p-adic logarithmic forms and group varieties II

by

Kunrui Yu (Hong Kong)

1. Introduction. The present paper is a continuation of the studies in Yu [10], where we have brought the p-adic theory of linear forms in logarithms more in line with the complex theory as in Baker and Wüstholz [1]. The purpose here is to refine upon our results in [10].

Let $\alpha_{1}, \ldots, \alpha_{n}(n \geq 1)$ be non-zero algebraic numbers and K be a number field containing $\alpha_{1}, \ldots, \alpha_{n}$ with $d=[K: \mathbb{Q}]$. Denote by \mathfrak{p} a prime ideal of the ring \mathcal{O}_{K} of integers in K, lying above the prime number p, by $e_{\mathfrak{p}}$ the ramification index of \mathfrak{p}, and by $f_{\mathfrak{p}}$ the residue class degree of \mathfrak{p}. For $\alpha \in K, \alpha \neq 0$, write $\operatorname{ord}_{\mathfrak{p}} \alpha$ for the exponent to which \mathfrak{p} divides the principal fractional ideal generated by α in K; define $\operatorname{ord}_{\mathfrak{p}} 0=\infty$. We shall estimate $\operatorname{ord}_{\mathfrak{p}} \Xi$, where

$$
\begin{equation*}
\Xi=\alpha_{1}^{b_{1}} \cdots \alpha_{n}^{b_{n}}-1 \tag{1.1}
\end{equation*}
$$

with b_{1}, \ldots, b_{n} being rational integers and $\Xi \neq 0$. Let

$$
h_{j}=\max \left(h_{0}\left(\alpha_{j}\right), \log p\right) \quad(1 \leq j \leq n),
$$

where $h_{0}(\alpha)$ for algebraic α is defined by the formula below (1.5), and let B be given by (1.8). Then as a consequence of Theorem 1, we have

$$
\operatorname{ord}_{\mathfrak{p}} \Xi<19(20 \sqrt{n+1} d)^{2(n+1)} e_{\mathfrak{p}}^{n-1} \cdot \frac{p^{f_{\mathfrak{p}}}}{\left(f_{\mathfrak{p}} \log p\right)^{2}} \cdot \log \left(e^{5} n d\right) h_{1} \cdots h_{n} \log B
$$

From now on we shall keep the notation introduced in the third paragraph of $\S 1$ in [10]. (For the self-containedness, we repeat part of it here.) We assume that K satisfies the following condition:

$$
\begin{cases}\zeta_{3} \in K & \text { if } p=2 \tag{1.2}\\ \text { either } p^{f_{\mathfrak{p}}} \equiv 3(\bmod 4) \text { or } \zeta_{4} \in K & \text { if } p>2\end{cases}
$$

1991 Mathematics Subject Classification: Primary 11J86, 11J61.
Key words and phrases: p-adic logarithmic form, group variety.
The author is supported by Hong Kong RGC CERG No. HKUST 633/95P.
where $\zeta_{m}=e^{2 \pi i / m}(m=1,2, \ldots)$. Set

$$
q= \begin{cases}2 & \text { if } p>2 \tag{1.3}\\ 3 & \text { if } p=2\end{cases}
$$

Let \mathbb{N} be the set of non-negative rational integers and set

$$
\begin{equation*}
u=\max \left\{k \in \mathbb{N} \mid \zeta_{q^{k}} \in K\right\}, \quad \alpha_{0}=\zeta_{q^{u}} \tag{1.4}
\end{equation*}
$$

Define

$$
\begin{equation*}
h^{\prime}\left(\alpha_{j}\right)=\max \left(h_{0}\left(\alpha_{j}\right), \frac{f_{\mathfrak{p}} \log p}{d}\right) \quad(1 \leq j \leq n) \tag{1.5}
\end{equation*}
$$

where $h_{0}(\alpha)$ denotes the absolute logarithmic Weil height of an algebraic number α, i.e.,

$$
h_{0}(\alpha)=\delta^{-1}\left(\log a_{0}+\sum_{i=1}^{\delta} \log \max \left(1,\left|\alpha^{(i)}\right|\right)\right)
$$

where the minimal polynomial for α is

$$
a_{0} x^{\delta}+a_{1} x^{\delta-1}+\ldots+a_{\delta}=a_{0}\left(x-\alpha^{(1)}\right) \cdots\left(x-\alpha^{(\delta)}\right), \quad a_{0}>0 .
$$

Let $\kappa \in \mathbb{N}$ and ϑ be defined by

$$
\begin{align*}
& \phi\left(p^{\kappa}\right) \leq 2 e_{\mathfrak{p}}<\phi\left(p^{\kappa+1}\right), \tag{1.6}\\
& \vartheta= \begin{cases}(p-2) /(p-1) & \text { if } p \geq 5 \text { with } e_{\mathfrak{p}}=1, \\
p^{\kappa} /\left(2 e_{\mathfrak{p}}\right) & \text { otherwise },\end{cases}
\end{align*}
$$

where ϕ is Euler's ϕ-function. Denote by

$$
\begin{equation*}
\Phi(\mathfrak{p})=p^{f_{\mathfrak{p}}}-1 \tag{1.7}
\end{equation*}
$$

the Euler function of the prime ideal \mathfrak{p}. Let B be a real number satisfying

$$
\begin{equation*}
B \geq \max \left(\left|b_{1}\right|, \ldots,\left|b_{n}\right|, 3\right) \tag{1.8}
\end{equation*}
$$

Let $\omega_{q}(n)(n=1,2, \ldots)$ be the two sequences (for $\left.q=2,3\right)$ of positive rational numbers, defined in [10], $\S 5$, which we shall recall in $\S 2$ for selfcontainedness. We note that $\omega_{q}(n) \leq n!/ 2^{n-1}$ for $n=1,2, \ldots$, and a lower bound for ϑ is given in $\S 2$, (2.8).

Theorem 1. Suppose that

$$
\begin{equation*}
\operatorname{ord}_{\mathfrak{p}} \alpha_{j}=0 \quad(1 \leq j \leq n) \tag{1.9}
\end{equation*}
$$

If $\Xi=\alpha_{1}^{b_{1}} \cdots \alpha_{n}^{b_{n}}-1 \neq 0$, then

$$
\operatorname{ord}_{\mathfrak{p}} \Xi<C(n, d, \mathfrak{p}) h^{\prime}\left(\alpha_{1}\right) \cdots h^{\prime}\left(\alpha_{n}\right) \log B
$$

where

$$
\begin{align*}
C(n, d, \mathfrak{p})= & \frac{c}{e_{\mathfrak{p}} \vartheta} \max \left(p^{-f_{\mathfrak{p}} e_{\mathfrak{p}} \vartheta}, q^{-n}\right)\left(\text { aep } p^{\kappa}\right)^{n} \cdot \frac{(n+1)^{n+2}}{(n-1)!} \cdot \omega_{q}(n) \tag{1.10}\\
& \times \frac{\Phi(\mathfrak{p})}{q^{u}} \cdot \frac{d^{n+2}}{\left(f_{\mathfrak{p}} \log p\right)^{3}} \cdot \max \left(f_{\mathfrak{p}} \log p, \log \left(e^{4}(n+1) d\right)\right),
\end{align*}
$$

with

$$
\begin{array}{ll}
a=16, c=712 & \text { if } p>2, \\
a=32, c=58 & \text { if } p=2 .
\end{array}
$$

Furthermore if $\alpha_{1}, \ldots, \alpha_{n}$ satisfy

$$
\begin{equation*}
\left[K\left(\alpha_{0}^{1 / q}, \alpha_{1}^{1 / q}, \ldots, \alpha_{n}^{1 / q}\right): K\right]=q^{n+1} \tag{1.11}
\end{equation*}
$$

then $C(n, d, \mathfrak{p})$ can be replaced by $C(n, d, \mathfrak{p}) / \omega_{q}(n)$.
Let

$$
\begin{equation*}
C^{*}(n, d, \mathfrak{p})=C(n, d, \mathfrak{p}) /(n+1), \tag{1.12}
\end{equation*}
$$

where $C(n, d, \mathfrak{p})$ is given by (1.10).
Theorem 2. Suppose that (1.9) holds and

$$
\begin{equation*}
\operatorname{ord}_{p} b_{n}=\min _{1 \leq j \leq n} \operatorname{ord}_{p} b_{j} . \tag{1.13}
\end{equation*}
$$

Let B, B_{n}, Ψ be such that

$$
\begin{equation*}
\max _{1 \leq j \leq n}\left|b_{j}\right| \leq B, \quad\left|b_{n}\right| \leq B_{n} \leq B, \quad \Psi=p^{f_{\mathfrak{p}}}\left(8 n^{3} d \log (5 d)\right)^{n} . \tag{1.14}
\end{equation*}
$$

If $\Xi=\alpha_{1}^{b_{1}} \cdots \alpha_{n}^{b_{n}}-1 \neq 0$, then for all real δ with

$$
0<\delta \leq d^{n-1} h^{\prime}\left(\alpha_{1}\right) \cdots h^{\prime}\left(\alpha_{n-1}\right) f_{\mathfrak{p}} \log p
$$

we have

$$
\operatorname{ord}_{\mathfrak{p}} \Xi<C^{*}(n, d, \mathfrak{p}) d^{-n} \max \left(d^{n} h^{\prime}\left(\alpha_{1}\right) \cdots h^{\prime}\left(\alpha_{n}\right) \widetilde{h}, \delta B / B_{n}\right),
$$

where

$$
\widetilde{h}=3 \log \left(\delta^{-1} \Psi\left(d^{n-1} h^{\prime}\left(\alpha_{1}\right) \cdots h^{\prime}\left(\alpha_{n-1}\right)\right)^{2} B_{n}\right) .
$$

If $\alpha_{1}, \ldots, \alpha_{n}$ satisfy condition (1.11), then $C^{*}(n, d, \mathfrak{p})$ can be replaced by $C^{*}(n, d, \mathfrak{p}) / \omega_{q}(n)$, and Ψ in (1.14) can be replaced by $\Psi=\max \left(p^{f_{\mathfrak{p}}},(5 n)^{2 n} d\right)$.

It is straightforward to deduce, from Theorems 1 and 2 , precise versions in terms of $K_{0}=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\operatorname{ord}_{\mathfrak{p}_{0}}$, and without assuming $\operatorname{ord}_{\mathfrak{p}_{0}} \alpha_{j}=$ $0(1 \leq j \leq n)$, where \mathfrak{p}_{0} is a prime ideal of the ring of integers in K_{0}, also versions for $\alpha_{1}, \ldots, \alpha_{n}$ being rational (see Yu [9], III, $\S 4$).

For $n \geq 2$, Theorems 1 and 2 indicate that we can replace the term n^{n-1} that occurs in the expressions for $C(n, d, \mathfrak{p})$ and $C^{*}(n, d, \mathfrak{p})$ in [10], Theorems 1 and 2 , by $c_{\mathfrak{p}}^{n-1}$ where $c_{\mathfrak{p}}=2 e \vartheta e_{\mathfrak{p}} f_{\mathfrak{p}} \log p$ with ϑ defined by (1.6). Plainly this gives an improvement on our results in [10] when $n>c_{\mathfrak{p}}$ and this is significant in applications. Indeed, the present paper and [10]
have led to an improvement on Stewart and $\mathrm{Yu}[7]$ to the effect that $2 / 3$ in the Theorem of $[7]$ can be replaced by $1 / 3$. (See our subsequent joint paper, On the abc conjecture $I I$.) The refinement was stimulated by a lecture given by Matveev in Oberwolfach in 1996 (see [5]) in which he indicated that he could eliminate a term n ! from certain linear form estimates in the complex case. The crucial new idea in the present paper came out from discussions with M . Waldschmidt during his short visit to my university at the end of May 1996. This is to apply the pigeon-hole principle to the set of integral points $\left(\lambda_{1}, \ldots, \lambda_{r}\right)$, where $\lambda=\left(\lambda_{-1}, \lambda_{0}, \lambda_{1}, \ldots, \lambda_{r}\right) \in \Lambda^{\boldsymbol{*}}$ with $\Lambda^{\boldsymbol{*}}$ defined by $\S 10$, (10.14), thereby constructing improved auxiliary rational functions (see $\S 10$). This idea is then incorporated into the whole structure of [10]. Thus, though stimulated by Matveev's lecture, our work in the p-adic case involves a different approach and it is in substance quite independent.

