ACTA ARITHMETICA
LXXXIX.4 (1999)

p-adic logarithmic forms and group varieties 11
by

KuNruUI YU (Hong Kong)

1. Introduction. The present paper is a continuation of the studies in
Yu [10], where we have brought the p-adic theory of linear forms in loga-
rithms more in line with the complex theory as in Baker and Wiistholz [1].
The purpose here is to refine upon our results in [10].

Let aq,...,a, (n > 1) be non-zero algebraic numbers and K be a number
field containing aj,...,q, with d = [K : Q]. Denote by p a prime ideal
of the ring Ok of integers in K, lying above the prime number p, by e,
the ramification index of p, and by f, the residue class degree of p. For
a € K, a # 0, write ord, o for the exponent to which p divides the principal
fractional ideal generated by « in K define ord, 0 = co. We shall estimate
ord, =, where

(1.1)

with bq,...,b, being rational integers and = # 0. Let

_ b1 b,
_al ...anl_]_

[1]

hj = max(ho(a;),logp) (1 <j<n),

where ho(«) for algebraic « is defined by the formula below (1.5), and let B
be given by (1.8). Then as a consequence of Theorem 1, we have

o
ord, Z < 19(20V/n+ 1d)>™HVen=t . P iog(ePnd) hy - - by, log B.
(fplogp)
From now on we shall keep the notation introduced in the third para-
graph of §1 in [10]. (For the self-containedness, we repeat part of it here.)
We assume that K satisfies the following condition:

12) GeK if p=2,
’ either p» =3 (mod 4) or {4 € K if p > 2,
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where (,,, = €2™/™ (m =1,2,...). Set

_J2 ifp>2
(1.3) q_{:a it p— 2
Let N be the set of non-negative rational integers and set
(1.4) u=max{k e N|(»r € K}, = (gu.
Define
1
15 ) —max (ha(a) L) <<,

where ho(a) denotes the absolute logarithmic Weil height of an algebraic
number «, i.e.,

g
ho(a) = 57 (logag + Y log max(L, [a”)),

i=1
where the minimal polynomial for « is
apr® + a12° . a5 =ag(z —aM) - (z —a®),  ag>0.

Let k € N and ¥ be defined by

(1.6) o(p") < 2ep < B(p™T),
9= {(p—Q)/(p—l) if p> 5 with e, =1,
p*/(2ep) otherwise,
where ¢ is Euler’s ¢-function. Denote by
(1.7) B(p) =p’* — 1
the Euler function of the prime ideal p. Let B be a real number satisfying
(1.8) B > max(|b1],...,|bnl,3).

Let wy(n) (n = 1,2,...) be the two sequences (for ¢ = 2,3) of positive
rational numbers, defined in [10], §5, which we shall recall in §2 for self-
containedness. We note that wy(n) < n!/2"~! for n = 1,2,..., and a lower
bound for ¥ is given in §2, (2.8).

THEOREM 1. Suppose that
(1.9) ordya; =0 (1<j<n).
If 2=ab - abr — 140, then
ordy, £ < C(n,d,p)h/(a1) - - - ' () log B,

where
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(1.10) C(n,d,p) = eTﬁmaX(p Toes? q7)(aep”) CES - wq(n)
2(p) dm+? 4
X . - max( fy logp,log(e*(n + 1)d)),
with
a=16,c=712 if p> 2,
a =32, c=058 if p=2.
Furthermore if aq, ..., o, satisfy
(1.11) K (ag/"a)",. . a/?) : K] = g,
then C(n,d,p) can be replaced by C(n,d,p)/wq(n).
Let
(1.12) C*(n,d,p) = C(n,d,p)/(n+1),

where C'(n,d,p) is given by (1.10).
THEOREM 2. Suppose that (1.9) holds and

(1.13) ord, b, = i ordy b;.

Let B, B,,, ¥ be such that
(114)  max [b| < B, |ba|<B.<B, ¥= p'r (8n3dlog(5d))".
SIsn

If == alfl o-abrn — 140, then for all real § with
0<d<d 'h(ar) - W (an_1)fplogp
we have
ord, 5 < C*(n,d,p)d~" max(d"h’ () - - - B (cn ) h, 6B/ By,),
where
h=3log(67 " W(d" "W () - b (an_1))?By).

If aq,...,«qy satisfy condition (1.11), then C*(n,d,p) can be replaced by
C*(n,d,p)/wy(n), and ¥ in (1.14) can be replaced by ¥ = max(p’v, (5n)?"d).

It is straightforward to deduce, from Theorems 1 and 2, precise versions

in terms of Ko = Q(a, ..., o,) and ordy,, and without assuming ord,, o; =
0 (1 <7 < n), where pg is a prime ideal of the ring of integers in Ky, also
versions for aq,. .., o, being rational (see Yu [9], III, §4).

For n > 2, Theorems 1 and 2 indicate that we can replace the term
n"~1 that occurs in the expressions for C(n,d,p) and C*(n,d,p) in [10],
Theorems 1 and 2, by cg_l where ¢, = 2ede, f, logp with ¥ defined by
(1.6). Plainly this gives an improvement on our results in [10] when n > ¢,
and this is significant in applications. Indeed, the present paper and [10]
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have led to an improvement on Stewart and Yu [7] to the effect that 2/3 in
the Theorem of [7] can be replaced by 1/3. (See our subsequent joint paper,
On the abc conjecture I1.) The refinement was stimulated by a lecture given
by Matveev in Oberwolfach in 1996 (see [5]) in which he indicated that he
could eliminate a term n! from certain linear form estimates in the complex
case. The crucial new idea in the present paper came out from discussions
with M. Waldschmidt during his short visit to my university at the end of
May 1996. This is to apply the pigeon-hole principle to the set of integral
points (A1,..., ), where A = (A_1, Ao, A1,..., A\) € A% with A% defined
by §10, (10.14), thereby constructing improved auxiliary rational functions
(see §10). This idea is then incorporated into the whole structure of [10].
Thus, though stimulated by Matveev’s lecture, our work in the p-adic case
involves a different approach and it is in substance quite independent.

Throughout the remaining part of this paper, [10] will be quoted fre-
quently; for convenience, we shall refer to formulae, theorems and so on
in [10] by adjoining a &, e.g., (8.9)*, Theorem 7.1%, §6%.

I am indebted to discussions with M. Waldschmidt mentioned above.

The search for constants cg, c1, 3, ¢4, 5 in §9 was carried out by my wife
Dehua Liu, who designed a program, using PARI GP 1.39, for the search
and verification. I would like to express my warm gratitude to her for her
great support.

2. Preliminaries. Let ¢; and ¢ be constants given by the following list:
(I) if p=3orp=>5 with e, > 2, then ¢; = 1.2133, ¢, = 1.0202;
(IT) if p > 5 with e, =1, then ¢ = 1.3128, g5 = 1.0415;

(III) if p > 7 with e, > 2, then ¢; = 1.3701, g5 = 1.0568;

(IV) if p=2, then ¢ = 1.176, ¢o = 1.014.

Let r € Z be such that

(2.2) r/(fo logp) > e, 4 0.6,

where 9 is given by (1.6). Set

(23) o= (fplogp)/r, x(x)=e"*(z+ed), m0=1/0—¢€p?.

Thus x¢p > 0.6 and 2y ¢ Q, since logp &€ Q. Further we let m and 9t be
defined by

(2.1)

1 if 0.6 < 20 < 1,
(2.4) m =< [zo] if zg > 1 and {zo} <1/0—1/(e? — 1),
[o] +1 ifzg>1and {zog} >1/0—1/(e? — 1),

(2.5) epMN = (1+(2n)"1- 10719 " (m + e,9).
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REMARK (The roles of m and 91). Here we introduce m and 9t under
assumption (2.2), which will occur as (8.12) in §8. We shall define an equiv-
alence relation on A% (see §10, (10.14)) by (10.15), in which m will play an
important role. Note that 9t will appear in §11, (11.24). In contrast, with-
out assumption (2.2), we take m = 0 in (2.5); then 91 becomes 6 which is
defined by (8.1)*, and (11.24) degenerates into (11.24)%*, thus we return to
the construction in [10].

LEMMA 2.1. We have

(2.6) m eyt < a1r/(fp logp),

(2.7) 1/x(m) < c2/x(z0).
Proof. Note that we have, by (1.6),

(2.8) 9> with e := 3/2, 3/4,1/2, 2,

for cases (I), (II), (III), (IV) in (2.1). We first prove (2.6). If 0.6 < o < 1,
then

1 1 0.4 Sr
¥ < —(1+04p) < —|1 < .
mep Q( +040) ,Q( + ep19+0.6> fplogp

If o > 1 and {xo} > 1/0—1/(e? — 1), then, by (2.8) and (2.1),
e 1 @
= ()
e? —1 o\e? —1 2=1/(cp 9+1)
(2.6) is trivially true for the remaining case of (2.4).
We now show (2.7). If 0.6 < oy < 1, then by (2.8) and (2.1),
x(m)/x(wo) = e 2770 (14 0(1—20)) > (e "(1+2))sm0.4/(c,9+0.6) > 1/<2.
If zp > 1 and {zo} <1/p—1/(e? — 1), then by (2.8) and (2.1),
x(m)/x(zo) = €2t} (1 = o{wo}) = (¢"(1 = @))ums, > /s,
where T = (1 — y/(ey - 1))y:1/(ep19+1)'
If o > 1 and {xo} > 1/0—1/(e? — 1), then by (2.8) and (2.1),
x(m)/x (o) = e ¢ D (14 o(1 — {20})) = (7 (1 + 2))uma > 1/s2

where zo = 1/(ep¥ + 1) — 1. The proof of (2.7) and the lemma is thus
complete.

Recall wy(n) and ws(n) defined in §5%. That is, for ¢ = 2,3 we define
wq(1) = wy(2) =1 and for n > 2,

ar
fp Ing.

<

1
m+€p'19<5'

(5.1)% wa(n) =4""-(s+n+1)!/(2s+1)!,
(5.2)% wg(n)=6""- (2t +n+1)!/(3t + 1),
where

(5.3)% s=[1/4+/n+17/16]
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and ¢ is the unique rational integer such that
(G.A*  gt) =93 — 8> — (8n+5)t—2n(n+1) <0 and g(t+1) > 0.

Hence t = [x,], where x,, is the unique real zero of g(x), which can be
determined explicitly by Cardano’s formula.

