannot
extract from it a subsequence of length n and of sum congruent to 0 modulo
n. Thus the value 2n− 1 is best possible.

Since 1961, some different proofs have been given to the theorem, there
were attempts to generalize it to various directions, and connections with
graph theory were discovered. The reader may find references in [AD], [BL]
and [C].

Here we are concerned with the following development due to A. Bialo-
stocki, P. Dierker and M. Lotspeich ([BD], [BL]). In the Erdős–Ginzburg–Ziv
theorem, in order to show that 2n− 1 is best possible, one has to find a se-
quence of length 2n − 2 failing the required property, that is, such that
every subsequence of length n has sum incongruent to 0 modulo n. Such a
sequence is the sequence (1) formed by integers belonging to only two classes
modulo n.

A. Bialostocki and P. Dierker [BD] proved in 1992 that this is the only
case where this happens. Precisely, they proved that “if A = (a1, . . . , a2n−2)
is a sequence of 2n− 2 integers and there are no indices i1, . . . , in belonging
to {1, . . . , 2n− 2} such that

(2) ai1 + . . .+ ain ≡ 0 (mod n),

then there are two residue classes modulo n such that n−1 of the ai’s belong
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to one of the classes and the remaining n− 1 of the ai’s belong to the other
class”.

In order to study the relation between the number of classes present in
a sequence A = (a1, . . . , ag) and the possibility to have a relation like (2),
A. Bialostocki and M. Lotspeich [BL] introduced the following function.

Definition 1. Let n, k be positive integers, 1 ≤ k ≤ n. We define f(n, k)
to be the least integer g for which the following holds: If A = (a1, . . . , ag) is
a sequence of integers of length g such that the number of the ai’s that are
distinct modulo n is equal to k, then there are n indices i1, . . . , in belonging
to {1, . . . , g} such that ai1 + . . .+ ain ≡ 0 (mod n).

This definition appears on page 99 of [BL]. There, the function f is
denoted by g∗. Of course, the Erdős–Ginzburg–Ziv theorem implies that
f(n, k) exists and is not greater than 2n − 1. The example (1) shows that
f(n, 2) = 2n−1 and the above mentioned theorem of Bialostocki and Dierker
[BD] gives

f(n, k) ≤ 2n− 2 for 2 < k ≤ n.
Trivially, we have f(n, k) ≥ n and f(n, 1) = n for all n and k.

Bialostocki and Lotspeich [BL] studied f(n, k) for k = 3 and k = 4. In
this paper we determine f(n, k) for k greater than 1 + n/2.

2. Modular version and results. For given n, we can formulate the
problem and work in the context of Zn, the cyclic group of residue classes
modulo n. Let us define f(n, k) in the following equivalent way.

Definition 1′. Let n, k be positive integers, 1 ≤ k ≤ n. Denote by
f(n, k) the least integer g for which the following holds: If A = (a1, . . . , ag)
is a sequence of elements of Zn of length g such that the number of distinct
ai’s is equal to k, then there are n indices i1, . . . , in belonging to {1, . . . , g}
such that ai1 + . . .+ ain = 0.

Remark. The order of elements in A has no influence on the existence
of a subsequence of n terms having zero sum.

Notation. A sequence like A = (0, 0, 1, 1, 1, 2, 3, 5) will be denoted also
by A = 02, 13, 2, 3, 5. The sequence in (1) will be written as 0n−1, 1n−1. The
elements of Zn will be denoted by 0, 1, . . . , n− 1.

In the next section we prove the following facts.

Proposition. Let n be a positive integer. Then f(n, n) = n if n is odd
and f(n, n) = n+ 1 if n is even.

Theorem 1. Let n, k be positive integers, n ≥ 5, 1 + n/2 < k ≤ n − 1.
Then

(3) f(n, k) ≤ n+ 2.
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Theorem 2. Let n, k be positive integers, n ≥ 4, 1 + n/2 ≤ k ≤ n − 1.
Then

(4) f(n, k) ≥ n+ 2.

As a direct consequence, we obtain the following equality.

Corollary. If n ≥ 5 and 1 + n/2 < k ≤ n− 1, then f(n, k) = n+ 2.

Here are also some numerical results. They are obtained either from the
Proposition or from the Corollary or by [BL].

f(1, 1) = 1,
f(2, 1) = 2, f(2, 2) = 3,
f(3, 1) = 3, f(3, 2) = 5, f(3, 3) = 3,
f(4, 1) = 4, f(4, 2) = 7, f(4, 3) = 6, f(4, 4) = 5,
f(5, 1) = 5, f(5, 2) = 9, f(5, 3) = 8, f(5, 4) = 7, f(5, 5) = 5,
f(6, 1) = 6, f(6, 2) = 11, f(6, 3) = 10, f(6, 4) = 9, f(6, 5) = 8, f(6, 6) = 7,
f(7, 1) = 7, f(7, 2) = 13, f(7, 3) = 12, f(7, 4) = 11, f(7, 5) = 9, f(7, 6) = 9,
f(7, 7) = 7.

3. Proofs. The following lemma, saying that the desired property is
invariant under translation, will be very useful.

Lemma 1. Let b, a1, . . . , ag be elements of Zn. Put A = (a1, . . . , ag) and
A+ b = (a1 + b, . . . , ag + b). Then one can extract from A a subsequence of
length n and of sum 0 if and only if one can do it for the sequence A+ b.

P r o o f. This is true because nb = 0 (in Zn).