Throughout the remaining part of this paper, [10] will be quoted frequently; for convenience, we shall refer to formulae, theorems and so on in [10] by adjoining a \&, e.g., (8.9) ${ }^{\boldsymbol{\omega}}$, Theorem $7.1^{\boldsymbol{\omega}}$, $\S 6^{\boldsymbol{\omega}}$.

I am indebted to discussions with M. Waldschmidt mentioned above.
The search for constants $c_{0}, c_{1}, c_{3}, c_{4}, c_{5}$ in $\S 9$ was carried out by my wife Dehua Liu, who designed a program, using PARI GP 1.39, for the search and verification. I would like to express my warm gratitude to her for her great support.
2. Preliminaries. Let ς_{1} and ς_{2} be constants given by the following list:
(I) if $p=3$ or $p=5$ with $e_{\mathfrak{p}} \geq 2$, then $\varsigma_{1}=1.2133, \varsigma_{2}=1.0202$;
(II) if $p \geq 5$ with $e_{\mathfrak{p}}=1$, then $\varsigma_{1}=1.3128, \varsigma_{2}=1.0415$;
(III) if $p \geq 7$ with $e_{\mathfrak{p}} \geq 2$, then $\varsigma_{1}=1.3701, \varsigma_{2}=1.0568$;
(IV) if $p=2$, then $\varsigma_{1}=1.176, \varsigma_{2}=1.014$.

Let $r \in \mathbb{Z}$ be such that

$$
\begin{equation*}
r /\left(f_{\mathfrak{p}} \log p\right)>e_{\mathfrak{p}} \vartheta+0.6, \tag{2.2}
\end{equation*}
$$

where ϑ is given by (1.6). Set

$$
\begin{equation*}
\varrho=\left(f_{\mathfrak{p}} \log p\right) / r, \quad \chi(x)=e^{-\varrho x}\left(x+e_{\mathfrak{p}} \vartheta\right), \quad x_{0}=1 / \varrho-e_{\mathfrak{p}} \vartheta . \tag{2.3}
\end{equation*}
$$

Thus $x_{0}>0.6$ and $x_{0} \notin \mathbb{Q}$, since $\log p \notin \mathbb{Q}$. Further we let \mathfrak{m} and \mathfrak{N} be defined by

$$
\begin{align*}
& \mathfrak{m}= \begin{cases}1 & \text { if } 0.6<x_{0}<1, \\
{\left[x_{0}\right]} & \text { if } x_{0}>1 \text { and }\left\{x_{0}\right\} \leq 1 / \varrho-1 /\left(e^{\varrho}-1\right), \\
{\left[x_{0}\right]+1} & \text { if } x_{0}>1 \text { and }\left\{x_{0}\right\}>1 / \varrho-1 /\left(e^{\varrho}-1\right),\end{cases} \tag{2.4}\\
& e_{\mathfrak{p}} \mathfrak{N}=\left(1+(2 n)^{-1} \cdot 10^{-100}\right)^{-1}\left(\mathfrak{m}+e_{\mathfrak{p}} \vartheta\right) . \tag{2.5}
\end{align*}
$$

Remark (The roles of \mathfrak{m} and \mathfrak{N}). Here we introduce \mathfrak{m} and \mathfrak{N} under assumption (2.2), which will occur as (8.12) in $\S 8$. We shall define an equivalence relation on $\Lambda^{\boldsymbol{*}}$ (see $\S 10,(10.14)$) by (10.15), in which \mathfrak{m} will play an important role. Note that \mathfrak{N} will appear in $\S 11$, (11.24). In contrast, without assumption (2.2), we take $\mathfrak{m}=0$ in (2.5); then \mathfrak{N} becomes θ which is defined by $(8.1)^{\boldsymbol{\alpha}}$, and (11.24) degenerates into $(11.24)^{\boldsymbol{\star}}$, thus we return to the construction in [10].

Lemma 2.1. We have

$$
\begin{gather*}
\mathfrak{m}+e_{\mathfrak{p}} \vartheta<\varsigma_{1} r /\left(f_{\mathfrak{p}} \log p\right), \tag{2.6}\\
1 / \chi(\mathfrak{m})<\varsigma_{2} / \chi\left(x_{0}\right) . \tag{2.7}
\end{gather*}
$$

Proof. Note that we have, by (1.6),

$$
\begin{equation*}
\vartheta \geq \vartheta_{0} \quad \text { with } e_{\mathfrak{p}} \vartheta_{0}:=3 / 2,3 / 4,1 / 2,2 \tag{2.8}
\end{equation*}
$$

for cases (I), (II), (III), (IV) in (2.1). We first prove (2.6). If $0.6<x_{0}<1$, then

$$
\mathfrak{m}+e_{\mathfrak{p}} \vartheta<\frac{1}{\varrho}(1+0.4 \varrho)<\frac{1}{\varrho}\left(1+\frac{0.4}{e_{\mathfrak{p}} \vartheta+0.6}\right)<\frac{\varsigma_{1} r}{f_{\mathfrak{p}} \log p}
$$

If $x_{0}>1$ and $\left\{x_{0}\right\}>1 / \varrho-1 /\left(e^{\varrho}-1\right)$, then, by (2.8) and (2.1),

$$
\mathfrak{m}+e_{\mathfrak{p}} \vartheta<\frac{1}{\varrho} \cdot \frac{\varrho e^{\varrho}}{e^{\varrho}-1}<\frac{1}{\varrho}\left(\frac{x e^{x}}{e^{x}-1}\right)_{x=1 /\left(e_{\mathfrak{p}} \vartheta+1\right)} \leq \frac{\varsigma_{1} r}{f_{\mathfrak{p}} \log p} .
$$

(2.6) is trivially true for the remaining case of (2.4).

We now show (2.7). If $0.6<x_{0}<1$, then by (2.8) and (2.1),
$\chi(\mathfrak{m}) / \chi\left(x_{0}\right)=e^{-\varrho\left(1-x_{0}\right)}\left(1+\varrho\left(1-x_{0}\right)\right) \geq\left(e^{-x}(1+x)\right)_{x=0.4 /\left(e_{\mathfrak{p}} \vartheta+0.6\right)}>1 / \varsigma_{2}$.
If $x_{0}>1$ and $\left\{x_{0}\right\} \leq 1 / \varrho-1 /\left(e^{\varrho}-1\right)$, then by (2.8) and (2.1),

$$
\chi(\mathfrak{m}) / \chi\left(x_{0}\right)=e^{\varrho\left\{x_{0}\right\}}\left(1-\varrho\left\{x_{0}\right\}\right) \geq\left(e^{x}(1-x)\right)_{x=x_{1}}>1 / \varsigma_{2},
$$

where $x_{1}=\left(1-y /\left(e^{y}-1\right)\right)_{y=1 /\left(e_{\mathfrak{p}} \vartheta+1\right)}$.
If $x_{0}>1$ and $\left\{x_{0}\right\}>1 / \varrho-1 /\left(e^{\varrho}-1\right)$, then by (2.8) and (2.1),

$$
\chi(\mathfrak{m}) / \chi\left(x_{0}\right)=e^{-\varrho\left(1-\left\{x_{0}\right\}\right)}\left(1+\varrho\left(1-\left\{x_{0}\right\}\right)\right) \geq\left(e^{-x}(1+x)\right)_{x=x_{2}}>1 / \varsigma_{2},
$$

where $x_{2}=1 /\left(e_{\mathfrak{p}} \vartheta+1\right)-x_{1}$. The proof of (2.7) and the lemma is thus complete.

Recall $\omega_{2}(n)$ and $\omega_{3}(n)$ defined in $\S 5^{\boldsymbol{\omega}}$. That is, for $q=2,3$ we define $\omega_{q}(1)=\omega_{q}(2)=1$ and for $n>2$,
(5.1)
$\omega_{2}(n)=4^{s-n} \cdot(s+n+1)!/(2 s+1)!$,
(5.2) ${ }^{\boldsymbol{*}}$
$\omega_{3}(n)=6^{t-n} \cdot(2 t+n+1)!/(3 t+1)!$,
where
(5.3)

$$
s=[1 / 4+\sqrt{n+17 / 16}]
$$

and t is the unique rational integer such that
$(5.4)^{2} \quad g(t):=9 t^{3}-8 t^{2}-(8 n+5) t-2 n(n+1) \leq 0 \quad$ and $\quad g(t+1)>0$.
Hence $t=\left[x_{n}\right]$, where x_{n} is the unique real zero of $g(x)$, which can be determined explicitly by Cardano's formula.

Lemma 2.2. We have, for $n=2,3, \ldots$,

$$
\begin{align*}
& \frac{\omega_{2}(n)}{\omega_{2}(n-1)} \geq \frac{n+2}{4} \tag{2.9}\\
& \frac{\omega_{3}(n)}{\omega_{3}(n-1)} \geq \frac{n+4}{6} \tag{2.10}
\end{align*}
$$

Proof. It is easy to verify that (2.9) holds for $2 \leq n \leq 6$. Write $s=$ $s(n)$ for s defined by (5.3) Suppose now $n \geq 7$. Then $s(n) \geq 3$ and $s(n)-s(n-1) \in\{0,1\}$. If $s(n)-s(n-1)=0$, then by $(5.1)^{\infty}$,

$$
\frac{\omega_{2}(n)}{\omega_{2}(n-1)}=\frac{s+n+1}{4}>\frac{n+2}{4} .
$$

If $s(n)-s(n-1)=1$, then by $(5.1)^{\boldsymbol{N}}$ and the discussion in [10] following $(5.20)^{\boldsymbol{\mu}}$, we have

$$
\frac{\omega_{2}(n)}{\omega_{2}(n-1)}=\frac{(s+n+1)(s+n)}{(2 s+1) 2 s} \geq \frac{s+n}{4}>\frac{n+2}{4}
$$

This completes the proof of (2.9).
It remains to show (2.10). Write $t=t(n)$ for t defined by (5.4 $)^{\boldsymbol{\omega}}$ and let

$$
g(x, y)=9 x^{3}-8 x^{2}-(8 y+5) x-2 y(y+1)
$$

We now prove that

$$
\begin{equation*}
t(n)-t(n-1) \in\{0,1\}, \quad n=5,6, \ldots \tag{2.11}
\end{equation*}
$$

By PARI GP 1.39, it is easy to verify that (2.11) holds for $5 \leq n \leq 31$. If $n \geq 32$, then $g\left(0.5 n^{2 / 3}+1, n\right)<g\left(0.6 n^{2 / 3}, n\right)<0$, whence by $(5.4)^{\boldsymbol{a}}$,

$$
\begin{equation*}
t=t(n)>0.5 n^{2 / 3} \quad(n \geq 32) \tag{2.12}
\end{equation*}
$$