LEMMA 2.2. We have, forn=2,3,...,
wa(n) - n+2’

we(n—1) = 4
ws(n) < n—1—4'

ws(n—1) = 6

Proof. It is easy to verify that (2.9) holds for 2 < n < 6. Write s =
s(n) for s defined by (5.3)%. Suppose now n > 7. Then s(n) > 3 and
s(n) —s(n —1) € {0,1}. If s(n) — s(n — 1) = 0, then by (5.1)%,

wa(n) s+n+1_ n+2

(2.9)

(2.10)

>
wa(n —1) 4 4

If s(n) — s(n — 1) = 1, then by (5.1)® and the discussion in [10] following
(5.20)%*, we have

wa(n)  (s+n+1)(s+n) S s+n - n+ 2

wa(n —1) (2s 4+ 1)2s - 4 4
This completes the proof of (2.9).
It remains to show (2.10). Write t = ¢(n) for ¢ defined by (5.4)* and let

g(w,y) = 92° — 82 — (8y + 5)x — 2y(y + 1).
We now prove that
(2.11) t(n) —t(n—1) € {0,1}, n=>5,6,...

By PARI GP 1.39, it is easy to verify that (2.11) holds for 5 < n < 31. If
n > 32, then g(0.5n%/% 4+ 1,n) < g(0.6n%/3,n) < 0, whence by (5.4)%,

(2.12) t=t(n)> 05023 (n>32).
In order to prove (2.11), it suffices to verify
(2.13) glt—1Ln—1)<0 (n>32).
Now by n > 32 and (2.12) we obtain
g(t,n) —g(t —1,n —1) = 27t — 51t — 12n + 20 > 0.

This together with g(¢,n) < 0 (by (5.4)*) yields (2.13) and (2.11).

Now we are ready to prove (2.10). (2.10) is trivially true for n = 2,3, 4.
Note that t = ¢(n) > 3 (n > 5). For n > 5 with t(n) —t(n — 1) = 0, we get,
by (5.2)%,
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wiz(n)  2t+n+1 - n+4
ws(n —1) 6 6
and for n > 5 with t(n) —t(n — 1) = 1, by (5.2)* and the discussion in [10]
following (5.20)%*, we obtain
ws(n) _ 2t+n+1)2t+n)(2t+n—1) - 2t+n—1 S n+4
w3(n —1) (3t +1)3t(3t — 1) - 6 6
This completes the proof of (2.10) and the lemma.

We shall rely on §2%-§6%. For the convenience of exposition, we shall
number the remaining sections as §7-§15, corresponding to §7*-§15%.

7. A central result. We now state a central result, which implies The-
orems 1 and 2 of §1. We maintain the notation introduced in §1.

THEOREM 7.1. Suppose that (1.9) and (1.13) hold, oy, ..., o, are mul-
tiplicatively independent, and by, ..., b, are not all zero. Then

(7.1) ord, £ < C*(n,d,p)h'(a1) - - - W' () (h* + log ¢*),
where C*(n,d,p) is given by (1.12), ¢* is given by (5.24)%, and

. fplogp || 1
7.2 h* = 1
( ) max{ o8 ( 2d 1I£Ja<xn ]’L’(Oéj) + h’(an) ’

log B°, 6nlog(5n) + 1.2logd, 2f, logp}

with
(7.3) B°= min |b;|.

1<j<n,b;#0
Furthermore if ay,...,q, satisfy (1.11), then C*(n,d,p) and h* + log c*
can be replaced by C*(n,d,p)/wq(n) and h*, respectively.

REMARK. If n/(f, logp) < ey +0.6, then Theorem 7.1 is a consequence
of Theorem 7.1%.
Proof (of Remark). We note, on recalling (1.10)* and (1.10), that
a* {( —1)/2(p—2)) ifp>5withe, =1,
a otherwise.
From (1.10)*, (1.12)%, (1.10), (1.12), (1.6) and (2.8) we get

o Gy < T(%) (em) (o)

q
(
25 () (42

Now by (7.4), Theorem 7.1 follows from Theorem 7.1%.
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Thus we may assume
(7.5) n/(fylogp) > e, + 0.6
in §8-§13, where we shall prove Theorem 7.1.

8. Basic hypothesis. Let b1,...,b, be the rational integers in Theo-
rem 7.1, satisfying (1.13), and set
(81) L:b121+...+bn2n.

Let v be defined as in §5%, Iy, 11,...,l, be defined by (5.7)%.

Our basic hypothesis is that there exists a set of linear forms Lo, L1, ...
coos Lypin zg, 21, - - -, 2, with rational integer coefficients having the following
properties:

(i) Lo = q"20; Lo, L1, ..., L, are linearly independent, and
(8.2) L=ByLy+ B1L1+ ...+ B.L,
for some rationals By, By, ..., B, with B, # 0.
(ii) On writing
l;:qf”Li(lo,ll,...,ln) (1 SZST),

the numbers o/, = €' (1 < i < r) are in K, and satisfy ord, o/, = 0
(1<i<r)and
(8.3) [K(aé/q,a'll/q,...,a;l/q) K] =q"

(i) We have
(8.4) Ra) <oy (1<i<r),
(8.5) > |0Li /07| (o) < ¢“oy (1 <i <)

j=1

for some positive real numbers o1, ..., 0. satisfying
(8.6) o1 0. <P(r)h (a1) - A (o),
where

(8.7) W(r) = (Ze%“d) n_rwq(n) min (;y 1)

with a given by (1.10) and c¢* given by (5.24)%. Furthermore, if v =0 then
P(r) in (8.6) is replaced by Y(r)/wqe(n).
The construction of §5%* establishes the existence of linear forms as above

for r = n. We now take v as the least integer for which such a set of linear
forms ezists. Hence B; # 0 (1 <1i <r) and we may assume
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(8.8) or>0; (1<i<r)

in our basic hypothesis.

REMARK. The difference between the basic hypotheses in §8%* and here
is only at (8.9)* and (8.7).

LEMMA 8.1. If r =1, then Theorem 7.1 holds.
Proof. Similar to the proof of Lemma 8.2%.
By Lemma 8.1, we may assume r > 2 in our basic hypothesis.
LEMMA 8.2. If 1 in the basic hypothesis satisfies
(8.9) r>2 and r/(f,logp) < ey + 0.6,
then Theorem 7.1 holds.

Proof. We assert that, under (8.9), if the basic hypothesis in §8% is
replaced with that of this section, then all arguments in §9%-§13% remain
valid. Hence Proposition 9.1%, with 7 given in the basic hypothesis of this
section and with the choice of parameters and constants of §9%, holds. To
see this, we note that (8.9) and (2.8) yield

(8.10) LN (e 06T,
fologp ey0 epl ’

where 6 is given by (8.1)* and p is the integer with 1 < p < r appearing
in the text of [10] above (13.19)%. Further by the inequalities in the text
of [10] above (13.9)%,

(8.11) n(T+1)I/,7p < D=1 <1921,

On observing (8.10) and (8.11), it is readily seen, similarly to proving that
(13.24)* implies (13.23)* in [10], that in order to prove (13.23)%, it suffices
to show

GG A

Lo3g-n% L=

which is a consequence of (13.24)* (it is still true; see §13%).

Now we deduce Theorem 7.1 for v > 0. On replacing (8.8)%, (8.9)* by
(8.6), (8.7), and on observing (n+1)"*1/(n—1)! > "~ "(r + 1)" /(r — 1),
and by (8.9) and (2.8), we have

e, U*
(g~ /max(p~—frer? g—m)) x the right side of (7.1)

* r r—1 * T r—1
Sy A Rl A I UL R
c \2e fologp ep? c \2e epV

7‘+1)IP

)
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The verification in the case v = 0, i.e., when «y,...,«q, satisfy (1.11), is
similar. This completes the proof of Lemma 8.2.

By Lemma 8.2, we may and shall assume, in §9-813 below, that r in the
basic hypothesis satisfies

(8.12) r/(fo logp) > e, 4 0.6.
Finally, note that we shall use (8.13)%*-(8.16)* in §9-§13.

9. Choices of parameters and Proposition 9.1. Recall that , ¢ are
defined by (1.6), and <1, 2 are given by (2.1). We define go, ..., g12, €1, €2, f6
by the following formulae:

go = 6rlog(5r) + 1.2logd,
g1 =log(e'(r+ 1)d), g2 = 2e3q(r + 1)d,

-9 K\T fp_l 0.6 fp 1 r—1 (7"—|— 1)T+1 1t
g3 = 2coca(2c2qp”)" (p7* —1)p720 (fiylog p) "™ —————(a=1) 7,

s K\T— rT— r+1 " 1
ga = 2¢oca(2q)" (cap™) 1% ST% (f, log p) 1(70,T)fp <ep + 19>91,

l+er=047r/g3)", 1+e=(1-1/g)"",

95 = 9a(p’" — 1)(q — 1)/ (afy),

)rfl (T + 1)r+1

96 = 2coc3(s2c2qp")" (p7* —1)p™ 7% (fy logp T (a=1ey,

(9.1)
g7 = gscicarp”, g = grfplogp,

d
g9 = (log <92> + (r+ 1)10g98>,
9298 d

2 1 r—1
gio = —exp(—1+e 970N —_.___—
9o ( )Cqu“ r+1

o c 1 <q<1_ cs >r+1>loggs/logq
U coesq pifylogp r+1 ’

1 <d— 1 dlogd)
gi2 = — + )
g2\ 97 298

fo=01+107" (1 +e)(1+ €2)(2+ 1/g2)1c0c13¢40°

In (9.1), co,...,c5 are given in Table (9.2) below. The upper bounds for fs
can be obtained from the above formulae by direct calculation. Blocks I,
I1, III, IV are for cases (I), (II), (III), (IV) of (2.1), respectively. The lower
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bounds 7 > 3 in I, II, IIT and r > 4 in IV are determined by (8.12), (2.8)
and the fact that f, > 2 when p =2 (see [9], II, Appendix).

Case T co c1 GaC2 c3 c4 cs fe <
3<r<6 | 27 [06743 | 4 1.22 | 18.7 | 0.48 | 414
I | 7<r<15]| 2.6 | 0.655 0.986 | 20.72 | 0.512 | 344
r>16 2.5 | 0.65 0.856 | 23.53 | 0.54 | 321
3<r<6 | 28 | 0.6718 175 | 9.16 | 0.48 | 323
I | 7<r<15| 27 | 0.652 1.418 | 10.15 | 0.512 | 270

(9.2) r>16 2.6 | 0.6483 1.225 | 11.53 | 0.54 | 252
3<r<6 | 3 |0.6546 1.93 | 16.98 | 0.47 | 712
Ml | 7<r<15| 2.8 | 0.6425 1.612 | 19.01 | 0.504 | 608
r>16 2.7 | 0.6403 143 | 21.2 | 0.53 | 576

|
NGNSV VSO N SN

4<r<6 2.7 0.7823 32/9 0.4082 | 3.107 0.7 58
v 7T<r<15| 2.5 | 0.7646 | 32/9 | 0.3416 | 3.44 0.75 49
r>16 2.26 | 0.7458 32/9 0.31 3.835 0.8 43
Let
Cs
9.3 =1- .
(9:3) n r+1

It can be verified that co, ..., c5 satisfy (9.4)—(9.7) and (9.9) below.