Proof of the Proposition

Case 1: n is odd. Any sequence A = (a1, . . . , ag), g ≥ n, having n
distinct ai’s belonging to Zn contains at least once each of the elements
0, 1, . . . , n − 1, so that one can always extract from A a subsequence with
sum 0 + 1 + . . .+ (n− 1) = n(n− 1)/2. As n is odd, (n− 1)/2 is an integer
and so n(n− 1)/2 ≡ 0 (mod n).

Case 2: n is even. Let n = 2m. Firstly, observe that f(n, n) > n because
the sequence (0, 1, . . . , n − 1) has n distinct terms belonging to Zn and its
sum is 0 + 1 + . . . + (n − 1) = n(n− 1)/2 = m(n − 1), not congruent to
0 modulo n = 2m. Now any sequence A = (a1, . . . , an+1) with n distinct
terms must contain twice an element of Zn and once the other elements. As
order is not important and in view of Lemma 1, we can suppose, without
loss of generality, that

A = (0, 0, 1, 2, . . . ,m− 1,m,m+ 1, . . . , 2m− 1).

Now one can extract from A the desired subsequence: since i+(2m−i) = 2m
for i = 1, . . . ,m− 1, we have
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0+0+1+ . . .+(m−1)+(m+1)+ . . .+(2m−1) = 2m(m−1) ≡ 0 (mod n),

the above sum having 2 + 2(m− 1) = 2m terms.

In order to prove Theorem 1 we need Lemma 3. In the proof of Lemma
3 we use the following lemma, the proof of which is an easy exercise.

Lemma 2. In Zn the equation t+t = 0 has a single solution (the solution
t = 0) if and only if n is odd ; the above equation has two solutions (t = 0
and t = n/2) if and only if n is even.

Lemma 3. Let A be a non-empty subset of Zn. Denote by |A| its cardi-
nality. If |A| > n/2 + 1, then each element of Zn is the sum of two distinct
elements of A.

P r o o f. Let x ∈ Zn. We prove that x is the sum of two distinct elements
of A. Let k = |A| and A = {a1, . . . , ak}. Consider the set B = x − A =
{x− a1, . . . , x− ak} ⊂ Zn. Its cardinality is also k, because x− ai = x− aj
if and only if ai = aj . We have

n = |Zn| ≥ |A ∪B| = |A|+ |B| − |A ∩B| = 2k − |A ∩B|.
This yields

|A ∩B| ≥ 2k − n > 2(n/2 + 1)− n = 2,

that is, |A∩B| ≥ 3. It follows that there are three (distinct) elements a, b, c
of A such that

a = x− a′, b = x− b′, c = x− c′
where a′, b′, c′ belong to A. It remains to show that at least one of the
relations a 6= a′, b 6= b′, or c 6= c′ is valid. We suppose the contrary: a = a′,
b = b′ and c = c′. This gives x = a+ a = b+ b = c+ c, which implies

(a− b) + (a− b) = 0, (a− c) + (a− c) = 0, (b− c) + (b− c) = 0.

But, by Lemma 2, the equation t+ t = 0 has at most one non-trivial (that
is, 6= 0) solution. So a− b = a− c = n/2 in Zn, and hence b = c. But this is
not true.

Proof of Theorem 1. Let A = (a1, . . . , an+2) be a sequence of integers
belonging to exactly k classes modulo n. We consider the sum of its terms
in Zn
(5) a1 + . . .+ an+2 = g.

By Lemma 3, the element g of Zn is the sum of two distinct elements x1, x2

of A: g = x1 + x2. We remove x1, x2 from A. This gives us an n-term
subsequence of A with zero sum, because of (5).

Proof of Theorem 2. We must prove that f(n, k) > n + 1. To do this,
we construct a sequence E = (e1, . . . , en+1) containing exactly k distinct
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elements of Zn, such that every n-term subsequence of E has non-zero sum.
To find the sequence E, we consider the sequence

E∗ = 0a, 1b, 2, 3, . . . , k

with b ∈ {1, 2}. From E∗ we shall remove an element x ∈ {2, 3, . . . , k}. We
must have a+ b+ k − 2 = n+ 1, that is,

(6) a+ b+ k = n+ 3.

Note that (6) implies

a = n+ 3− b− k ≥ n+ 3− 2− (n− 1) = 2 > 0,

so that 0 will really appear in E = E∗\{x}. Denote by s the sum of elements
of E∗:

s = b+ 2 + 3 + . . .+ k = b− 1 + k(k + 1)/2.

We shall choose x ∈ {2, 3, . . . , k} and b ∈ {1, 2} such that

(7) 2x = s = b− 1 + k(k + 1)/2.

If x goes through 2, 3, . . . , k, then 2x goes through 4, 6, . . . , 2k, and for b = 1
or 2, 2x− b takes the values

(8) 2, 3, 4, 5, . . . , 2k − 2, 2k − 1.

As k ≥ 1 + n/2, we have 2k− 1 ≥ 2(1 + n/2)− 1 = n+ 1. That is, numbers
in (8) form a complete set of elements of Zn. Thus −1 + k(k + 1)/2 is one
among the numbers in (8), that is, there is at least one choice of

(b, x) ∈ {1, 2} × {2, 3, . . . , k}
satisfying (7). Now denote by E the sequence resulting from E∗ after re-
moving x. Let y be the sum of elements of E. Of course y+ x = s. But also
2x = s. It follows that y = x. The sequence E has n+1 elements. It remains
to show that every n-term subsequence extracted from E has non-zero sum.
This is true because if we remove from E an element

t ∈ {0, 1, 2, . . . , x− 1, x+ 1, . . . , k},
then the remaining terms have sum y − t = x− t 6= 0.
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