In order to prove (2.11), it suffices to verify

$$
\begin{equation*}
g(t-1, n-1) \leq 0 \quad(n \geq 32) \tag{2.13}
\end{equation*}
$$

Now by $n \geq 32$ and (2.12) we obtain

$$
g(t, n)-g(t-1, n-1)=27 t^{2}-51 t-12 n+20>0
$$

This together with $g(t, n) \leq 0$ (by (5.4) yields (2.13) and (2.11).
Now we are ready to prove (2.10). (2.10) is trivially true for $n=2,3,4$.
Note that $t=t(n) \geq 3(n \geq 5)$. For $n \geq 5$ with $t(n)-t(n-1)=0$, we get, by $(5.2)^{\boldsymbol{\omega}}$,

$$
\frac{\omega_{3}(n)}{\omega_{3}(n-1)}=\frac{2 t+n+1}{6}>\frac{n+4}{6}
$$

and for $n \geq 5$ with $t(n)-t(n-1)=1$, by $(5.2)^{\boldsymbol{\omega}}$ and the discussion in [10] following (5.20) ${ }^{\boldsymbol{\alpha}}$, we obtain

$$
\frac{\omega_{3}(n)}{\omega_{3}(n-1)}=\frac{(2 t+n+1)(2 t+n)(2 t+n-1)}{(3 t+1) 3 t(3 t-1)} \geq \frac{2 t+n-1}{6}>\frac{n+4}{6}
$$

This completes the proof of (2.10) and the lemma.
We shall rely on $\S 2^{\boldsymbol{\omega}}-\S 6^{\boldsymbol{\omega}}$. For the convenience of exposition, we shall number the remaining sections as $\S 7-\S 15$, corresponding to $\S 7^{\boldsymbol{\infty}}-\S 15^{\boldsymbol{\alpha}}$.
7. A central result. We now state a central result, which implies Theorems 1 and 2 of $\S 1$. We maintain the notation introduced in $\S 1$.

Theorem 7.1. Suppose that (1.9) and (1.13) hold, $\alpha_{1}, \ldots, \alpha_{n}$ are multiplicatively independent, and b_{1}, \ldots, b_{n} are not all zero. Then

$$
\begin{equation*}
\operatorname{ord}_{\mathfrak{p}} \Xi<C^{*}(n, d, \mathfrak{p}) h^{\prime}\left(\alpha_{1}\right) \cdots h^{\prime}\left(\alpha_{n}\right)\left(h^{*}+\log c^{*}\right) \tag{7.1}
\end{equation*}
$$

where $C^{*}(n, d, \mathfrak{p})$ is given by (1.12), c^{*} is given by $(5.24)^{\boldsymbol{N}}$, and

$$
\begin{align*}
h^{*}=\max \left\{\operatorname { l o g } \left(\frac{f_{\mathfrak{p}} \log p}{2 d}\right.\right. & \left.\max _{1 \leq j<n}\left(\frac{\left|b_{n}\right|}{h^{\prime}\left(\alpha_{j}\right)}+\frac{\left|b_{j}\right|}{h^{\prime}\left(\alpha_{n}\right)}\right)\right), \tag{7.2}\\
& \left.\log B^{\circ}, 6 n \log (5 n)+1.2 \log d, 2 f_{\mathfrak{p}} \log p\right\}
\end{align*}
$$

with

$$
\begin{equation*}
B^{\circ}=\min _{1 \leq j \leq n, b_{j} \neq 0}\left|b_{j}\right| . \tag{7.3}
\end{equation*}
$$

Furthermore if $\alpha_{1}, \ldots, \alpha_{n}$ satisfy (1.11), then $C^{*}(n, d, \mathfrak{p})$ and $h^{*}+\log c^{*}$ can be replaced by $C^{*}(n, d, \mathfrak{p}) / \omega_{q}(n)$ and h^{*}, respectively.

REmARK. If $n /\left(f_{\mathfrak{p}} \log p\right)<e_{\mathfrak{p}} \vartheta+0.6$, then Theorem 7.1 is a consequence of Theorem 7.1 ${ }^{\boldsymbol{\mu}}$.

Proof (of Remark). We note, on recalling (1.10) and (1.10), that

$$
\frac{a^{\boldsymbol{\mu}}}{a}= \begin{cases}(p-1) /(2(p-2)) & \text { if } p \geq 5 \text { with } e_{\mathfrak{p}}=1 \\ 1 & \text { otherwise }\end{cases}
$$

From $(1.10)^{\boldsymbol{\mu}},(1.12)^{\boldsymbol{\omega}},(1.10),(1.12),(1.6)$ and (2.8) we get

$$
\begin{align*}
\frac{C^{*}(n, d, \mathfrak{p})^{\boldsymbol{\alpha}}}{C^{*}(n, d, \mathfrak{p})} & \leq \frac{c^{\boldsymbol{k}}}{c}\left(\frac{a^{\boldsymbol{p}}}{a}\right)^{n}\left(\frac{q}{e p^{\kappa} /\left(e_{\mathfrak{p}} \vartheta\right)}\right)^{n}\left(\frac{n}{f_{\mathfrak{p}} \log p} \cdot \frac{1}{e_{\mathfrak{p}} \vartheta}\right)^{n-1} \tag{7.4}\\
& <\frac{c^{\boldsymbol{k}}}{c}\left(\frac{a^{\boldsymbol{p}}}{a}\right)^{n}\left(\frac{q}{e p^{\kappa} /\left(e_{\mathfrak{p}} \vartheta\right)}\right)^{n}\left(1+\frac{0.6}{e_{\mathfrak{p}} \vartheta}\right)^{n-1}<1
\end{align*}
$$

Now by (7.4), Theorem 7.1 follows from Theorem 7.1 ${ }^{\boldsymbol{\omega}}$.

Thus we may assume

$$
\begin{equation*}
n /\left(f_{\mathfrak{p}} \log p\right)>e_{\mathfrak{p}} \vartheta+0.6 \tag{7.5}
\end{equation*}
$$

in $\S 8-\S 13$, where we shall prove Theorem 7.1.
8. Basic hypothesis. Let b_{1}, \ldots, b_{n} be the rational integers in Theorem 7.1, satisfying (1.13), and set

$$
\begin{equation*}
L=b_{1} z_{1}+\ldots+b_{n} z_{n} . \tag{8.1}
\end{equation*}
$$

Let ν be defined as in $\S 5^{\boldsymbol{\omega}}, l_{0}, l_{1}, \ldots, l_{n}$ be defined by (5.7) ${ }^{\boldsymbol{\omega}}$.
Our basic hypothesis is that there exists a set of linear forms L_{0}, L_{1}, \ldots \ldots, L_{r} in $z_{0}, z_{1}, \ldots, z_{n}$ with rational integer coefficients having the following properties:
(i) $L_{0}=q^{\nu} z_{0} ; L_{0}, L_{1}, \ldots, L_{r}$ are linearly independent, and

$$
\begin{equation*}
L=B_{0} L_{0}+B_{1} L_{1}+\ldots+B_{r} L_{r} \tag{8.2}
\end{equation*}
$$

for some rationals $B_{0}, B_{1}, \ldots, B_{r}$, with $B_{r} \neq 0$.
(ii) On writing

$$
l_{i}^{\prime}=q^{-\nu} L_{i}\left(l_{0}, l_{1}, \ldots, l_{n}\right) \quad(1 \leq i \leq r),
$$

the numbers $\alpha_{i}^{\prime}=e^{l_{i}^{\prime}}(1 \leq i \leq r)$ are in K, and satisfy $\operatorname{ord}_{\mathfrak{p}} \alpha_{i}^{\prime}=0$ $(1 \leq i \leq r)$ and

$$
\begin{equation*}
\left[K\left(\alpha_{0}^{1 / q}, \alpha_{1}^{\prime 1 / q}, \ldots, \alpha_{r}^{\prime 1 / q}\right): K\right]=q^{r+1} . \tag{8.3}
\end{equation*}
$$

(iii) We have

$$
\begin{gather*}
h^{\prime}\left(\alpha_{i}^{\prime}\right) \leq \sigma_{i} \quad(1 \leq i \leq r), \tag{8.4}\\
\sum_{j=1}^{n}\left|\partial L_{i} / \partial z_{j}\right| h^{\prime}\left(\alpha_{j}\right) \leq q^{\nu} \sigma_{i} \quad(1 \leq i \leq r) \tag{8.5}
\end{gather*}
$$

for some positive real numbers $\sigma_{1}, \ldots, \sigma_{r}$ satisfying

$$
\begin{equation*}
\sigma_{1} \cdots \sigma_{r} \leq \psi(r) h^{\prime}\left(\alpha_{1}\right) \cdots h^{\prime}\left(\alpha_{n}\right) \tag{8.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(r)=\left(\frac{a}{q} e^{2} p^{\kappa} d\right)^{n-r} \omega_{q}(n) \min \left(\frac{c^{*}}{q^{\nu}}, 1\right) \tag{8.7}
\end{equation*}
$$

with a given by (1.10) and c^{*} given by (5.24)*. Furthermore, if $\nu=0$ then $\psi(r)$ in (8.6) is replaced by $\psi(r) / \omega_{q}(n)$.

The construction of $\S 5^{\boldsymbol{\omega}}$ establishes the existence of linear forms as above for $r=n$. We now take r as the least integer for which such a set of linear forms exists. Hence $B_{i} \neq 0(1 \leq i \leq r)$ and we may assume

$$
\begin{equation*}
\sigma_{r} \geq \sigma_{i} \quad(1 \leq i \leq r) \tag{8.8}
\end{equation*}
$$

in our basic hypothesis.
Remark. The difference between the basic hypotheses in $\S 8^{\boldsymbol{\mu}}$ and here is only at (8.9) and (8.7).

Lemma 8.1. If $r=1$, then Theorem 7.1 holds.
Proof. Similar to the proof of Lemma 8.2 ${ }^{\boldsymbol{4} \boldsymbol{*}}$.
By Lemma 8.1, we may assume $r \geq 2$ in our basic hypothesis.
Lemma 8.2. If r in the basic hypothesis satisfies

$$
\begin{equation*}
r \geq 2 \quad \text { and } \quad r /\left(f_{\mathfrak{p}} \log p\right)<e_{\mathfrak{p}} \vartheta+0.6 \tag{8.9}
\end{equation*}
$$

then Theorem 7.1 holds.
Proof. We assert that, under (8.9), if the basic hypothesis in $\oint 8^{\boldsymbol{*}}$ is replaced with that of this section, then all arguments in $\S 9^{\boldsymbol{d}}-\S_{1}^{\boldsymbol{d}}$ remain valid. Hence Proposition $9.1^{\boldsymbol{\omega}}$, with r given in the basic hypothesis of this section and with the choice of parameters and constants of $\S 9^{\boldsymbol{\wedge}}$, holds. To see this, we note that (8.9) and (2.8) yield

$$
\begin{equation*}
\left(\frac{r}{f_{\mathfrak{p}} \log p} \cdot \frac{1}{e_{\mathfrak{p}} \theta}\right)^{r-\rho}<\left(\frac{e_{\mathfrak{p}} \vartheta+0.6}{e_{\mathfrak{p}} \theta}\right)^{r-\rho}<e^{r-\rho} \tag{8.10}
\end{equation*}
$$

where θ is given by $(8.1)^{\boldsymbol{\alpha}}$ and ρ is the integer with $1 \leq \rho<r$ appearing in the text of [10] above (13.19) ${ }^{\boldsymbol{\alpha}}$. Further by the inequalities in the text of [10] above (13.9) ${ }^{\boldsymbol{\mu}}$,

$$
\begin{equation*}
\eta^{(r+1) I} / \eta^{\rho}<\eta^{(r+1)(I-1)}<10^{-21} \tag{8.11}
\end{equation*}
$$