(o) 52 o2l o

(0.4) r < 15,
9.4
B _ 1 log ¢ <2 < 1 > 7(p) 1>
i) 2c5e" % (1—— ) — —+ | 14+— | ——— -] >0,
(i) 265 < 292) log(gn) \ c2 g6 ) ca(M/D)g1 ¢
r > 16,

where 7(p) = 1 or 3/2, according as p > 2 or p = 2,

(9.5) 205q<1 - 1>

292

>Cl{912+(“2<%1—1>>99}
1 2
{ 0—1 <1+292+1>}02
100
{ 107 1;;9100+1 (1_Tj§)1+001—1>+<1+001—1>910}013
1 1 1 1
( >{ o—1+<m+p—1>fp}c4<m/ﬂ>’

+

+

_l_
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where 99 and DN are defined by (2.8) and (2.5),

1 1 14107190 1
9.6 c1 > cs(n” + 24+ —+ . R
(9.6) 1> cs5(n 911){ g2 DT epo+ 1 03}
) 1 Co log q I 1
i) (1+— . : + <1
) < 96> 2c4(M/Y)  q  max(fylogp,g1)  (gnt1)!
if p> 2,
61 1 1 I 1
.. C2 0gq
i) |14+ — . . + <1
i) < 96> 2e4(M/Y) > max(fylogp,g1)  (gnt)!
if p=2,
for 1 < I < I*, where
(9.8) I* = [5max(f, logp, g1)/log(qn" )] + 1,
(9.9) "t gt <q.

Note that in verifying (9.4)—(9.7) and (9.9), we have used the fact that
ntt = (1 —¢5/(r +1))"™ is increasing and 7" = (1 — ¢5/(r + 1)) is
decreasing in each range of r considered in (9.2). For the details of the
verification, see the paragraph below, which contains (9.33)-(9.35).

Let

fologp |bn| [
10) A= 1
(9.10) max{ °g< 2d 1255 \W(ay) T Wlam) ) )

IOgBo,gg,pr lng},

where B° is given by (7.3), and

(9.11) Go= (" —1)/¢",

which is a positive integer by Hasse ([4], p. 220) and (1.3), (1.4). Set
c3q(r+ 1)d(h + vlogq)

(9.12) S =

fplogp
where v is defined at the end of the paragraph above (5.23)* in [10],
1 N
(913) D = (1 + 10_100)(1 + 61)(1 + 62) <2 + g>00616429(§202qpﬁ)r
2
1 T
X uGopf'””d”qcrl -+ oy max (fy logp, g1),

7!
where zg is defined by (2.3),
q(r+1)D

9.14 -
( ) c1Ney fplogp
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(9.15) D_y=h+vlogg—1, D_j=[D_4],
~ SDd! ~
9.16 Do = . Do =[Dy),
(3.16) "= eI (Doy + Dmax (fylogpgr) 0 0!
~ D ~
. i =, i = |Dil, <i<r.
(9.17) D Sorodo D;i=[D;j], 1<i<r

It is readily seen that
(9.5) == (9.5)* for 18 < j < 31 with j # 23,25,26

hold. The following three inequalities are also true:

(D_1 +1)(Do+1) [T]+r
(9.23) G E(Di +1-Go) z @S+ 1) ),
~ —100
(9.25) D+ <t 5D _1+10 1 5D

ciesepN d < epUo + 1 ' cies  d
(the second inequality in (9.25) follows from (2.5), (2.4) and (2.8)),
150 > g6,
1 1 SD

D_1+1)(Do+1 1 <|(14+—)|— —.
( 1+ )( 0+ )max(fp ng).gl) = < +g6-)clc4(‘ﬂ/19) d

Proof of (9.23). By (9.19)-(9.21), it suffices to show that D > D’,
where

(9.26)

1 P\
D = (1 + 61)(1 + 62) <2 + 92>C()0104?/9t <c2q€]:m> Gopfpm

r(r+1)" dtloy--0
r! (fp logp)”
Now by (2.5), (2.3) and (2.7), we have

- max (f, logp, g1).-

fpm 1 T fpm 1
p —100 p —~100
=(1+5--10 ><1+1o
(ep M) < 2n (m +epd)” ( ) (x(m))"
- 1 - (fplogp)"
< (14107100 = — (14107 100)plrro R 0L
( )< (x (o))" ( )z rr

which implies D > D’. (We omit the proofs of (9.25) and (9.26) here.)
Set

_ qr+1
ep fplogp

ProprosiTION 9.1. Under the hypotheses of Theorem 7.1, we have

(9.32) SD.

ord, & < U.

Note that Proposition 9.1 implies Theorem 7.1. We verify this for the case
v > 0. By (9.12), (9.13), (8.6), (9.2), (8.7), (8.13)%, (7.2), (9.10), (2.3), (2.5),



350 K. Yu

(2.6), (1.3), and the inequality (n+1)"*!/(n—1)! > " "(r+1)" /(r—1)!,
we have

U < Jo oy
(p~feer? /max(p=frer? g=—m)) X the right side of (7.1) — eqg?—" —
The verification in the case v = 0, i.e., when a1, ..., q, satisfy (1.11), is

similar.
In the following §10-§13, we shall prove Proposition 9.1.

Now we indicate how we verify (9.4)—(9.7) and (9.9). We divide the
verification into four cases, which are (I), (II), (III), (IV) of (2.1). We have

M) g=2,d>1,9<3/2 fo>1,¢e,>1, p* >3,
N9 > (1+107199~L
(II)g=2,d>1,9<1, fp>1, e =1, p* =1,
N/9 > 2(1+ 1071091
(IIl) g =2, d>2, ¥ <T/6, f, > 1, ey >2, p® >1,
MN/Y9 > (1410719071
(IV)g=3,d>2,9<2, f,, >2, e, > 1, p" >4,
M/Y > (141071091,

(9.33)

We can prove (9.4)—(9.7) and (9.9) for » < 15 by direct computation, using
(9.1)-(9.3) and (9.33). It remains to verify them for r > 16. By direct
computation, we see that (9.4)(ii) is true for r = 16, whence it holds for
r > 16, since its left side is an increasing function of r. In case (I), LHS—RHS
of (9.5) is increasing in d, and this difference at d = 1 is increasing in r
with r > 16; further this difference at d = 1, r = 16 is positive by direct
computation, whence (9.5) for case (I) with » > 16 follows. In cases (II),
(ITI) and (IV) we have

107 1 cs 1 1 c5q

9.34 — : -1 - ——

(9:34) {103 epo+1 r+1 < +co—1>glo}03 92
1

1
gt (1+s—— gt —
1{912 < 2(00—1)>gg} (co —1)(2g2 + 1)co
1 1 1 1 1
— 1+ +( M+ — )=t ——— >0 forr>16,
96{ co—1 < P—1>fp}04(‘ﬁ/19) -

since its left side is positive for r = 16, decreasing in r and tends to 0 as
r — oo; also it is readily verified, using (9.1), (9.3) and (9.33), that for
r > 16,
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1 2 107 1+ 107100 I \1
| . R G e ey 1 —
(9.35) C5q_{q+2(60_1)}02+103 ep290+1(+60—1>c3

+ {1 + ! + <m+ ! ) ! } =

c—1 p—=1) fp J ca(M/9)
Now (9.5) for cases (II), (III), (IV) with » > 16 follows from (9.34) and
(9.35). Finally (9.6), (9.7) and (9.9) for » = 16 can be verified by direct
computation, using (9.1)—(9.3) and (9.33), whence they hold for r > 16 by
monotonicity in r. Our computation is carried out on a SUN SPARCstation
10 with PARI GP 1.39.

In order to prove Lemma 11.2 of §11 in the sequel, we show the following
inequality. Let I € Z satisfy 0 < I < I'* with I* given by (9.8) and d; = 0
or 1 according to I =0 or I > 0. Then for K =0,...,r —1 when I =0 and
fork=1,...,7 —1 when I > 0 we have

1
. 25" k(1 - —
(9.36)  2c5¢" " 50

1
> 1+ ——
> e+ (14 5,77
+ qk+1 + L 1+ L 3
(QT]TJFI)I 2(00 — 1) 290+ 1 Co

L 141071 EENE S U AU 1
103 eyt +1 \ co—1 co—1)70 ¢,

+<1+1>{1+ L k40T +1/(g—1)logg
96 co—1 max(f, logp, 1)

w2+ )5 am
p—1) fp ) ca(M/9)

Proof of (9.36). By (9.7), we see that the right side of (9.36) is bounded
above by (k) which is obtained from the right side of (9.36) by replacing
¢" T/ (gn™t1)! with ¢"*1, replacing k + 6;(1 + 1/(q — 1)) with 7(p)k, and
replacing max(f, logp, g1) with gi. Write £(k) for the left side of (9.36).
Now (9.4) implies (£(z) — R(x))’ > 0 for 0 < z < r — 1 and (9.5) implies
£(0)—2R(0) > 0. Hence £(k) > R(k) for k =0, ...,r—1, which yields (9.36).

10. The auxiliary rational functions. Let
(10.1) G=plv -1, Go=G/q", Gi=G/¢" with pu=ord,G.
Denote by ¢ a fixed Gth primitive root of 1 in K, such that
(10.2) ¢ = (g (= ),
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by £ a fixed (¢G)th root of 1 in C,, and by a(l)/q a qth root of g in Cp,
satisfying
(10.3) ¢=¢ and €% =ql/".

By (1.9), there exist ai,...,a, € N such that a;¢% =1 (mod p) (1 <
j <n). Now [9], III, Lemma 1.1 yields

K 1
(104) Ordp(Ck;] Caj — 1) Z ’19 + Ifl, 1 S] S n,
where a; = p*a;, and 9 is given by (1.6). Note also, by (10.2),
(10.5) ol ¢ =1, where ag=p"(G - Go).

Thus the p-adic logarithms of a? ) (% satisfy

(10.6)  log(ad ¢*) =0, ord,log(a () >+

p—1
We shall freely use the fundamental properties of the p-adic exponential
and logarithmic functions (see, for example, [8], §1.1).
Recall L;(zo, ..., 2z,) and o} (1 <1i < r) specified in the basic hypothesis
in §8. It is proved (as (10.7)*) that there exist af, ...,a.. € N such that for
1<i<r,

]. g K g ’
(10.7) exp <qVL¢(O,log(af ¢™),...,log(a® C“n))> = o’ ¢,

By (10.6) and (10.7) we have

1<j<n.