On observing (8.10) and (8.11), it is readily seen, similarly to proving that $(13.24)^{\boldsymbol{\kappa}}$ implies $(13.23)^{\boldsymbol{\epsilon}}$ in [10], that in order to prove $(13.23)^{\boldsymbol{\alpha}}$, it suffices to show

$$
\frac{e^{\rho}(\rho!)^{3} \rho^{\rho} r^{\rho} p^{f_{\mathfrak{p}}}}{\frac{1}{r} \cdot \frac{2}{3}(q-1) \frac{e_{\mathfrak{p}}}{d}-\frac{10^{-21}}{g_{2}}} \leq\left(q \eta^{r+1}\right)^{I \rho}
$$

which is a consequence of $(13.24)^{\boldsymbol{\alpha}}$ (it is still true; see $\S 13^{\boldsymbol{\kappa}}$).
Now we deduce Theorem 7.1 for $\nu>0$. On replacing (8.8) $)^{\boldsymbol{\mu}},(8.9)^{\boldsymbol{\mu}}$ by (8.6), (8.7), and on observing $(n+1)^{n+1} /(n-1)!\geq e^{n-r}(r+1)^{r+1} /(r-1)!$, and by (8.9) and (2.8), we have

$$
\begin{aligned}
& \frac{e_{\mathfrak{p}} U^{\mathfrak{q}}}{\left(q^{-n} / \max \left(p^{-f_{\mathfrak{p}} e_{\mathfrak{p}} \vartheta}, q^{-n}\right)\right) \times \text { the right side of }(7.1)} \\
& \quad \leq \frac{c^{\mathfrak{k}}}{c}\left(\frac{q}{2 e}\right)^{r}\left(\frac{r}{f_{\mathfrak{p}} \log p} \cdot \frac{1}{e_{\mathfrak{p}} \vartheta}\right)^{r-1} \leq \frac{c^{\mathfrak{k}}}{c}\left(\frac{q}{2 e}\right)^{r}\left(\frac{e_{\mathfrak{p}} \vartheta+0.6}{e_{\mathfrak{p}} \vartheta}\right)^{r-1} \leq 1
\end{aligned}
$$

The verification in the case $\nu=0$, i.e., when $\alpha_{1}, \ldots, \alpha_{n}$ satisfy (1.11), is similar. This completes the proof of Lemma 8.2.

By Lemma 8.2, we may and shall assume, in §9-§13 below, that r in the basic hypothesis satisfies

$$
\begin{equation*}
r /\left(f_{\mathfrak{p}} \log p\right)>e_{\mathfrak{p}} \vartheta+0.6 \tag{8.12}
\end{equation*}
$$

Finally, note that we shall use $(8.13)^{\boldsymbol{d}}-(8.16)^{\boldsymbol{d}}$ in $\S 9-\S 13$.
9. Choices of parameters and Proposition 9.1. Recall that κ, ϑ are defined by (1.6), and $\varsigma_{1}, \varsigma_{2}$ are given by (2.1). We define $g_{0}, \ldots, g_{12}, \epsilon_{1}, \epsilon_{2}, f_{6}$ by the following formulae:

$$
\begin{aligned}
& g_{0}=6 r \log (5 r)+1.2 \log d, \\
& g_{1}=\log \left(e^{4}(r+1) d\right), \quad g_{2}=2 c_{3} q(r+1) d \\
& g_{3}=2 c_{0} c_{4}\left(\varsigma_{2} c_{2} q p^{\kappa}\right)^{r}\left(p^{f_{\mathfrak{p}}}-1\right) p^{0.6 f_{\mathfrak{p}}}\left(f_{\mathfrak{p}} \log p\right)^{r-1} \frac{(r+1)^{r+1}}{r!}(q-1) \frac{g_{1}}{\vartheta}, \\
& g_{4}=2 c_{0} c_{4}\left(\varsigma_{2} q\right)^{r}\left(c_{2} p^{\kappa}\right)^{r-1} p^{0.6 f_{\mathfrak{p}}}\left(f_{\mathfrak{p}} \log p\right)^{r-1} \frac{(r+1)^{r}}{r!r} f_{\mathfrak{p}}\left(e_{\mathfrak{p}}+\frac{1}{\vartheta}\right) g_{1}, \\
& 1+\epsilon_{1}=\left(1+r / g_{3}\right)^{r}, \quad 1+\epsilon_{2}=\left(1-1 / g_{4}\right)^{-r} \\
& g_{5}=g_{4}\left(p^{f_{\mathfrak{p}}}-1\right)(q-1) /\left(q f_{\mathfrak{p}}\right), \\
& g_{6}=2 c_{0} c_{3}\left(\varsigma_{2} c_{2} q p^{\kappa}\right)^{r}\left(p^{f_{\mathfrak{p}}}-1\right) p^{0.6 f_{\mathfrak{p}}}\left(f_{\mathfrak{p}} \log p\right)^{r-1} \frac{(r+1)^{r+1}}{r!}(q-1) e_{\mathfrak{p}} \\
& g_{7}=g_{5} c_{1} c_{2} r p^{\kappa}, \quad g_{8}=g_{7} f_{\mathfrak{p}} \log p, \\
& g_{9}=\frac{d}{g_{2} g_{8}}\left(\log \left(\frac{g_{2}}{d}\right)+(r+1) \log g_{8}\right), \\
& g_{10}=\frac{2}{g_{0}} \exp \left(-1+e^{-g_{0}-0.9}\right) \frac{1}{c_{2} q p^{\kappa}} \cdot \frac{r-1}{r+1}, \\
& g_{11}=\frac{\varsigma_{1}}{c_{2} c_{5} q} \cdot \frac{1}{p^{\kappa} f_{\mathfrak{p}} \log p} \cdot\left(q\left(1-\frac{c_{5}}{r+1}\right)^{r+1}\right)-\log g_{5} / \log q \\
& g_{12}=\frac{1}{g_{2}}\left(\frac{d-1}{g_{7}}+\frac{d \log d}{2 g_{8}}\right), \\
& f_{6}=\left(1+10^{-100}\right)\left(1+\epsilon_{1}\right)\left(1+\epsilon_{2}\right)\left(2+1 / g_{2}\right) \varsigma_{1} c_{0} c_{1} c_{3} c_{4} q^{2}
\end{aligned}
$$

In (9.1) $, c_{0}, \ldots, c_{5}$ are given in Table (9.2) below. The upper bounds for f_{6} can be obtained from the above formulae by direct calculation. Blocks I, II, III, IV are for cases (I), (II), (III), (IV) of (2.1), respectively. The lower
bounds $r \geq 3$ in I, II, III and $r \geq 4$ in IV are determined by (8.12), (2.8) and the fact that $f_{\mathfrak{p}} \geq 2$ when $p=2$ (see [9], II, Appendix).
(9.2)

Case	r	c_{0}	c_{1}	$\varsigma_{2} c_{2}$	c_{3}	c_{4}	c_{5}	$f_{6} \leq$
I	$3 \leq r \leq 6$	2.7	0.6743	4	1.22	18.7	0.48	414
	$7 \leq r \leq 15$	2.6	0.655	4	0.986	20.72	0.512	344
	$r \geq 16$	2.5	0.65	4	0.856	23.53	0.54	321
II	$3 \leq r \leq 6$	2.8	0.6718	4	1.75	9.16	0.48	323
	$7 \leq r \leq 15$	2.7	0.652	4	1.418	10.15	0.512	270
	$r \geq 16$	2.6	0.6483	4	1.225	11.53	0.54	252
III	$3 \leq r \leq 6$	3	0.6546	4	1.93	16.98	0.47	712
	$7 \leq r \leq 15$	2.8	0.6425	4	1.612	19.01	0.504	608
	$r \geq 16$	2.7	0.6403	4	1.43	21.2	0.53	576
	$4 \leq r \leq 6$	2.7	0.7823	$32 / 9$	0.4082	3.107	0.7	58
IV	$7 \leq r \leq 15$	2.5	0.7646	$32 / 9$	0.3416	3.44	0.75	49
	$r \geq 16$	2.26	0.7458	$32 / 9$	0.31	3.835	0.8	43

Let

$$
\begin{equation*}
\eta=1-\frac{c_{5}}{r+1} \tag{9.3}
\end{equation*}
$$

It can be verified that c_{0}, \ldots, c_{5} satisfy (9.4)-(9.7) and (9.9) below.
(i) $2 c_{5} \eta^{r-1}\left(1-\frac{1}{2 g_{2}}\right)-\frac{\log q}{\log (q \eta)}\left(\frac{2}{c_{2}}+\left(1+\frac{1}{g_{6}}\right) \frac{\tau(p)}{c_{4}(\mathfrak{N} / \vartheta) g_{1}} \cdot \frac{1}{q}\right)>0$,
(ii) $2 c_{5} e^{-c_{5}}\left(1-\frac{1}{2 g_{2}}\right)-\frac{\log q}{\log (q \eta)}\left(\frac{2}{c_{2}}+\left(1+\frac{1}{g_{6}}\right) \frac{\tau(p)}{c_{4}(\mathfrak{N} / \vartheta) g_{1}} \cdot \frac{1}{q}\right)>0$,

$$
r \geq 16
$$

where $\tau(p)=1$ or $3 / 2$, according as $p>2$ or $p=2$,
(9.5) $\quad 2 c_{5} q\left(1-\frac{1}{2 g_{2}}\right)$

$$
\begin{aligned}
\geq & c_{1}\left\{g_{12}+\left(1+\frac{1}{2\left(c_{0}-1\right)}\right) g_{9}\right\} \\
& +\left\{q+\frac{1}{2\left(c_{0}-1\right)}\left(1+\frac{1}{2 g_{2}+1}\right)\right\} \frac{2}{c_{2}} \\
& +\left\{\frac{107}{103} \cdot \frac{1+10^{-100}}{e_{\mathfrak{p}} \vartheta_{0}+1}\left(1-\frac{c_{5}}{r+1}+\frac{1}{c_{0}-1}\right)+\left(1+\frac{1}{c_{0}-1}\right) g_{10}\right\} \frac{1}{c_{3}} \\
& +\left(1+\frac{1}{g_{6}}\right)\left\{1+\frac{1}{c_{0}-1}+\left(\mathfrak{N}+\frac{1}{p-1}\right) \frac{1}{f_{\mathfrak{p}}}\right\} \frac{1}{c_{4}(\mathfrak{N} / \vartheta)},
\end{aligned}
$$

where ϑ_{0} and \mathfrak{N} are defined by (2.8) and (2.5),

$$
\begin{equation*}
c_{1} \geq c_{5}\left(\eta^{r}+g_{11}\right)\left\{2+\frac{1}{g_{2}}+\frac{1}{(r+1) q^{r+1}} \cdot \frac{1+10^{-100}}{e_{\mathfrak{p}} \vartheta_{0}+1} \cdot \frac{1}{c_{3}}\right\} \tag{9.6}
\end{equation*}
$$

(i) $\left(1+\frac{1}{g_{6}}\right) \frac{c_{2}}{2 c_{4}(\mathfrak{N} / \vartheta)} \cdot \frac{\log q}{q} \cdot \frac{I}{\max \left(f_{\mathfrak{p}} \log p, g_{1}\right)}+\frac{1}{\left(q \eta^{r+1}\right)^{I}} \leq 1$
(ii) $\left(1+\frac{1}{g_{6}}\right) \frac{c_{2}}{2 c_{4}(\mathfrak{N} / \vartheta)} \cdot \frac{\log q}{q^{2}} \cdot \frac{I}{\max \left(f_{\mathfrak{p}} \log p, g_{1}\right)}+\frac{1}{\left(q \eta^{r+1}\right)^{I}} \leq 1$ if $p=2$,
for $1 \leq I<I^{*}$, where

$$
\begin{gather*}
I^{*}=\left[5 \max \left(f_{\mathfrak{p}} \log p, g_{1}\right) / \log \left(q \eta^{r+1}\right)\right]+1, \tag{9.8}\\
\eta^{-(r+1)}+g_{2}^{-1} \leq q . \tag{9.9}
\end{gather*}
$$

Note that in verifying (9.4)-(9.7) and (9.9), we have used the fact that $\eta^{r+1}=\left(1-c_{5} /(r+1)\right)^{r+1}$ is increasing and $\eta^{r}=\left(1-c_{5} /(r+1)\right)^{r}$ is decreasing in each range of r considered in (9.2). For the details of the verification, see the paragraph below, which contains (9.33)-(9.35).

Let

$$
\begin{align*}
& h=\max \left\{\log \left(\frac{f_{\mathfrak{p}} \log p}{2 d} \max _{1 \leq j<n}\left(\frac{\left|b_{n}\right|}{h^{\prime}\left(\alpha_{j}\right)}+\frac{\left|b_{j}\right|}{h^{\prime}\left(\alpha_{n}\right)}\right)\right),\right. \tag{9.10}\\
&\left.\log B^{\circ}, g_{0}, 2 f_{\mathfrak{p}} \log p\right\},
\end{align*}
$$

where B° is given by (7.3), and

$$
\begin{equation*}
G_{0}=\left(p^{f_{\mathfrak{p}}}-1\right) / q^{u}, \tag{9.11}
\end{equation*}
$$

which is a positive integer by Hasse ([4], p. 220) and (1.3), (1.4). Set

$$
\begin{equation*}
S=\frac{c_{3} q(r+1) d(h+\nu \log q)}{f_{\mathfrak{p}} \log p} \tag{9.12}
\end{equation*}
$$

where ν is defined at the end of the paragraph above (5.23) in [10],

$$
\begin{align*}
D= & \left(1+10^{-100}\right)\left(1+\epsilon_{1}\right)\left(1+\epsilon_{2}\right)\left(2+\frac{1}{g_{2}}\right) c_{0} c_{1} c_{4} \frac{\mathfrak{N}}{\vartheta}\left(\varsigma_{2} c_{2} q p^{\kappa}\right)^{r} \tag{9.13}\\
& \times \frac{(r+1)^{r}}{r!} G_{0} p^{f_{\mathfrak{p}} x_{0}} d^{r+1} \sigma_{1} \cdots \sigma_{r} \max \left(f_{\mathfrak{p}} \log p, g_{1}\right),
\end{align*}
$$

where x_{0} is defined by (2.3),

$$
\begin{equation*}
T=\frac{q(r+1) D}{c_{1} \mathfrak{N} e_{\mathfrak{p}} f_{\mathfrak{p}} \log p}, \tag{9.14}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{D}_{-1}=h+\nu \log q-1, \quad D_{-1}=\left[\widetilde{D}_{-1}\right], \tag{9.15}
\end{equation*}
$$

It is readily seen that

$$
(9 . j):=(9 . j)^{\boldsymbol{\alpha}} \quad \text { for } 18 \leq j \leq 31 \text { with } j \neq 23,25,26
$$

hold. The following three inequalities are also true:

$$
\begin{gather*}
\frac{\left(D_{-1}+1\right)\left(D_{0}+1\right)}{G_{0} p^{f_{\mathfrak{p}} \mathfrak{m}}} \prod_{i=1}^{r}\left(D_{i}+1-G_{0}\right) \geq c_{0}(2 S+1)\binom{[T]+r}{r}, \tag{9.23}\\
T\left(\widetilde{D}_{-1}+1\right) \leq \frac{1}{c_{1} c_{3} e_{\mathfrak{p}} \mathfrak{N}} \cdot \frac{S D}{d}<\frac{1+10^{-100}}{e_{\mathfrak{p}} \vartheta_{0}+1} \cdot \frac{1}{c_{1} c_{3}} \cdot \frac{S D}{d} \tag{9.25}
\end{gather*}
$$

(the second inequality in (9.25) follows from (2.5), (2.4) and (2.8)),

$$
\begin{align*}
& \widetilde{D}_{0} \geq g_{6}, \\
& \left(D_{-1}+1\right)\left(D_{0}+1\right) \max \left(f_{\mathfrak{p}} \log p, g_{1}\right) \leq\left(1+\frac{1}{g_{6}}\right) \frac{1}{c_{1} c_{4}(\mathfrak{N} / \vartheta)} \cdot \frac{S D}{d} . \tag{9.26}
\end{align*}
$$

Proof of (9.23). By (9.19)-(9.21), it suffices to show that $D \geq D^{\prime}$, where

$$
\begin{aligned}
D^{\prime}= & \left(1+\epsilon_{1}\right)\left(1+\epsilon_{2}\right)\left(2+\frac{1}{g_{2}}\right) c_{0} c_{1} c_{4} \frac{\mathfrak{N}}{\vartheta}\left(c_{2} q \frac{p^{\kappa}}{e_{\mathfrak{p}} \mathfrak{N}}\right)^{r} G_{0} p^{f_{\mathfrak{p}} \mathfrak{m}} \\
& \times \frac{r^{r}(r+1)^{r}}{r!} \cdot \frac{d^{r+1} \sigma_{1} \cdots \sigma_{r}}{\left(f_{\mathfrak{p}} \log p\right)^{r}} \max \left(f_{\mathfrak{p}} \log p, g_{1}\right) .
\end{aligned}
$$

Now by (2.5), (2.3) and (2.7), we have

$$
\begin{aligned}
\frac{p^{f_{\mathfrak{p}} \mathfrak{m}}}{\left(e_{\mathfrak{p}} \mathfrak{N}\right)^{r}} & =\left(1+\frac{1}{2 n} \cdot 10^{-100}\right)^{r} \frac{p^{f_{\mathfrak{p}} \mathfrak{m}}}{\left(\mathfrak{m}+e_{\mathfrak{p}} \vartheta\right)^{r}}<\left(1+10^{-100}\right) \frac{1}{(\chi(\mathfrak{m}))^{r}} \\
& <\left(1+10^{-100}\right) \varsigma_{2}^{r} \frac{1}{\left(\chi\left(x_{0}\right)\right)^{r}}=\left(1+10^{-100}\right) \varsigma_{2}^{r} p^{f_{\mathfrak{p}} x_{0}} \frac{\left(f_{\mathfrak{p}} \log p\right)^{r}}{r^{r}}
\end{aligned}
$$

which implies $D \geq D^{\prime}$. (We omit the proofs of (9.25) and (9.26) here.)
Set

$$
\begin{equation*}
U=\frac{q^{r+1}}{e_{\mathfrak{p}} f_{\mathfrak{p}} \log p} S D \tag{9.32}
\end{equation*}
$$

Proposition 9.1. Under the hypotheses of Theorem 7.1, we have

$$
\operatorname{ord}_{p} \Xi<U .
$$

Note that Proposition 9.1 implies Theorem 7.1. We verify this for the case $\nu>0$. By (9.12), (9.13), (8.6), (9.2), (8.7), (8.13) , (7.2), (9.10), (2.3), (2.5),
(2.6), (1.3), and the inequality $(n+1)^{n+1} /(n-1)!\geq e^{n-r}(r+1)^{r+1} /(r-1)!$, we have

$$
\frac{e_{\mathfrak{p}} U}{\left(p^{-f_{\mathfrak{p}} e_{\mathfrak{p}} \vartheta} / \max \left(p^{-f_{\mathfrak{p}} e_{\mathfrak{p}} \vartheta}, q^{-n}\right)\right) \times \text { the right side of }(7.1)} \leq \frac{f_{6}}{c q^{n-r}} \leq 1
$$

The verification in the case $\nu=0$, i.e., when $\alpha_{1}, \ldots, \alpha_{n}$ satisfy (1.11), is similar.

In the following $\S 10-\S 13$, we shall prove Proposition 9.1.
Now we indicate how we verify (9.4)-(9.7) and (9.9). We divide the verification into four cases, which are (I), (II), (III), (IV) of (2.1). We have

$$
\begin{align*}
& \text { (I) } q=2, d \geq 1, \vartheta \leq 3 / 2, f_{\mathfrak{p}} \geq 1, e_{\mathfrak{p}} \geq 1, p^{\kappa} \geq 3, \\
& \\
& \mathfrak{N} / \vartheta>\left(1+10^{-100}\right)^{-1} ; \\
& \text { (II) } q=2, d \geq 1, \vartheta \leq 1, f_{\mathfrak{p}} \geq 1, e_{\mathfrak{p}}=1, p^{\kappa}=1, \\
& \tag{9.33}\\
& \mathfrak{N} / \vartheta>2\left(1+10^{-100}\right)^{-1} ; \\
& \text { (III) } q=2, d \geq 2, \vartheta \leq 7 / 6, f_{\mathfrak{p}} \geq 1, e_{\mathfrak{p}} \geq 2, p^{\kappa} \geq 1, \\
& \\
& \quad \mathfrak{N} / \vartheta>\left(1+10^{-100}\right)^{-1} ; \\
& \text { (IV) } q=3, d \geq 2, \vartheta \leq 2, f_{\mathfrak{p}} \geq 2, e_{\mathfrak{p}} \geq 1, p^{\kappa} \geq 4, \\
& \\
& \\
& \mathfrak{N} / \vartheta>\left(1+10^{-100}\right)^{-1} .
\end{align*}
$$

We can prove (9.4)-(9.7) and (9.9) for $r \leq 15$ by direct computation, using (9.1)-(9.3) and (9.33). It remains to verify them for $r \geq 16$. By direct computation, we see that (9.4)(ii) is true for $r=16$, whence it holds for $r \geq 16$, since its left side is an increasing function of r. In case (I), LHS-RHS of (9.5) is increasing in d, and this difference at $d=1$ is increasing in r with $r \geq 16$; further this difference at $d=1, r=16$ is positive by direct computation, whence (9.5) for case (I) with $r \geq 16$ follows. In cases (II), (III) and (IV) we have

$$
\begin{align*}
& \left\{\frac{107}{103} \cdot \frac{1}{e_{\mathfrak{p}} \vartheta_{0}+1} \cdot \frac{c_{5}}{r+1}-\left(1+\frac{1}{c_{0}-1}\right) g_{10}\right\} \frac{1}{c_{3}}-\frac{c_{5} q}{g_{2}} \tag{9.34}\\
& -c_{1}\left\{g_{12}+\left(1+\frac{1}{2\left(c_{0}-1\right)}\right) g_{9}\right\}-\frac{1}{\left(c_{0}-1\right)\left(2 g_{2}+1\right) c_{2}} \\
& -\frac{1}{g_{6}}\left\{1+\frac{1}{c_{0}-1}+\left(\mathfrak{N}+\frac{1}{p-1}\right) \frac{1}{f_{\mathfrak{p}}}\right\} \frac{1}{c_{4}(\mathfrak{N} / \vartheta)}>0 \quad \text { for } r \geq 16,
\end{align*}
$$

since its left side is positive for $r=16$, decreasing in r and tends to 0 as $r \rightarrow \infty$; also it is readily verified, using (9.1), (9.3) and (9.33), that for $r \geq 16$,

$$
\begin{align*}
2 c_{5} q \geq & \left\{q+\frac{1}{2\left(c_{0}-1\right)}\right\} \frac{2}{c_{2}}+\frac{107}{103} \cdot \frac{1+10^{-100}}{e_{\mathfrak{p}} \vartheta_{0}+1}\left(1+\frac{1}{c_{0}-1}\right) \frac{1}{c_{3}} \tag{9.35}\\
& +\left\{1+\frac{1}{c_{0}-1}+\left(\mathfrak{N}+\frac{1}{p-1}\right) \frac{1}{f_{\mathfrak{p}}}\right\} \frac{1}{c_{4}(\mathfrak{N} / \vartheta)} .
\end{align*}
$$

Now (9.5) for cases (II), (III), (IV) with $r \geq 16$ follows from (9.34) and (9.35). Finally (9.6), (9.7) and (9.9) for $r=16$ can be verified by direct computation, using (9.1)-(9.3) and (9.33), whence they hold for $r \geq 16$ by monotonicity in r. Our computation is carried out on a SUN SPARCstation 10 with PARI GP 1.39.