K ’ 1
(10.8) ord,(a}” (% —1) > 9 + — l<is<n
p p—

or equivalently,
(10.9) aP ¢ =1 (mod p™), 1<i<r
where mg is the least integer > e, (¢ + 1/(p — 1)). Hence

(10.10) [T ¢y =1 (mod p™) for all (Ar,...,A,) € Z".

i=1

We define (a}” "(%)1/4 by the p-adic exponential and logarithmic functions:

K / 1 " ,
(10.11) (07" C")MT = exp <q log(a;” C‘“)>a 1<i<n
and we fix a choice of gth roots of of,...,a, in C,, denoted by afll/q’ o
o >041/q, such that
(10.12) (@ ¢ = (@ e, 1<,

where ¢ is given by (10.3).
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We shall use the notation introduced in [1], §12:
Alz;k)=(241)---(z+k)/K! fork€Z~y and A(z2;0)=1,

r—1
H(Zl,--- 7ZT—1;t17"',tT‘—l) = HA(Zl,t'L) (tlv' . 'atT—l € N)7
=1

O(z:k,1,m) = — <d) (A(z k) (LmeN).

m!\ dz
Recalling (10.1) and writing A = (A_1,..., \,), we define
(10.13) B={beN|b< ¢"™™, ged(d},...,a.,Go) |bG:},

(1014) A% = {xenr+? ‘ NED, —1<i<r S alhi=0 (mod G},
i=1

where D_q,...,D, are given by (9.15)—(9.17). We define an equivalence
relation on A%*: X and )’ in A% are said to be equivalent if \; = \; (i = —1, 0)
and

(1015) T ¢ = [T ¢ (mod pmorm),

i=1 i=1
where mg is given in (10.9) and m is given by (2.4). From (10.10) and the
fact that mg > 1, we see that A% decomposes into at most N(p)™ = pfr™
equivalence classes, whence there exists an equivalence class, denoted by A,
such that its cardinality satisfies

#A*
(10.16) #4> T
We have A = | J,cz Ap, where
(10.17) Ay = {A e A ‘ Y @A =bG (mod GO)}.
=1

From now on we fix (/\g‘”, ol )\5«0)) and b € B such that

(10.18) (A1, 20, A A9y € 4,0
for 0 < )\_1 < D_l, 0 < )\0 < Do.
We shall construct a rational function P = P(Yp,...,Y;) of the form
RO O
(10.19) P =S p(\(A(Yo + A_y; D_y + 1))ty =20y =A
1
A€eA

with coefficients p(A\) = p(A_1,...,A;) in Ox. We write P = >, 5 P,
where P, is given by the right side of (10.19) with A replaced by A,.
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Put 9} = 0/0Y, and recall (8.14)%:
r—1
= (1/B,) ) (bnOL;/0zj — b;0L;/02,)0; (1 <j <n).
i=1

Then we have
Ap— A (@ PO .
Y Ny Sy Ly <),

where

T

(10.20) Vi = Y _(budLi/0z; — b;0Li/0z0) (A — A).

i=1
For any t = (tg,...,t,—1) € N", we write |t| =ty + ...+ t,—1 and put

() (’yl""7'77‘—1;t17"'at7’—1)a
O(Yo;t) = (v(D-1 +1))°O(Yo + A_1; D1 + 1, X0 + 1, o),

where v(k) = lem(1,2,...,k) for k € Z~o. We introduce further rational
functions Q(t) = Q(YO, e ,Yr; t) by
© A
(10.21) Q) =3 PN (O (Yo Y N oy
A€/

and write Q(t) = > ,c5Qu(t), where Qy(t) is given by the right side of
(10.21) with A replaced by Ay.

We shall use the notation of heights introduced in [1], §2. Now we ap-
ply [1], Lemma 1, which is a consequence of Bombieri and Vaaler [2], The-
orem 9, to prove the following lemma, where

p=(p(N): x€A) €PN with N = #A (= the number of elements of A).
LEMMA 10.1. There exist p(A) € Ok, A € A, not all zero, with

SD 1 1 1 1
10.22 h < — — = 1 —
( ) O(p)_ d {912+CQ—1|:299+ ( +2g2+1>6162

T A T T (I S
103 epm T e 96 ) crea(M/9) | J7
such that for all b € B we have

(10.23)  Qu(s, ()" ¢™1)*,..., (e} ¢™)%58) = 0
for s € Z with |s| < S and t € N" with |t| <T.

REMARK. In the sequel s always denotes a rational integer and ¢ always
denotes an r-tuple (tg,...,t,—1) € N". The expressions s € Z and t € N"
will be omitted.
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Proof (of Lemma 10.1). For each A € A;, by (10.14), (10.17) and
(10.18), there exists w(\) € Z such that

Sl = A”) = (0 bO)G1 + w(N)Go,
=1

whence, by (10.2),

. P* ralys(A;—ALD b—bOG,  sw(N) - pPs(Ai—A0)
/ ; i— A, _ — w 1PV s(Xi—A;

H(O‘i gaz)s( i) — CS( ) o Hai '

=1 i=1

Thus it suffices to construct p(A) € Ok, A € A, not all zero, such that

e A0 LD
(10.24) Z p()\)ﬂ(t)e(s;t)agwo‘) Ha;p sQu=ATHD0) _
AEA, i=1
forbe B, |s| < S, |t| <T,

which is a system of

r

M < g" (28 + 1) <[T] + T)

homogeneous linear equations in N unknowns p(\), A € A, with coefficients
in £ = Q(ag,a},...,a.) C K. Evidently (10.22)* remains true. Now our
proof follows closely that of Lemma 10.1%, and we indicate here only mod-
ifications. From (10.16) and (9.23), we get

(D_1 +1)(Dg + )G T H D;+1
plem Gi

NZ :|200M.

=1

By (9.28), (10.23)* still holds. Also (10.24)%* remains true, since |)\i—)\§0)| <
D; (1 <i<r)for A€ A (10.25)* should be modified to: for A € A, |s| < S,
t| < T,
107 1 1 SD
10.25 log |O(s;t)| < ——to(D— 1 1+ — ) ———= —
(1025)  ogle(sio)] < fto(Do + 1)+ (14 ) o 50

because (9.26)%* is changed to (9.26).
On combining (10.24)* with (10.25), and by (9.25) and gy > 48, we
obtain for A € A, |s| < S, |t| < T,

(10.26)  log |II(t)O(s;1)|

- 103 e,M g1o c1C3 g6 ) cieca(M/9) | d -

Now let | |, be an absolute value on E normalized as in [1], §2. On noting
that I1(t)O(s;t) € Z, we have for v|oo, and for A € A, |s| < S, |[t| < T,
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©
log [I1(t)O(s;t)ayg (’\)H P s(Xi=X;+Dy)

v

<log |[II(t)O(s;t)| + Z 2D; log max(1, \Oz;pnslv);
i=1
for vfoo, and for A € A, |s| < S, |t| < T,

log [IT(£)O(s; t)ag™ ™ H

T
§ Z2Di log max(1, |o}” °|,).
i=1

Thus, by the product formula, by (10.26), (8.4), (9.24), and on noting
[SI([S]+1) < S(2S+1)-1(14+1/(292 + 1)) (by (9.19)), we have

1
10.27
(10.27) 7
Nt TT s A D)
X Z d’ZIOggle%ﬁ )0 (s;t)ay Hag .
beB i=1
|s|<S,|t|<T

< 1 14 1 1 n 107 1 n 1
“co—1 292+ 1) cico 103 ep,MN g10 ci1c3

() e

Now by [1], Lemma 1, Lemma 10.1 follows from (10.22)%, (10.23)* and
(10.27).

11. Double inductive procedure. For ¢(!) € N, Dlg) eN(-1<i<r)
and p(\) = pD(X_1,...,)\) € Ok, which will be constructed in the
following main inductive argument, we set

(11.1)  BY ={peN|b< ¢, ged(d,,...,a.,Go) | (P +bG1)},
and let AU) be a subset of Z"t2 having the following three properties:

9 ’l”’

,
(11.2) (1) 0 <#AD < J] (Di+1),
i=—1
(i) A = (A_1,...,A.) € AYD) implies that A; runs over 0,1, .. .,DZ(I)
(i=-1,0) and

Za;)\i =eD (mod Gy),

=1

(iif) if A, ' € AD then (10.15) holds and |A; — X;| < DY) (1 <i < 7).



p-adic logarithmic forms and group varieties 357

For b € BY), set

(11.3) A,()I) = {)\ e AD ‘ ia;)\i =W 4G, (mod Go)}.
i=1

Fix (/\gl), e ,)\g)) and b1 € BY) such that

(114) (A0, AD) e A;(,{1)>

for 0 <Ay < DY 0< A <D
Put

T

(115) 9" =3 (ba0Li /02 = b;OLi/0z) (N = A) (1<) <),

i=1
(11.6) IO =\, Dt ).
Define Q) (t) = QU (Yy,...,Y,;t) by
NG A
(L) QU= 37 P NID M Yo Ty
AEAM)
and write Q) (t) = >, i) Q,()I) (t), where Q,()I) (t) is given by the right side
of (11.7) with AY) replaced by Al(f).

We now define the linear forms
1 0L;

. i=Li——- <i<r),
(11.8) M; =L b o (1<i<r)
where L = b1z + ...+ b, 2,. Then
n—1
bnMi = bn(aLi/aZO)Zo + Z(bnﬁLl/ﬁz] — bjE)Li/azn)zj (1 S 7 S ’I”).
j=1
For 29, 21, ..., 2, with ord, zo > 0 and ord, z; > 1/(p—1) (1 < j < n),

we define the p-adic functions
(11.9) oD (20, ..., 2n:t) = QW (2, X1 O210mzn) | e Lr(0z1520) 1)
(11.10)  fD(z0,...,2n_1;t)

— QD (2, M1 (OF1 0 2n1) | Mr(Otnmnen), gy

Let v be defined as in §5% (see the paragraph above (5.23)%). We put for
z € Ly

(1111) oD (zt) = D (2,27 log(ah ¢™),..., 2q7" log(ak ¢™*);1),
(11.12)  fD(z;t) = fD (2,2 " log(al ¢M),...,2q " log(af¢O1);t).
For b € B, let gpél)(zo, ..., 2Zn;t) and fél)(z[),...,zn,l;t) be given by the
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right side of (11.9) and (11.10) with Q) replaced by Q(I) let go(l) (z;t) and
(I)(z t) be given by the rlght side of (11.11) and (11.12), with o) and
D replaced by 4,0([) and fb , respectively. Note that by (10.7), we have

(11.13) o0 (z6) = QU (=, (o} ¢™)7,...
I I ®eal\z

(1114) o (1) = Q1 (= (of” ¢*)7 . (

Recall n, I*, S, T given by (9.3), (9.8), (9.12), (9.14). Let
(11.15) S =yl g ) — DI,

al? Ca;)z;t) for any z € Z,,
o’ ¢

“)*:t) for any z € L.

We write p) = (p(D(X\) : X € AD),

THE MAIN INDUCTIVE ARGUMENT. Suppose that Proposition 9.1 is false,
that is,

(11.16) ord, & > U

for some aq, ..., € K and by,..., b, € Z satisfying (1.9) and (1.13) with
ai, ..., an, multiplicatively independent and by,...,b, not all zero. Then
for every I € Z with 0 < I < min([logD,/logq| + 1, I*) there exist
e eN, DY eN (-1 <i<r), AD C 22 with ged(d), . .., d.,Gy) | D),
D(I) =D; (i = —1,0), DZ(I) < ¢ 'D; (1 < i < ), AD satisfying
(11 2), and p(N\) = pD(A_1,...,\) € O (A € AD), not all zero,
with

SD 1 [1 1 1
11.17) ho(p™) < == - 1 —
( ) O(P ) - d {gl Co—l |:299+ ( + 292+1>0162

103 e, 9 e 96 ) crea(M/9) | |

(11.18) oD (sit) =0 forall be B, |s| < qSD, |t| < nTW).

such that

In the remainder of this section, we always keep (11.16).

LEMMA 11.1. Suppose b € BYD) and p)(\) € Ok (X € Aél)) are not all
zero. Then fory € QNZ,, |t| < T we have

ord, (£ (y;t) — ol (y; 1)) > U — ord,, by, + min ord, p") ().
AEAY

Proof. This is similar to the proof of Lemma 11.1%. We omit the details.
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Let €9 = 0, DEO) = D; (-1 < i < 7). Then B® = B. We can choose
A® = A and let pO(\) = p(A) (A € A©), which are determined by
Lemma 10.1. Thus A} = Ay, 1\” = ~;, TO(t) = (1), QO(t) = Q(¢),

,()O)(t) = Qp(t), and by Lemma 10.1, (11.14) and (11.15), we have
(11.19) @éo)(s;t) =0 forallbe BO, |s] <SSO |t| <TO),

LEMMA 11.2. Suppose I =0 or I is a positive integer with
(11.20) I < min([log D, /logq|, I* — 1)
for which the main inductive argument holds. Then for J =1,...,r, we have
(11.21) wgl)(s;t) =0 forallbeBD, |s| <q¢?SD, |t| <n/TD.

Proof. We abbreviate (7o,...,7.—1) € N" to 7, (1o, ..., ttn—1) € N to
w and write |[7| =19 +...+ 71, || = po+ ...+ ptn—1. (There should be no
confusion with the yp defined by (10.1).) Similarly to the proof of (11.19)%,
it is readily verified that for every m € N we have

(11.22) 1<i>m D (2:1)

m!
_ Z <7‘0>q1“0(bnq”)(m“°)
o/ (v(D—y+ 1))k

|n|=m

S Cun (),

TlseesTr—1

y ’i—f (log(a ¢%))Hs
et 5"

where 7 = (79,71,...,Tr—1) With 79 = %o + po, the second sum is over
T1y.wo, Tr—1 with 7] < |t| +m, and C(p,7) € QN Z,,.

Note that (11.21) holds for J = 0 when I = 0 by (11.19), and for J =1
when I > 0 by (11.18). Assume (11.21) holds for J = k with 0 < k < r
when I = 0, and with 1 < k& < r when I > 0. We shall prove (11.21) for
J =k + 1 with k < r and include the case k = r for later use.

Clearly, for any fixed b € BY), we may assume p)(\), A € /ll(f), are not
all zero, and we write

P = (oD () s e Al
Now we prove that for every A € AU,
(11.23)  [Jexp{p™™2q7"M;(0,log(a} ¢™),... ,log(a,_; ™)) (Ai=At")}

i=1
is a p-adic normal function of z.
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To see this, we note, by (11.8) and (10.7), that

H eXp{qf’jMZ-(O’ log(azfncal), R ,log(agilcaﬂfl))(/\i _ )\51))}

=1
= "™ T expla™"Li(0,log(a " ¢™), .. log(aZ" ¢*))(A; — AL}
=1
= SOt ¢y,
=1
where
5(A) = —(¢"bn) " Llog(ad"¢™), ... log(aZ ¢™)) 3" (A — A)AL; /02,

i=1
By (11.4) and (11.2)(iii), we have, for every A € AU,
Tl ¢ =1 (amod pmom),
i=1
which implies, by (2.5) and the definition of my given in (10.9),
ord,, (ﬁ(a;pmcaé)&’\gn - 1) >N+ pil
i=1

Also, similarly to the proof of [8], Lemma 3.2, we have a1b1 + ...+ apb, =0
(mod G), whence by (11.16) and recalling (7.3), (9.10) and (9.32), we get

ord, () > ord, L(log(a? ¢™),. .., log(a? ¢*)) — ord,, by,
> ord, (p" log(al* - --al)) — (log B®) /log p

n

1
> ord, = — h/logp > U — h/logp > 9N + pa—t

-1
Thus (11.23) follows. Further
p(D*1+1)(D0+1)m((D,1 + 1)!)D0+1@(q_1p_mz;t)
is a p-adic normal function of z. Hence for [t| < n*+1T(),
—1))—AD _
(11.24)  FED(z1) i= pP1#DRoDOW/ (1) =A0 ;) ()= )

are p-adic normal functions of z, where
Aé” = min ord, p'(\).
reall
Obviously

1 /d\"
(11.25) m'<dz> F (sp™st)

I 1 /d\™
= p(Dfl+1)(Do+1)(91+1/(p—1))—ﬂi )—m‘ﬂ< > (I)(s;t).

m! \ dz b
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We now apply Lemma 2.1%* with # = 0 to each function in (11.24),
taking
11.26 R=[¢*s")], M= |-2ptrD].
(11.26) [¢"S], e
Similarly to §11%, we see, by (11.25), (11.22), (11.21) with J = k and

Lemma 11.1, that condition (2.3)%* with § = 9 holds for each Fb(l)(z;t)
with [t| < n*t1TU) whenever
1
(11.27) U+ (D_1+1)(Do+1) (‘ﬂ + p—l)
max(h + vlog q,log(2R + 1))
logp

Similarly to §11%*, we see that (11.5) := (11.5)*® holds for j = 28,29. Thus
by (9.14) and (9.32), we have

2 1
(11.30) “Bgh—rpk (1 - 29>U < (M +1)(2R+ )M
2

> (M +1)(2R+ 1N+ (M +1)

C1
2c 1
< =24 + gn) <1 + )U.

c1 292

From (11.29), (9.12), (9.10), (9.1) and (9.2), we see that
7t 1og(2R 4+ 1) < h 4+ vlogg.
This together with (11.28), (9.12), (9.14) and (9.32) gives
(11.31) (M+l)max(h+l/logq,log(2R+1))
log p
1 1 c
< (nk + g11) > U

(r+1)g"+! . epN . ci1c3
It is readily seen that the sum of the (extreme) right sides of (11.30) and
(11.31) is at most its value at k = r:

U oty + ){2+ Lo 11 }
—_— C R— . P— .
c1 s\ T 9 g2 (r+1)¢g"tt e,M c3

Thus (11.27) follows from (9.6), (2.5), (2.4) and (2.8). By Lemma 2.1% with
0 = M and (11.24), we get, for s € Z and |t| < nFT1T0)

1
ord, féD(Z;t) > (M+1)(2R+1)‘ﬁ—(D_1+1)(D0+1)<m+p_1>+Al()1)_

Further Lemma 11.1, (11.27) and (11.30) give
1
(11.32)  ord, o\" (Z;t) +(D_1 +1)(Dg + 1) <m+ p_1> — AP

U 1
> — . 2c5¢" Tk <1 — ) for s € Z and |t| < pF+tTD),
a1 292
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Now we assume k < r and prove (11.21) for J = k + 1. Suppose it were
false, i.e., cp,()l)(s;t) # 0 for some s, t with |s| < ¢*+1SWD) || < 1T We
proceed to deduce a contradiction. In the remaining part of the proof we fix
this set of s, t.

For A € AI(JI), by (11.3) and (11.4), there exists w!)(\) € Z such that
> aih = A = (0= b6 + 0D (NG,
i=1

whence by (10.2), (10.3) and (10.12), we have
(11.33) (i) ﬁ(a;pngaé)S(Ar/\ED): (PG D) ﬁa;pw@i_xgﬂ)’
=1 pale}
(i) ﬁ(a;p”gaé)iuiﬂﬁ”)
i=1 _ es0-b)G (L )5 () ﬁ(agl/q)ﬁs(&—hi”),
=1

Let 0 ifI=0
or={] L0

1 if I >0.
Then, by [9], III, Lemma 1.3 (see the remark before (10.11)* in [10]),

(1134) qél{I(D_l+1)(D0+1)+(D0+1)ordq((D_l—i-l)!)}@(q—Is; t)H(I) (t) c7.

By (11.33)(i) and ordy o; =0 (1 <7 < 1) (see §8), we have

ord, cpl(f) (s;t) = ord, ¢,

where
o = Z PP (N) (g1 PotDAD 1D IFords (Dt DD} 9 (=g 1) [TU) (1))
xeall
agwum) H a;pf@s(AﬁAg’MDg”)
i=1
is in K and non-zero. Now let ||, be an absolute value on K normalized as
in [1], §2, and let ||, be the one corresponding to p, whence

1 1
11.35 ord, ¢’ = ———(=log|¢'|v,) = ———— log [,
(185) o' = o) = e S sl

by the product formula on K. Note (11.36) := (11.36)* holds, by (11.2)(i)
and (9.28). Also, (11.5) := (11.5)* (j = 37,41) remain valid. Now by (9.26),
(11.38)  67(Do + 1{(D-1 + 1)I +ord,((D-1 +1)!)}logq

<<1+1>51(I+1/(q—1))10gq' 1 SD
N 96 max(f, logp, g1) ccaM/9 d -
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By (10.17)%, [9], II, Lemma 1.6 and (11.15), gn" ™! > 1, (9.29), we have
log|©(q 's;t)| < —to(D_l + 1)+ (D_1 +1)(Do + 1)

— 103
klog q
x max( fy logp, gl)<1 + max(f, log p 91))

Further, it is readily seen that (10.24)%* with 17 (t) and 7, replaced by IT0) (t)

and 'y](- remains true for the fixed ¢ and any \ € Ab , since |A; —)\EI)| < DEI)
(1 <7 <r) by (11.2)(iii). These and (9.25), (9.26), go > 48 imply for all
Ae A

(11.39)  log|O(q Ls;t)ITD (1))

07 1, 1
< ——_phktl —
{ (103 en! T 910) c1cs

+<1+ Flogg ><1+1>1 }SD
max(fp log p, 91) Jde C1C4(m/19) d’

Observe that for A € AIEI) ,

(11.40) log agw“)(x) Haépns(ki_w)jmy))

v

<p" Y 2D logmax(1,[a}’,).
i=1

Now, using (11.34)—(11.41), (11.17), (9.24), (9.26), (9.32), we obtain

(11.42)  ord, o\" (s;t) + (D_y + 1)(Dg + 1) (m + pi1> — Al

< — 7 x the right side of (9.36).
c14

Hence by (9.36), (11.42) contradicts (11.32). This contradiction proves
(11.21) for J = k+ 1. Thus the induction on J is complete and Lemma 11.2
follows at once.