In order to prove Lemma 11.2 of $\S 11$ in the sequel, we show the following inequality. Let $I \in \mathbb{Z}$ satisfy $0 \leq I<I^{*}$ with I^{*} given by (9.8) and $\delta_{I}=0$ or 1 according to $I=0$ or $I>0$. Then for $k=0, \ldots, r-1$ when $I=0$ and for $k=1, \ldots, r-1$ when $I>0$ we have

$$
\begin{align*}
& 2 c_{5} q^{k+1} \eta^{k}\left(1-\frac{1}{2 g_{2}}\right) \tag{9.36}\\
& \geq c_{1}\left\{g_{12}+\left(1+\frac{1}{2\left(c_{0}-1\right)}\right) g_{9}\right\} \\
& \quad+\left\{\frac{q^{k+1}}{\left(q \eta^{r+1}\right)^{I}}+\frac{1}{2\left(c_{0}-1\right)}\left(1+\frac{1}{2 g_{2}+1}\right)\right\} \frac{2}{c_{2}} \\
& \quad+\left\{\frac{107}{103} \cdot \frac{1+10^{-100}}{e_{\mathfrak{p}} \vartheta_{0}+1}\left(\eta^{k+1}+\frac{1}{c_{0}-1}\right)+\left(1+\frac{1}{c_{0}-1}\right) g_{10}\right\} \frac{1}{c_{3}} \\
& \quad+\left(1+\frac{1}{g_{6}}\right)\left\{1+\frac{1}{c_{0}-1}+\frac{\left[k+\delta_{I}(I+1 /(q-1))\right] \log q}{\max \left(f_{\mathfrak{p}} \log p, g_{1}\right)}\right. \\
& \left.\quad+\left(\mathfrak{N}+\frac{1}{p-1}\right) \frac{1}{f_{\mathfrak{p}}}\right\} \frac{1}{c_{4}(\mathfrak{N} / \vartheta)} .
\end{align*}
$$

Proof of (9.36). By (9.7), we see that the right side of (9.36) is bounded above by $\mathfrak{R}(k)$ which is obtained from the right side of (9.36) by replacing $q^{k+1} /\left(q \eta^{r+1}\right)^{I}$ with q^{k+1}, replacing $k+\delta_{I}(I+1 /(q-1))$ with $\tau(p) k$, and replacing $\max \left(f_{\mathfrak{p}} \log p, g_{1}\right)$ with g_{1}. Write $\mathfrak{L}(k)$ for the left side of (9.36). Now (9.4) implies $(\mathfrak{L}(x)-\mathfrak{R}(x))^{\prime}>0$ for $0 \leq x \leq r-1$ and (9.5) implies $\mathfrak{L}(0)-\mathfrak{R}(0) \geq 0$. Hence $\mathfrak{L}(k) \geq \mathfrak{R}(k)$ for $k=0, \ldots, r-1$, which yields (9.36).
10. The auxiliary rational functions. Let

$$
\begin{equation*}
G=p^{f_{\mathfrak{p}}}-1, \quad G_{0}=G / q^{u}, \quad G_{1}=G / q^{\mu} \quad \text { with } \mu=\operatorname{ord}_{q} G . \tag{10.1}
\end{equation*}
$$

Denote by ζ a fixed G th primitive root of 1 in $K_{\mathfrak{p}}$ such that

$$
\begin{equation*}
\zeta^{G_{0}}=\zeta_{q^{u}}\left(=\alpha_{0}\right), \tag{10.2}
\end{equation*}
$$

by ξ a fixed $(q G)$ th root of 1 in \mathbb{C}_{p}, and by $\alpha_{0}^{1 / q}$ a q th root of α_{0} in \mathbb{C}_{p}, satisfying

$$
\begin{equation*}
\xi^{q}=\zeta \quad \text { and } \quad \xi^{G_{0}}=\alpha_{0}^{1 / q} \tag{10.3}
\end{equation*}
$$

By (1.9), there exist $\widetilde{a}_{1}, \ldots, \widetilde{a}_{n} \in \mathbb{N}$ such that $\alpha_{j}{\breve{a^{j}}}^{\widetilde{a}_{j}} \equiv 1(\bmod \mathfrak{p})(1 \leq$ $j \leq n$). Now [9], III, Lemma 1.1 yields

$$
\begin{equation*}
\operatorname{ord}_{p}\left(\alpha_{j}^{p^{\kappa}} \zeta^{a_{j}}-1\right) \geq \vartheta+\frac{1}{p-1}, \quad 1 \leq j \leq n, \tag{10.4}
\end{equation*}
$$

where $a_{j}=p^{\kappa} \widetilde{a}_{j}$, and ϑ is given by (1.6). Note also, by (10.2),

$$
\begin{equation*}
\alpha_{0}^{p^{\kappa}} \zeta^{a_{0}}=1, \quad \text { where } \quad a_{0}=p^{\kappa}\left(G-G_{0}\right) . \tag{10.5}
\end{equation*}
$$

Thus the p-adic logarithms of $\alpha_{j}^{p^{k}} \zeta^{a_{j}}$ satisfy

$$
\begin{equation*}
\log \left(\alpha_{0}^{p^{\kappa}} \zeta^{a_{0}}\right)=0, \quad \operatorname{ord}_{p} \log \left(\alpha_{j}^{p^{\kappa}} \zeta^{a_{j}}\right) \geq \vartheta+\frac{1}{p-1}, \quad 1 \leq j \leq n . \tag{10.6}
\end{equation*}
$$

We shall freely use the fundamental properties of the p-adic exponential and logarithmic functions (see, for example, [8], §1.1).

Recall $L_{i}\left(z_{0}, \ldots, z_{n}\right)$ and $\alpha_{i}^{\prime}(1 \leq i \leq r)$ specified in the basic hypothesis in $\S 8$. It is proved (as (10.7)* that there exist $a_{1}^{\prime}, \ldots, a_{r}^{\prime} \in \mathbb{N}$ such that for $1 \leq i \leq r$,

$$
\begin{equation*}
\exp \left(\frac{1}{q^{\nu}} L_{i}\left(0, \log \left(\alpha_{1}^{p^{\kappa}} \zeta^{a_{1}}\right), \ldots, \log \left(\alpha_{n}^{p^{\kappa}} \zeta^{a_{n}}\right)\right)\right)={\alpha_{i}^{\prime p^{\kappa}}}^{a^{a_{i}^{\prime}}} \tag{10.7}
\end{equation*}
$$

By (10.6) and (10.7) we have

$$
\begin{equation*}
\operatorname{ord}_{p}\left(\alpha_{i}^{\prime p^{\kappa}} \zeta^{\alpha_{i}^{\prime}}-1\right) \geq \vartheta+\frac{1}{p-1}, \quad 1 \leq i \leq r \tag{10.8}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
{\alpha_{i}^{\prime p^{k}}}_{\zeta^{a_{i}^{\prime}} \equiv 1\left(\bmod \mathfrak{p}^{\mathfrak{m}_{0}}\right), \quad 1 \leq i \leq r, ~}^{\text {and }} \tag{10.9}
\end{equation*}
$$

where \mathfrak{m}_{0} is the least integer $\geq e_{\mathfrak{p}}(\vartheta+1 /(p-1))$. Hence

$$
\begin{equation*}
\prod_{i=1}^{r}\left(\alpha_{i}^{\prime p^{k}} \zeta^{a_{i}^{\prime}}\right)^{\lambda_{i}} \equiv 1\left(\bmod \mathfrak{p}^{\mathfrak{m}_{0}}\right) \quad \text { for all }\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbb{Z}^{r} \tag{10.10}
\end{equation*}
$$

We define $\left(\alpha_{i}^{\prime p^{k}} \zeta^{a_{i}^{\prime}}\right)^{1 / q}$ by the p-adic exponential and logarithmic functions:

$$
\begin{equation*}
\left(\alpha_{i}^{\prime p^{\kappa}} \zeta^{a_{i}^{\prime}}\right)^{1 / q}=\exp \left(\frac{1}{q} \log \left(\alpha_{i}^{\prime p^{\kappa}} \zeta^{a_{i}^{\prime}}\right)\right), \quad 1 \leq i \leq r ; \tag{10.11}
\end{equation*}
$$

and we fix a choice of q th roots of $\alpha_{1}^{\prime}, \ldots, \alpha_{r}^{\prime}$ in \mathbb{C}_{p}, denoted by $\alpha_{1}^{\prime 1 / q}, \ldots$ $\ldots, \alpha_{r}^{\prime 1 / q}$, such that

$$
\begin{equation*}
\left(\alpha_{i}^{\prime p^{\kappa}} \zeta^{a_{i}^{\prime}}\right)^{1 / q}=\left(\alpha_{i}^{\prime 1 / q}\right)^{p^{\kappa}} \xi^{a_{i}^{\prime}}, \quad 1 \leq i \leq r, \tag{10.12}
\end{equation*}
$$

where ξ is given by (10.3).

We shall use the notation introduced in [1], §12:

$$
\begin{aligned}
& \Delta(z ; k)=(z+1) \cdots(z+k) / k!\quad \text { for } k \in \mathbb{Z}_{>0} \quad \text { and } \quad \Delta(z ; 0)=1 \\
& \Pi\left(z_{1}, \ldots, z_{r-1} ; t_{1}, \ldots, t_{r-1}\right)=\prod_{i=1}^{r-1} \Delta\left(z_{i} ; t_{i}\right) \quad\left(t_{1}, \ldots, t_{r-1} \in \mathbb{N}\right) \\
& \Theta(z ; k, l, m)=\frac{1}{m!}\left(\frac{d}{d z}\right)^{m}(\Delta(z ; k))^{l} \quad(l, m \in \mathbb{N})
\end{aligned}
$$

Recalling (10.1) and writing $\lambda=\left(\lambda_{-1}, \ldots, \lambda_{r}\right)$, we define

$$
\begin{align*}
\mathcal{B} & =\left\{b \in \mathbb{N}\left|b<q^{\mu-u}, \operatorname{gcd}\left(a_{1}^{\prime}, \ldots, a_{r}^{\prime}, G_{0}\right)\right| b G_{1}\right\} \tag{10.13}\\
\Lambda^{\boldsymbol{*}} & =\left\{\lambda \in \mathbb{N}^{r+2} \mid \lambda_{i} \leq D_{i},-1 \leq i \leq r, \sum_{i=1}^{r} a_{i}^{\prime} \lambda_{i} \equiv 0\left(\bmod G_{1}\right)\right\} \tag{10.14}
\end{align*}
$$

where D_{-1}, \ldots, D_{r} are given by (9.15)-(9.17). We define an equivalence relation on $\Lambda^{\boldsymbol{\kappa}}: \lambda$ and λ^{\prime} in $\Lambda^{\boldsymbol{\alpha}}$ are said to be equivalent if $\lambda_{i}=\lambda_{i}^{\prime}(i=-1,0)$ and

$$
\begin{equation*}
\prod_{i=1}^{r}\left(\alpha_{i}^{\prime p^{\kappa}} \zeta^{a_{i}^{\prime}}\right)^{\lambda_{i}} \equiv \prod_{i=1}^{r}\left(\alpha_{i}^{\prime p^{\kappa}} \zeta^{a_{i}^{\prime}}\right)^{\lambda_{i}^{\prime}}\left(\bmod \mathfrak{p}^{\mathfrak{m}_{0}+\mathfrak{m}}\right) \tag{10.15}
\end{equation*}
$$

where \mathfrak{m}_{0} is given in (10.9) and \mathfrak{m} is given by (2.4). From (10.10) and the fact that $\mathfrak{m}_{0} \geq 1$, we see that $\Lambda^{\mathfrak{m}}$ decomposes into at most $N(\mathfrak{p})^{\mathfrak{m}}=p^{f_{\mathfrak{p}} \mathfrak{m}}$ equivalence classes, whence there exists an equivalence class, denoted by Λ, such that its cardinality satisfies

$$
\begin{equation*}
\# \Lambda \geq \frac{\# \Lambda^{\mathfrak{k}}}{p^{f_{\mathfrak{p}} \mathfrak{m}}} \tag{10.16}
\end{equation*}
$$

We have $\Lambda=\bigcup_{b \in \mathcal{B}} \Lambda_{b}$, where

$$
\begin{equation*}
\Lambda_{b}=\left\{\lambda \in \Lambda \mid \sum_{i=1}^{r} a_{i}^{\prime} \lambda_{i} \equiv b G_{1} \quad\left(\bmod G_{0}\right)\right\} \tag{10.17}
\end{equation*}
$$

From now on we fix $\left(\lambda_{1}^{(0)}, \ldots, \lambda_{r}^{(0)}\right)$ and $b^{(0)} \in \mathcal{B}$ such that

$$
\begin{align*}
& \left(\lambda_{-1}, \lambda_{0}, \lambda_{1}^{(0)}, \ldots, \lambda_{r}^{(0)}\right) \in \Lambda_{b^{(0)}} \tag{10.18}\\
& \quad \text { for } 0 \leq \lambda_{-1} \leq D_{-1}, 0 \leq \lambda_{0} \leq D_{0}
\end{align*}
$$

We shall construct a rational function $P=P\left(Y_{0}, \ldots, Y_{r}\right)$ of the form

$$
\begin{equation*}
P=\sum_{\lambda \in \Lambda} \rho(\lambda)\left(\Delta\left(Y_{0}+\lambda_{-1} ; D_{-1}+1\right)\right)^{\lambda_{0}+1} Y_{1}^{\lambda_{1}-\lambda_{1}^{(0)}} \cdots Y_{r}^{\lambda_{r}-\lambda_{r}^{(0)}} \tag{10.19}
\end{equation*}
$$

with coefficients $\rho(\lambda)=\rho\left(\lambda_{-1}, \ldots, \lambda_{r}\right)$ in \mathcal{O}_{K}. We write $P=\sum_{b \in \mathcal{B}} P_{b}$, where P_{b} is given by the right side of (10.19) with Λ replaced by Λ_{b}.

Put $\partial_{0}^{*}=\partial / \partial Y_{0}$ and recall (8.14) ${ }^{\boldsymbol{*}}$:

$$
\partial_{j}^{*}=\left(1 / B_{r}\right) \sum_{i=1}^{r-1}\left(b_{n} \partial L_{i} / \partial z_{j}-b_{j} \partial L_{i} / \partial z_{n}\right) \partial_{i} \quad(1 \leq j<n) .
$$

Then we have

$$
\partial_{j}^{*} Y_{1}^{\lambda_{1}-\lambda_{1}^{(0)}} \cdots Y_{r}^{\lambda_{r}-\lambda_{r}^{(0)}}=\gamma_{j} Y_{1}^{\lambda_{1}-\lambda_{1}^{(0)}} \cdots Y_{r}^{\lambda_{r}-\lambda_{r}^{(0)}} \quad(1 \leq j<n),
$$

where

$$
\begin{equation*}
\gamma_{j}=\sum_{i=1}^{r}\left(b_{n} \partial L_{i} / \partial z_{j}-b_{j} \partial L_{i} / \partial z_{n}\right)\left(\lambda_{i}-\lambda_{i}^{(0)}\right) . \tag{10.20}
\end{equation*}
$$

For any $t=\left(t_{0}, \ldots, t_{r-1}\right) \in \mathbb{N}^{r}$, we write $|t|=t_{0}+\ldots+t_{r-1}$ and put

$$
\begin{aligned}
\Pi(t) & =\Pi\left(\gamma_{1}, \ldots, \gamma_{r-1} ; t_{1}, \ldots, t_{r-1}\right), \\
\Theta\left(Y_{0} ; t\right) & =\left(v\left(D_{-1}+1\right)\right)^{t_{0}} \Theta\left(Y_{0}+\lambda_{-1} ; D_{-1}+1, \lambda_{0}+1, t_{0}\right),
\end{aligned}
$$

where $v(k)=\operatorname{lcm}(1,2, \ldots, k)$ for $k \in \mathbb{Z}_{>0}$. We introduce further rational functions $Q(t)=Q\left(Y_{0}, \ldots, Y_{r} ; t\right)$ by

$$
\begin{equation*}
Q(t)=\sum_{\lambda \in \Lambda} \rho(\lambda) \Pi(t) \Theta\left(Y_{0} ; t\right) Y_{1}^{\lambda_{1}-\lambda_{1}^{(0)}} \cdots Y_{r}^{\lambda_{r}-\lambda_{r}^{(0)}}, \tag{10.21}
\end{equation*}
$$

and write $Q(t)=\sum_{b \in \mathcal{B}} Q_{b}(t)$, where $Q_{b}(t)$ is given by the right side of (10.21) with Λ replaced by Λ_{b}.

We shall use the notation of heights introduced in [1], §2. Now we apply [1], Lemma 1, which is a consequence of Bombieri and Vaaler [2], Theorem 9 , to prove the following lemma, where
$\rho=(\rho(\lambda): \lambda \in \Lambda) \in \mathbb{P}^{N}$ with $N=\# \Lambda(=$ the number of elements of $\Lambda)$.
Lemma 10.1. There exist $\rho(\lambda) \in \mathcal{O}_{K}, \lambda \in \Lambda$, not all zero, with

$$
\begin{align*}
h_{0}(\rho) \leq & \frac{S D}{d}\left\{g_{12}+\frac{1}{c_{0}-1}\left[\frac{1}{2} g_{9}+\left(1+\frac{1}{2 g_{2}+1}\right) \frac{1}{c_{1} c_{2}}\right.\right. \tag{10.22}\\
& \left.\left.+\left(\frac{107}{103} \cdot \frac{1}{e_{\mathfrak{p}} \mathfrak{N}}+g_{10}\right) \frac{1}{c_{1} c_{3}}+\left(1+\frac{1}{g_{6}}\right) \frac{1}{c_{1} c_{4}(\mathfrak{N} / \vartheta)}\right]\right\}
\end{align*}
$$

such that for all $b \in \mathcal{B}$ we have

$$
\begin{align*}
& Q_{b}\left(s,\left(\alpha_{1}^{\prime^{p^{\kappa}}} \zeta^{a_{1}^{\prime}}\right)^{s}, \ldots,\left(\alpha_{r}^{p^{\kappa}} \zeta^{a_{r}^{\prime}}\right)^{s} ; t\right)=0 \tag{10.23}\\
& \quad \text { for } s \in \mathbb{Z} \text { with }|s| \leq S \text { and } t \in \mathbb{N}^{r} \text { with }|t| \leq T .
\end{align*}
$$

Remark. In the sequel s always denotes a rational integer and t always denotes an r-tuple $\left(t_{0}, \ldots, t_{r-1}\right) \in \mathbb{N}^{r}$. The expressions $s \in \mathbb{Z}$ and $t \in \mathbb{N}^{r}$ will be omitted.

Proof (of Lemma 10.1). For each $\lambda \in \Lambda_{b}$, by (10.14), (10.17) and (10.18), there exists $w(\lambda) \in \mathbb{Z}$ such that

$$
\sum_{i=1}^{r} a_{i}^{\prime}\left(\lambda_{i}-\lambda_{i}^{(0)}\right)=\left(b-b^{(0)}\right) G_{1}+w(\lambda) G_{0}
$$

whence, by (10.2),

$$
\prod_{i=1}^{r}\left(\alpha_{i}^{\prime p^{\kappa}} \zeta^{a_{i}^{\prime}}\right)^{s\left(\lambda_{i}-\lambda_{i}^{(0)}\right)}=\zeta^{s\left(b-b^{(0)}\right) G_{1}} \alpha_{0}^{s w(\lambda)} \prod_{i=1}^{r} \alpha_{i}^{\prime p^{\kappa} s\left(\lambda_{i}-\lambda_{i}^{(0)}\right)}
$$

Thus it suffices to construct $\rho(\lambda) \in \mathcal{O}_{K}, \lambda \in \Lambda$, not all zero, such that

$$
\begin{align*}
\sum_{\lambda \in \Lambda_{b}} \rho(\lambda) \Pi(t) \Theta(s ; t) \alpha_{0}^{s w(\lambda)} \prod_{i=1}^{r} \alpha_{i}^{\prime k^{\kappa} s\left(\lambda_{i}-\lambda_{i}^{(0)}+D_{i}\right)}=0 \tag{10.24}\\
\quad \text { for } b \in \mathcal{B},|s| \leq S,|t| \leq T
\end{align*}
$$

which is a system of

$$
M \leq q^{\mu-u}(2 S+1)\binom{[T]+r}{r}
$$

homogeneous linear equations in N unknowns $\rho(\lambda), \lambda \in \Lambda$, with coefficients in $E=\mathbb{Q}\left(\alpha_{0}, \alpha_{1}^{\prime}, \ldots, \alpha_{r}^{\prime}\right) \subseteq K$. Evidently $(10.22)^{\boldsymbol{\omega}}$ remains true. Now our proof follows closely that of Lemma $10.1^{\boldsymbol{\omega}}$, and we indicate here only modifications. From (10.16) and (9.23), we get

$$
N \geq \frac{\left(D_{-1}+1\right)\left(D_{0}+1\right) G_{1}^{r-1}}{p^{f_{\mathfrak{p}} \mathfrak{m}}} \prod_{i=1}^{r}\left[\frac{D_{i}+1}{G_{1}}\right] \geq c_{0} M
$$