LEMMA 11.3. For every I as in Lemma 11.2 we have
(1143) ¢ (s/a;1) =0
for allb € BY, |s| < q([SUV] +1), |t < TUHD.

Proof. Note that TU+1) = pr+17() and by (9.9) we have (11.44) :=
(11.44)* whence (11.43) for s with ¢ | s follows from Lemma 11.2 with J = 1.
Now we consider s with (s,q) = 1. For any fixed b € BY), we may assume

that p(D(\), X € A,()I), are not all zero. Now, by (11.32) with & = r we have,
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for s € Z, |t| < TU+D),

1
(11.45)  ord, o\" <2;t> +(D_y +1)(Dg + 1) <m+ p_1> — AP

U 1
> -205777"(1 — >
& 292

Let K' = K(a(l)/q, a’ll/q e o/rl/q). By consecutively applying Frohlich and

)

Taylor [3], I11.2, (2.28)(c) r + 1 times, we see that
pOK/ e %lmQ e ;qul

for some ry with 0 <7y <r + 1, where P; are distinct prime ideals of Ok~
with ramification index and residue class degree (over Q)
e‘ﬁ]‘ = €p, f‘,p] :qr+1_T1fpa j:]-a""qn'
Denote by | |,» an absolute value on K’ normalized as in [1], §2, and let ||,/
be the one corresponding to ‘B;, and K{pj be the completion of K’ with
respect to | ‘v;.- The embedding of K, into C, (see §1) can be extended to
an embedding of K‘/Bj into C,, and we define, for § € K‘/Bj with 8 # 0,
1 1

——————(—log|f]s;) =

esp; fy, logp T grtiTrie, fylogp

On noting that goél)(s/q; t) € Ky (C Kg,), we have

ordz()j) gol(f)(s/q; t) = ord, gogl)(s/q;t) (j=1,...,4™),
whence (11.45) yields

ordl(,j) 0=

(_ log |B|v;)

qu
. 1
(11.45)% > ord{ o (;; t) +q" (D_1+1)(Do+1) (m+p_1) —gr AP

=1
U 1
> — - 2¢e5¢"' 0" (1 — >
1 292

Suppose that (11.43) were false, that is,

oy (s/a;t) # 0

for some s, t with (s,q) = 1, |s| < q([SUTV] 4 1), |[t| < TUTD. We proceed
to deduce a contradiction. In the sequel we fix this set of s, t.

Now by [9], ITII, Lemma 1.3, we have, for A € Al()I),
(11.46) q(Do+1){(D—1+1)(I+1)+0rdq((D—1+1)!)}9(q—(1+1)S;t)]](l)(t) c 7.
Hence, by (11.33)(ii) and ordy o, = 0 (1 < i < 7) (see §8), we have, for
j = 17"'?qu?
(11.47) ord](f) goél)(s/q; t) = ordz(,j) o,
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where

reafl

_ swD
x O(q~ TV s ) [T (1)) (g ?)>w

Ty e0i™ 4 g

i=1
is in K’ = K(aé/q, o,V . /7). Then, by the product formula on K,
q"
(3 " — i
(11.49) ;ordp LTS E oS logp( glogw |v>

1
= — Z log ’@//‘UU

qrti-n ep fp logp

where 3 signifies the summation over all v/ # v},... v vgr, - Note that
(11.50) := (11.50)* holds. By (9.26), (11.51) := (11.51)* with its right side
divided by (91/9) is valid. Similarly to the proof of (11.52)% and (11.39), we
can verify that for all A € A(I),

107 1
103 e,

SD

1
r+1 L=
+ 910) ces | d

Jde 0164(9'1/19) d '

(11.52) log|0(¢~ T Vs )T (1) < <

Note that

(11.53)  log ‘ T (o)) s +0(™)

,U/

T
<> 2D" -log max(1,](a}"/?)*]).
i=1
Also (11.54) := (11.54)% is valid. Observe that by (8.3) we have [K': Q] =

¢"t1d. Utilizing (11.36), (11.46)—(11.54), (11.17), (9.24), (9.26), (9.32), we
see that

q"
. 1
(11.55) > ord{) o <Z; t) +¢"™ (D_1+1)(Do+1) <m+p_1> —g A
=1

< g + 11+ !
I -
= g 1(912 2co — 1) 99

+[q + 1! <1+1>}2
(gn™+1)T ~ 2(co — 1) 292+ 1/ | o
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T UL (A I N Y . L
103 epm\ co— 1 co—1)70) ¢ 9

1 I ~ 1)1 1 \1 1
GRS CEE))) qu+<m+ > ] }

co—1  max(f,logp, g1) p—1) fp]ca(M/0)
Now we prove

X [1 +
qurlf'rl 1
— the right side of (11.55)

< (gn)" x the right side of (9.5).

If p > 2, then by (11.20) and (9.7)(i), the left side of (11.56) as a function of
I attains its maximum at I = 0, whence (11.56) follows from the inequality
(which is a consequence of (9.1)—(9.3))

(11.56)

2log?2 qlogq
> .
log(e*-4) — (¢ =g
If p = 2, then by (11.20), (9.7)(ii), (9.8), the value of the left side of (11.56)

increases when ¢/(gn"™!)! is replaced by ¢ and Ilog q/max(f, logp, g1) is
replaced by 5(1 — 1/q) log q/log(qn"*1), whence (11.56) follows from

((gn)" — 1)33 Z <1 + 916) 04(5711/19) { (qqiof)qgl " (1 - (D b;;fil)}

which can be verified by direct computation, using (9.1)—(9.3) and (9.33).
Thus (11.56) is proved. By (11.56) and (9.5), (11.55) contradicts (11.45)®.
This contradiction proves (11.43), and the proof of Lemma 11.3 is thus
complete.

(gn)"—1>2"e % —1>

In order to prove Lemma 11.4, we need the following observation (recall-
ing that ¢ is given by (1.3)):
(11.57)  If B € K, satisfies 3 =1 (mod p) and B¢ =1 (mod p™) for a

positive integer m, then 3 =1 (mod p™).

Proof. We prove (11.57) for the case p = 2. Then p|2, ¢ = 3 and
(3 € K, by (1.2). Thus (8 —1)(8 - ¢3)(8—¢3) =0 (mod p™). We assert
that 8 — (3 £ 0 (mod p), for otherwise we would have (5 — 1 =0 (mod p),
whence 2| Ng(¢,)/0(¢s — 1) (= 3), which is absurd. Similarly, 8 — (5 # 0
(mod p). Hence S =1 (mod p™). We omit the proof for the case p > 2.

LEMMA 11.4. For every I as in Lemma 11.2, there exist eé/T1) ¢ N,
DT e N (=1 <i < r), AUTD with

(11.58) ged(dh, ..., a.,Gy)|ed*D),

(11.59) DY =Dp; (i=-1,0, DI <UD, (1<i<r),
(11.60) AU having properties (11.2) with I replaced by I + 1,
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and pITD(N) = pUHD (N1, ... \,) € Og (A € AUFD) ot all zero, satis-
fying (11.17) with I replaced by I + 1, such that
(11.61) o (s:8) =0

for all b e BUHD | |s| < q([SUTV] +1), |t| < nTU+D),

where BUHY), A(()I—H), and gol(;IH)(z; t) are defined by (11.1), (11.3) and
(11.14) with I replaced by I + 1.

Proof. From Lemma 11.3, we have

(11.62) oD (s/q;t) Z 90( ) (s/q;t)
beBW)
for |s| < q([SUFV] +1), [t <TUHD.
By (1.2), (8.3), (10.3) and an argument similar to that in the proof of [9],
ITI, Lemma 2.5, it is readily seen that

(11.63) K@), K(E) = ¢
Recalling (11.4), for (A},...,Af) € Z" with 0 < X\f < ¢ (1 <i <r)
we define
ADN oA ={e=(t_1,...,1,) € AD|
L — /\l(.l) =\ (modgq), 1 <i<r},
FON LX) ={A=0_1, A ) [ A =1 (i=—1,0),
A= (= A =\ /g (1 <i <) with o e ADN . A9}
By the hypothesis that the main inductive argument holds for I, there

exists an r-tuple (Af,...,\*) such that AN ... A% # @ and pD (1),
ve AD(XE ... X\¥), are not all zero. Set

ot

AU+ — F(I)( S,
pITD(N) = pD () for A € AU+D corresponding to ¢ € AD (A, ..., \%).
Thus ho(p 1) (< ho(p!))) satisfies (11.17), and 0 < #AU+D) < AU <
[I;—_(D; +1). Further

3 di(ghi + A7) Za 2D =0 (mod Gy),

whence
,
Za;)\i = U+ (mod &y),
i=1
where e/+1) € N is a solution to the congruence gr=—>";_, a/\; (mod G1),

which is soluble uniquely mod G by (10.1). Thus AT gatisfies (11.2)(ii)
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with T replaced by I + 1 and (11.58) is valid. Finally if A and A’ in AU/+D
correspond to ¢ and ' in A (X%, .., \¥), then

ti—ti=qN—=X) (1<i<r).

So, by (11.2), |A; — X| < DY = [¢=1DP] < ¢~U+DD, (1 <i < r). We
choose D™ = D, (i = —1,0). Also by (11.2)(iii)

(TT ¢ =) = [ ¢y =1 (mod pmo+m),

i=1 i=1
whence by (11.57),

[T ¢y = T ¢)™ =1 (mod pmot™).

i=1 i=1
Thus we have proved that AU+1) satisfies (11.2) with I replaced by I + 1.
We define BY+1) and Aélﬂ) by (11.1) and (11.3) with I replaced by I + 1.

Now we fix A, A™) and b+ € BUHD such that (11.4) with
I replaced by I+1 holds. Note that for . € AD(XF, ... A*)and1 < j <r—1,

I I I .

W= 3 0001025 — b;OLi[020) (i = M) = g7 + 95,

i=1
where 'y](»IH) is given by the right side of (10.20) with )\50) replaced by )\EIH)
(1 <i<r)and~;j is given by the right side of (10.20) with A; —/\EO) replaced
by gAY 4 Ar (1 <i < 7). Thusy € Z (1 < j < r—1). By (11.62), (11.63)
and arguing similarly to the proof of [9], II, Lemma 2.5, we obtain

(1164) Y pIINO(g sty

AeAU+D)
r—1 T
I+1 Tolai N
LAt o0 [T o =
j=1 =1

for |s| < q([SUHD] +1) with (s,q) = 1, [t| < TU+D.

On multiplying both sides of (11.64) by [T/, (/" ¢%) s and defin-
ing o+ (2;t) by (11.13) with I replaced by I 4 1, and utilizing the argu-
ment of [8], p. 160, which is based on [8], Lemma 2.6, we get
(11.65) "V (s5t) =0,

5] < q([SYFV) +1) with (s,q) =1, |t] < TUT.
Note that ¢¢1%*, b = 0,1,...,¢" % — 1, are linearly independent over K.
(See the proof of [9], III, Lemma 2.1. Here we have used (s,q) = 1.) By this

2+
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fact and (11.33)(i) with I replaced by I + 1, (11.65) implies
(11.66) o (sit) =0
for all b € BUFY |s| < ¢([SUHV] + 1) with (s,q) = 1, [t| < TUFD,
It remains to verify (11.61) for s with ¢| s. In order to prove (11.61) with

any fixed b € BUH) | we may assume p/+tD()), X € AIEIH), are not all zero,
and set

A+ _ (1+1) (y) .
b /\6111(11111) ord, p (N

We now apply Lemma 2.2%* to each function in (11.24) with I replaced by
I+ 1 and with [t| < nTU+Y | taking

— (I+1) — |5+
(11.67) R=q(SY™]+1), M [T_HT }

Similarly to the deduction of (11.27), by utilizing (11.25), (11.22), Lem-
ma 11.1 (with I replaced by I+41) and (11.66), we see that condition (2.6)%

with 9 = 91 holds for each Fb(IH)(z; t) with |t| < nTU+D whenever

1
(11.68) U+ (D_y +1)(Do + 1) (m + 1)
max(h + vlog q,log(QR))
log p

We now verify (11.68). Note that (11.69):=(11.63)* and (11.70):=(11.64)*
hold, whence 7" log(2R) < h + vlogq (by (9.12), (9.10), (9.1), (9.2))
and

1
> 2(1— q)R(M+1)‘ﬁ+(2M+2)

max(h + vloggq,log(2R))
log p

< (" +g11)

(11.71)  (2M +2)

1 1 205
(r+1)g"tt M cics

By (11.69), (11.70), (9.14) and (9.32) we have

2 1 2 1
(11.72) =5 q—U < 2<1—>R(M+1)m < Bt )T
1 q" q &1 q
From (9.2), (2.5), (2.4) and (2.8) we see that
2(q—1 1
(¢—-1) , <o

g1 (r+1)g"tte,Nes
Hence

%1 x the sum of the (extreme) right sides of (11.71) and (11.72)
< the right side of (9.6).
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Thus (11.68) follows from (9.6), whence (2.6)* with ¥ = 0N holds for each
Fb(IH)(z;t) with |t| < nTU+D. By applying Lemma 2.2% with § = 9t to
Fb(”l)(z;t)7 and utilizing (11.24), Lemma 11.1 with I replaced by I + 1,
(11.68) and (11.72), we obtain

1
(11.73)  ord, 90((,“1)(8; t)+ (D1 +1)(Dp +1) <‘)’t + _1> - Az(;prl)

for |s| < q([SUTY] 4+ 1) with ¢|s, [¢| < nTUI+D).

We now assume gp( + )( ;t) # 0 for some s, t in the range stated in

(11.73) and proceed to deduce a contradiction. In the sequel we fix this set
of s, t.

For \ € Al()”l), by [9], III, Lemma 1.3 and the fact that ¢| s, we see that
(recalling 6y = 0if I =0 and 6; =1if I > 0)
(11.74) O @otDUP-1+ ) +ord, (D4 DD} g (=T 6. 4y pTHD () € 7,
Now by (11.33)(i) with I replaced by I + 1 and ordpa; =0 (1 < i < r)
(sce §8),
(11.75) ord, gol()H_ )(s; t) = ord, ",
where
(11.76) " = Z PUHD (1) (gP1 Do+ DID 1+ Trordy (D-1+1)))

AeAl Y
xO(g~ t)H(IJrl)(t))a(s)w““)(A) ﬁ a;p”S(Ai—AEI““rDﬁ””)
i=1

is in K and non-zero. Let ||, and ||,, be as in the proof of Lemma 11.2.

Thus
Z lo g|S0”/
vF£vo

by the product formula on K. Note that (11.36)* and (11.37)%* with I
replaced by I+ 1 remain valid. On noting |t| < nTU+1) < 2T and (9.29),

(10.24)* with IT(t) and v; replaced by ITU+1)(¢) and 'y(H ) we have
(11.78)  log|@(q~ U+ Vs, ) TI+Y (1))

(N7 1 LoSD (1 1 SD
103 ep‘ﬁn J1o ciez3  d g6 ) cica(M/9)  d

Further, (11.40) with I replaced by I 4+ 1 holds for every A € Al()IH). Also,

(11.77)  ord, " =

" —
- epfplogp( g‘go ‘UO)

e f logp
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by (11.44) (= (11.44)%), for 1 <i <7,
(11.79) Z log max(1, |a}’],) < ¢®>n~ TV Sdo;.

v#vo

Summing up, and using (11.38), we obtain

1
(11.80)  ord, o\ (s;t) + (D_1 +1)(Do + 1) <‘I‘( + 1) — Ay

p—
< v + 11+ !
—— Qe -
= gl 1912 2co — 1) 99
[ q 1 1 2
+ + 1+ —
L(gn™™1)T " 2(co —1) ( 292 + 1)] C2

T L Ty A SR S Y I L
1103 epm \” co—1 co—1)70] 9o

1 51(I+1/(Q—1))logq+(m+ 1 >1] 1 }
I co—1 max(f, logp, g1) p—1) folca(M/9) )"
If I =0, then
r—+1

X |1+

14
U
whence, by (9.5), (11.80) contradicts (11.73). If I > 0 and p > 2 (thus
q = 2), then, by (11.20), (9.7)(i) and "' < €7 we have
r+1

x the right side of (11.80) < the right side of (9.5),

c1q
U

x the right side of (11.80) — the right side of (9.5)
107 1 | P ( 1 ) 1 log g
- . (ptTe = + 14+ — . <
T 103 epto+1 3 (n ") g6 ) ca(M/Y) (¢g— 1)1 —

Now by (9.5), (11.80) contradicts (11.73). If I > 0 and p = 2 (thus ¢ = 3),
then

r—+1
c19q
11.81

(s 2L

x the right side of (11.80) < 2 x the right side of (9.5),

since by (11.20), (9.7)(ii) and (9.8), the value of the left side of (11.81)
increases when ¢/(gn"*1)! is replaced by ¢ and Ilogq/max(f,logp, g1) is
replaced by 5(1 — 1/q)log q/log(qn" '), whence (11.81) follows from

1 2 107 1 1 \1
- 242 - 9 _prtl —
<Q+2(CO—1)>02+103 ep190+1<”( K )+co—1>03

- (1 * gl> ) { T (1 - ;) lgézfqﬂ}

which can be verified by direct computation, using (9.1)—(9.3) and (9.33).
By (11.81) and (9.5), (11.80) contradicts (11.73). The fact that (11.80) con-
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tradicts (11.73) for all I as in the hypothesis of the lemma proves
gol()I—H)(s; t)=0 for |s| < q([SUTY]+1) with q|s, [¢| < nTU+D.

Since b € BU+1) is arbitrarily chosen, this and (11.66) establish Lemma 11.4.
By applying Lemma 11.2 to I = 0 and taking J = 1, and by applying

Lemma 11.4 to I = 0, we see that the main inductive argument is true

for I = 0,1. Now the main inductive argument follows by induction on I,
utilizing Lemma 11.4.

12. Simple reduction. We first deal with the case I := [log D,./log q] +
1 < I*. Thus DY) = 0. We recall (11.2) and (11.4). On applying the main
inductive argument and defining p(A_1,...,\,) = 0 for A ¢ AU with
0< N <D (i=-1,0), N =AY < DY (1 <i<r), we have

(12.1) > P DO, e, X6 (g s t)
0<A <D i=—1,0
=AD1<DD 1<icr

r—1
Rl (D
x ("Dt e - TTef ¢ty ®edD =
1

.
Il

for [s| < ¢S, |t| < nT@, where

r—1
(12.2) AN =" (000Li /02 — b;0L;/0z,) (N = MD) (1< <),

i=1
since A, = A because of DY) = 0. In virtue of (12.2) and (8.15)%*, each
of A\ — )\gl),...,/\r_l — )‘91 is a linear combination of ’y%l),...,'yﬁ)l.

Thus H:;ll AN — /\EI);ti) (t; € N1 < ¢ < r) is a linear combination
Iake! )r—1

ool ol

H(’y%l),...,7591;71,...,Tr_1) with (11,...,7-1) € N'"Land 7 + ... +

Tr—1 <t 4 ...+ t.—1. So (12.1) gives

(12.3) > PO, L, X6 (g s t)
0<x, <D i=—1,0
A=A <D 1<i<r

, whence, by [8], Lemma 2.6, it is a linear combination of

r—1 r—1
< [T a0 = A" [T (e ¢a)s =X g
=1 i=1
for |s| < qs(f), It| < nT(I)'
Note that 2D + ... + 2D, < Ly by (11.15), D < ¢~1D;
(1 < i < r), (9.14), (9.17), (9.2), (9.3), (2.5), (2.6), (2.1), (9.33) and
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qn"t' > 1. Thus (12.3) holds for |s| < ¢S) and t with
0<to<inT®, o<t <2D) (1<i<r),

It is readily seen, similarly to the proof of [8], Lemma 2.5, that for any
m € N, the determinant of order 2m + 1

(12.4) det(A(J; k) —m<j<m,o<k<zm 7# 0.

ST, US>

Thus, by an argument similar to [8], §3.5, we see that for any fixed
Ayeeoy Apg with [A; — )\EI)| < DEI) (1 < i < r), the polynomial (recall-
ing D\ = D;, i = —1,0)

D71 DO

125) > > oD, A AD) (A + A Doy 1)
A_1=0Xp=0

whose degree is at most (D_1 + 1)(Dg + 1), has at least
M i= (2lgSD]+ ([T D] +1)

zeros. Now, by (9.12), go > 1, g6 > 1, c4 > 3, ¢5 < 1 (see (9.1), (9.2)), (9.3),
(9.14), (9.19), (9.26) and (11.15), we have

1\ 1
M > (2(] — g) - 5775<1>T<f> > (D_1 4 1)(Do + 1).
2

Thus the polynomial in (12.5) is identically zero. Further, (A(z + A_q;
D_q + 1))t (0 < \; < Dy, i = —1,0) are linearly independent over C
(see [1], §12). Hence
Py, M) =0, 0<X <D (i=-1,0),
ni= A<D (<i<r)
(recalling D,(ql) = 0), contradicting the construction in the main inductive

argument that p(/ )()\), X € AD | are not all zero. This contradiction proves
Proposition 9.1 in the case when [log D, /logq] + 1 < I*.

13. Group variety reduction. It remains to prove Proposition 9.1 in
the case
(13.1) I" < [log D, /logq] + 1,

where I* is given by (9.8). Take I = I* in the main inductive argument
(see §11). There exists b € BU) such that p)()\), A € A are not all
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zero. For every s with ¢* | s we have, by (11.33)(i), (1.4), and on multiplying
Kou (I)
(11.18) by [, a?" 2",

T

(13.2) > I )Q(Q_Iq“s;t)Haépnqus(k"ﬂyu[)y)):O
reall i=1

for [s| < ¢'=wSW, |t| < nT@).
Recall that I7(1)(t) is given by (11.6). Now we take

(13.3)  P(Yo,...,Y;)
g e aAD @)
= > ADNAWT Yo Doy + )T [Ty T
reafl i=1
(13.4) N =p~q“, S=q¢'7vsD, T =prd), 0;=a; (1<i<r).

Recall that 95 = 0y = 0/0Y) and 05, ..., 0

*_, are the differential operators
specified in §8*, and note that

(I) (I) (1) (1)
a*HY AR = (30 ATy HY DT <<,

with fy( ) given in (11.5), and 'y; € Z given by the right side of (11.5) with

Ai — )\l(- ) veplaced by DZ(I). By [8], Lemma 2.6, we see from (13.2)—(13.4)
that

(13.5) arlogrt . g (N s, 0NS L 0N =0

for0<s<S,tg+...+t_1<T.
We note, as remarked in §8%, that Proposition 6.1% holds with 5, ...

.,0r_4 in place of 0y,...,0,_1. Let
(13.6) Dy=(D_1+1)(Do+1), D;=2¢"D; (1<i<r),
S0 = [is Sz:ﬁ 38] Q<i<r),
(13.7) ,
Ti:[r—}—lT} (0<i<r).
Then So > S1=...=8,sincer >3, Tgo=...=7T,and So+...+ S5, < S,

To+...+7,<T.

For later convenience, we list the following inequalities derived from §9
and §2. We shall use them frequently in the remainder of this section.
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c3feq >1/28, ¢35 >047, r>3ifp>2, r>4ifp=2,
g3/r >107, g6 >10° (1+e)(l+e)<1+107°,
h = max(2f, logp, go) > max(fylogp, g1), ¥ <p/(p—1) <2,
€p19 Z 1/27 q,',]rJrl > 17 777"+1 < e G S 670'47,
I=1">[50/log(gn"™)] +1>92, VT <1078

By (13.4), (13.7) and (9.20) we have, for p € Z with 1 < p <,

plr D1 P 6
(13.8) 7—p+p§<r+1 +93>T<10 T.
Now (13.8), (13.6), (9.12), (9.14) and (9.16) yield
(13.9) T,+p<107*Dy (1<p<v),

whence (6.2)%* follows. Further by (13.6), (9.17), (9.16), (9.12), (2.5), (2.6),
we get

(13.10) Di<Dy (1<i<r).
Now we verify (6.1)%.
(i) m = 0. By (13.7), (13.4), (11.15), (9.18), (9.19), we have

(g—Dey 10718\ 7p
(13.11) So(To+1) > < v s T+1ST.

From (13.11), (13.6), (9.2), (9.3), (9.26), (9.14), we obtain
80(76 -+ 1) > Dy.

This and (13.10) establish (6.1)* with m = 0.
(ii) 1 < m < 7. By (13.7), (13.4), (11.15), (9.18), (9.19), we have
Tm m,T
(13.12) Sm< +m o, )
m+ Oy
1 3 ep 10—18 nm—i—l—i—(r—i—l)lm
20— 12—
( FAC I s )(r+1)m+1(m+1)!
By (13.6), (13.10), (9.26) and (9.17) we get
(13.13)  (m+1)!DJo ... D™
. (1 L1 ) 1 1 (m+1)l2m  §pm+l
g6) ca(M/0) e (eoprym g™ d(fylogp)m
where m; € {0,1} with mg + ...+ m, = m + 1. Now, by (13.12), (13.13),
(9.14), (2.5), (2.6), (2.1) and
(qn" )™ > (e*(r+1)d)*™  (see (9.8), (9.1)),
we obtain (6.1)* for 1 <m < r.

STerl )
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(iii) m = r. We have, similarly to (13.12),
To+r\_ (1 3 ey 10718 yrHr+DIE-D)
13.14) S = S(g-1)2 - ST".
( ) < r >><r 4(q )d g2 ) (r+1)rr!
By (13.6), (9.26), (9.17), we have
(13.15)  (r+1)IDyD; ---D,
112" 1 D+l
L e <1 N > _ 5 ,
i (cap®)Tea(M/P)d oy - - - op max(fy logp, g1)

q'rr ge

In virtue of (13.14), (13.15), (9.13), (9.14), (2.5), (2.6), (2.3), in order to
prove (6.1)* with m = r, it suffices to show

1 3 e 1018
13.16 o (g=—1)E - r41NIr r—(r+1)1
( ) (r 4(q ) ] 7 )(qn )

1 1
> (14 107199) (1 + ) (1+e)(l+e) (2 + )
Jde g2
plr -1
x co(r+ )I(r +1)"(2es152)" - PR

u

Now, by I = I*, (9.8) and (9.1),
(g™ ™) > exp(5 max(fy logp, g1)) > plr (e (r +1)d)*.

This implies (13.16) at once. Hence (6.1)* with m = r is valid.

Note that in (13.5), P(Yp,...,Y,) # 0 and 0; = o} (1 < i < r) are mul-
tiplicatively independent, since I, (= lp),[}, ..., are linearly independent
over Q by (5.8)% and §8(i), (ii). Having verified (6.1)* and (6.2)*, we can
apply Proposition 6.1%* with a; = o; (1 < i < 7). Thus there exists p € Z
with 1 < p < r and there is a set of primitive linear forms £y,...,£, in
Z1, ..., Z, with coefficients in Z such that B1Z1+...+ B, Z, is in the module
generated by Lq,...,L, over Q and, on defining

(13.17) Ri= Y |0L:i/0Zjlo; (1 <i<p),
j=1
we have at least one of (6.3)* and (6.4)%*, whence (6.4)* holds always, since

(6.3)* implies (6.4)%* by (13.4), (13.6), (13.7) and (13.9). We shall prove
shortly that (6.4)%* implies

(13.18) Ri- R, <p(p)h'(an) - (a),

where 1(p) is given by (8.7) with r replaced by p; thus (13.18) together with
the same analysis as in §13%* shows that the basic hypothesis in §8 holds

with p in place of r. By the minimal choice of r, we have a contradiction
and this establishes Proposition 9.1.
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Now, by (6.4)*, (13.4), (13.6), (13.7), (9.13), (9.14), (9.17), (9.18), (9.19),
(9.26), (8.6), (8.7), (2.5), (2.6), (2.3), (2.1) and " > 7" /r!, in order to prove
(13.18), it suffices to show
(s12€%)°(p + 1) (p)*pPrPpT

1 3 1 €p 10—18 S (qn

roale=1F 92
Note that (p + 1)(p!)3p?r? < (r +1)°72 and that by I = I* and (9.8) we
have

(13.19)

(g™ > pPr (e (r + 1)a)> .
Hence (13.19) follows. The proof of Proposition 9.1 is thus complete, whence
Theorem 7.1 is established.

14. Proof of Theorem 1

LEMMA 14.1. It suffices to prove Theorem 1 on a further assumption that
Qai, ..., apn are multiplicatively independent.

Proof. Note that from (1.10), (1.12), Lemma 2.2 and (1+1/n)"*! > e,
we have forn =2,3,...,

C(n7d7p) C*(n7d7p) E 2
Cln—1.dp) ~ Ci(n—Ldp) = 9° T2

Using (14.1), the proof is the same as that of Lemma 14.1%.

(14.1)

Proof of Theorem 1. By [9], II, Lemma 1.4, it is readily seen that Theo-
rem 1 is true for n = 1. Thus we may assume that n > 2 and aq,...,a, are
multiplicatively independent by Lemma 14.1. Note that

log2 < 0.001C(n,d,p)h/(ay) - - - b (ap,) log B.
— (. d B (o) - H )

Hence we may assume, by (1.6), (1.10), (14.2)%, (14.3)* and Stirling’s for-
mula, that

308271 3/2 fp_ld 13
gl (8e7)"n™" " (p )d>e”,

whence we obtain
(14.2) B > 260(8¢2)"n3/?plrd.

We may further assume, without loss of generality, that (1.13) is satisfied,
since the main inequality in Theorem 1 is symmetric in aq,...,a,. On
appealing to Theorem 7.1 and observing that (14.2) implies

(n + 1)log B > log max{¢B, ¢(5n)%"d"2,ep*/*} > h* + log c*,



378

K. Yu

where h* is given by (7.2) and
(14.3) c= (ilog3(5d) o logp) -nl>c*

by (5.21)* and (5.24)*, Theorem 1 follows at once.

15. Proof of Theorem 2

LEMMA 15.1. It suffices to prove Theorem 2 on a further assumption that
(04 NI

Proof. Using (14.1), the proof is the same as that of Lemma 15.1%.
Proof of Theorem 2. It is readily seen, by Theorem 1 with n = 1, that

, i, are multiplicatively independent.

Theorem 2 is true for n = 1. Thus we may assume that n > 2 and ay, ..., ay,
are multiplicatively independent by Lemma 15.1. On using (14.1), the proof
is the same as that of Theorem 2%.
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