By (9.28), (10.23) \& still holds. Also (10.24) ${ }^{\boldsymbol{d}}$ remains true, since $\left|\lambda_{i}-\lambda_{i}^{(0)}\right| \leq$ $D_{i}(1 \leq i \leq r)$ for $\lambda \in \Lambda$. $(10.25)^{\boldsymbol{\omega}}$ should be modified to: for $\lambda \in \Lambda,|s| \leq \bar{S}$, $|t| \leq T$,
$(10.25) \quad \log |\Theta(s ; t)| \leq \frac{107}{103} t_{0}\left(D_{-1}+1\right)+\left(1+\frac{1}{g_{6}}\right) \frac{1}{c_{1} c_{4}(\mathfrak{N} / \vartheta)} \cdot \frac{S D}{d}$,
because $(9.26)^{\boldsymbol{d}}$ is changed to (9.26).
On combining (10.24) with (10.25), and by (9.25) and $g_{0}>48$, we obtain for $\lambda \in \Lambda,|s| \leq S,|t| \leq T$,

$$
\begin{align*}
& \log |\Pi(t) \Theta(s ; t)| \tag{10.26}\\
& \quad \leq\left\{\left(\frac{107}{103} \cdot \frac{1}{e_{\mathfrak{p}} \mathfrak{N}}+g_{10}\right) \frac{1}{c_{1} c_{3}}+\left(1+\frac{1}{g_{6}}\right) \frac{1}{c_{1} c_{4}(\mathfrak{N} / \vartheta)}\right\} \frac{S D}{d}
\end{align*}
$$

Now let $\left|\left.\right|_{v}\right.$ be an absolute value on E normalized as in [1], $\S 2$. On noting that $\Pi(t) \Theta(s ; t) \in \mathbb{Z}$, we have for $v \mid \infty$, and for $\lambda \in \Lambda,|s| \leq S,|t| \leq T$,

$$
\begin{aligned}
\log \mid \Pi(t) \Theta(s ; t) \alpha_{0}^{s w(\lambda)} & \left.\prod_{i=1}^{r} \alpha_{i}^{\prime p^{\kappa} s\left(\lambda_{i}-\lambda_{i}^{(0)}+D_{i}\right)}\right|_{v} \\
& \leq \log |\Pi(t) \Theta(s ; t)|+\sum_{i=1}^{r} 2 D_{i} \log \max \left(1,\left|\alpha_{i}^{\prime p^{\kappa} s}\right|_{v}\right)
\end{aligned}
$$

for $v \nmid \infty$, and for $\lambda \in \Lambda,|s| \leq S,|t| \leq T$,
$\log \left|\Pi(t) \Theta(s ; t) \alpha_{0}^{s w(\lambda)} \prod_{i=1}^{r} \alpha_{i}^{p^{\kappa} s\left(\lambda_{i}-\lambda_{i}^{(0)}+D_{i}\right)}\right|_{v} \leq \sum_{i=1}^{r} 2 D_{i} \log \max \left(1,\left|\alpha_{i}^{\prime p^{\kappa} s}\right|_{v}\right)$.
Thus, by the product formula, by (10.26), (8.4), (9.24), and on noting $[S]([S]+1) \leq S(2 S+1) \cdot \frac{1}{2}\left(1+1 /\left(2 g_{2}+1\right)\right)$ (by (9.19)), we have

$$
\begin{align*}
& \quad \frac{1}{N-M} \tag{10.27}\\
& \times \sum_{\substack{b \in \mathcal{B} \\
|s| \leq S,|t| \leq T}} \frac{1}{d^{\prime}} \sum_{v} \log \max _{\lambda \in \Lambda_{b}}\left|\Pi(t) \Theta(s ; t) \alpha_{0}^{s w(\lambda)} \prod_{i=1}^{r} \alpha_{i}^{\prime p^{\kappa} s\left(\lambda_{i}-\lambda_{i}^{(0)}+D_{i}\right)}\right|_{v} \\
& \leq \frac{1}{c_{0}-1}\left\{\left(1+\frac{1}{2 g_{2}+1}\right) \frac{1}{c_{1} c_{2}}+\left(\frac{107}{103} \cdot \frac{1}{e_{\mathfrak{p}} \mathfrak{N}}+g_{10}\right) \frac{1}{c_{1} c_{3}}\right. \\
& \left.+\left(1+\frac{1}{g_{6}}\right) \frac{1}{c_{1} c_{4}(\mathfrak{N} / \vartheta)}\right\} \frac{S D}{d} .
\end{align*}
$$

Now by [1], Lemma 1, Lemma 10.1 follows from (10.22 $)^{\boldsymbol{\alpha}},(10.23)^{\boldsymbol{\alpha}}$ and (10.27).
11. Double inductive procedure. For $\varepsilon^{(I)} \in \mathbb{N}, D_{i}^{(I)} \in \mathbb{N}(-1 \leq i \leq r)$ and $\rho^{(I)}(\lambda)=\rho^{(I)}\left(\lambda_{-1}, \ldots, \lambda_{r}\right) \in \mathcal{O}_{K}$, which will be constructed in the following main inductive argument, we set

$$
\begin{equation*}
\mathcal{B}^{(I)}=\left\{b \in \mathbb{N}\left|b<q^{\mu-u}, \operatorname{gcd}\left(a_{1}^{\prime}, \ldots, a_{r}^{\prime}, G_{0}\right)\right|\left(\varepsilon^{(I)}+b G_{1}\right)\right\} \tag{11.1}
\end{equation*}
$$

and let $\Lambda^{(I)}$ be a subset of \mathbb{Z}^{r+2} having the following three properties:
(i) $0<\# \Lambda^{(I)} \leq \prod_{i=-1}^{r}\left(D_{i}+1\right)$,
(ii) $\lambda=\left(\lambda_{-1}, \ldots, \lambda_{r}\right) \in \Lambda^{(I)}$ implies that λ_{i} runs over $0,1, \ldots, D_{i}^{(I)}$ $(i=-1,0)$ and

$$
\sum_{i=1}^{r} a_{i}^{\prime} \lambda_{i} \equiv \varepsilon^{(I)}\left(\bmod G_{1}\right)
$$

(iii) if $\lambda, \lambda^{\prime} \in \Lambda^{(I)}$ then (10.15) holds and $\left|\lambda_{i}-\lambda_{i}^{\prime}\right| \leq D_{i}^{(I)}(1 \leq i \leq r)$.

For $b \in \mathcal{B}^{(I)}$, set

$$
\begin{equation*}
\Lambda_{b}^{(I)}=\left\{\lambda \in \Lambda^{(I)} \mid \sum_{i=1}^{r} a_{i}^{\prime} \lambda_{i} \equiv \varepsilon^{(I)}+b G_{1}\left(\bmod G_{0}\right)\right\} \tag{11.3}
\end{equation*}
$$

Fix $\left(\lambda_{1}^{(I)}, \ldots, \lambda_{r}^{(I)}\right)$ and $b^{(I)} \in \mathcal{B}^{(I)}$ such that

$$
\begin{align*}
& \left(\lambda_{-1}, \lambda_{0}, \lambda_{1}^{(I)}, \ldots, \lambda_{r}^{(I)}\right) \in \Lambda_{b(I)}^{(I)} \tag{11.4}\\
& \qquad \text { for } 0 \leq \lambda_{-1} \leq D_{-1}^{(I)}, 0 \leq \lambda_{0} \leq D_{0}^{(I)}
\end{align*}
$$

Put

$$
\begin{gather*}
\gamma_{j}^{(I)}=\sum_{i=1}^{r}\left(b_{n} \partial L_{i} / \partial z_{j}-b_{j} \partial L_{i} / \partial z_{n}\right)\left(\lambda_{i}-\lambda_{i}^{(I)}\right) \quad(1 \leq j \leq n) \tag{11.5}\\
\Pi^{(I)}(t)=\Pi\left(\gamma_{1}^{(I)}, \ldots, \gamma_{r-1}^{(I)} ; t_{1}, \ldots, t_{r-1}\right) \tag{11.6}
\end{gather*}
$$

Define $Q^{(I)}(t)=Q^{(I)}\left(Y_{0}, \ldots, Y_{r} ; t\right)$ by

$$
\begin{equation*}
Q^{(I)}(t)=\sum_{\lambda \in \Lambda^{(I)}} \rho^{(I)}(\lambda) \Pi^{(I)}(t) \Theta\left(q^{-I} Y_{0} ; t\right) Y_{1}^{\lambda_{1}-\lambda_{1}^{(I)}} \cdots Y_{r}^{\lambda_{r}-\lambda_{r}^{(I)}} \tag{11.7}
\end{equation*}
$$

and write $Q^{(I)}(t)=\sum_{b \in \mathcal{B}^{(I)}} Q_{b}^{(I)}(t)$, where $Q_{b}^{(I)}(t)$ is given by the right side of (11.7) with $\Lambda^{(I)}$ replaced by $\Lambda_{b}^{(I)}$.

We now define the linear forms

$$
\begin{equation*}
M_{i}=L_{i}-\frac{1}{b_{n}} \cdot \frac{\partial L_{i}}{\partial z_{n}} L \quad(1 \leq i \leq r) \tag{11.8}
\end{equation*}
$$

where $L=b_{1} z_{1}+\ldots+b_{n} z_{n}$. Then

$$
b_{n} M_{i}=b_{n}\left(\partial L_{i} / \partial z_{0}\right) z_{0}+\sum_{j=1}^{n-1}\left(b_{n} \partial L_{i} / \partial z_{j}-b_{j} \partial L_{i} / \partial z_{n}\right) z_{j} \quad(1 \leq i \leq r)
$$

For $z_{0}, z_{1}, \ldots, z_{n}$ with $\operatorname{ord}_{p} z_{0} \geq 0$ and $\operatorname{ord}_{p} z_{j}>1 /(p-1)(1 \leq j \leq n)$, we define the p-adic functions

$$
\begin{align*}
& \varphi^{(I)}\left(z_{0}, \ldots, z_{n} ; t\right)=Q^{(I)}\left(z_{0}, e^{L_{1}\left(0, z_{1}, \ldots, z_{n}\right)}, \ldots, e^{L_{r}\left(0, z_{1}, \ldots, z_{n}\right)} ; t\right) \tag{11.9}\\
& f^{(I)}\left(z_{0}, \ldots, z_{n-1} ; t\right) \\
& \quad=Q^{(I)}\left(z_{0}, e^{M_{1}\left(0, z_{1}, \ldots, z_{n-1}\right)}, \ldots, e^{M_{r}\left(0, z_{1}, \ldots, z_{n-1}\right)} ; t\right)
\end{align*}
$$

Let ν be defined as in $\S 5^{\boldsymbol{\ell} \boldsymbol{\alpha}}$ (see the paragraph above (5.23) ${ }^{\boldsymbol{\alpha}}$). We put for $z \in \mathbb{Z}_{p}$
(11.11) $\varphi^{(I)}(z ; t)=\varphi^{(I)}\left(z, z q^{-\nu} \log \left(\alpha_{1}^{p^{\kappa}} \zeta^{a_{1}}\right), \ldots, z q^{-\nu} \log \left(\alpha_{n}^{p^{\kappa}} \zeta^{a_{n}}\right) ; t\right)$,
(11.12) $f^{(I)}(z ; t)=f^{(I)}\left(z, z q^{-\nu} \log \left(\alpha_{1}^{p^{\kappa}} \zeta^{a_{1}}\right), \ldots, z q^{-\nu} \log \left(\alpha_{n-1}^{p^{\kappa}} \zeta^{a_{n-1}}\right) ; t\right)$.

For $b \in \mathcal{B}^{(I)}$, let $\varphi_{b}^{(I)}\left(z_{0}, \ldots, z_{n} ; t\right)$ and $f_{b}^{(I)}\left(z_{0}, \ldots, z_{n-1} ; t\right)$ be given by the
right side of (11.9) and (11.10) with $Q^{(I)}$ replaced by $Q_{b}^{(I)}$; let $\varphi_{b}^{(I)}(z ; t)$ and $f_{b}^{(I)}(z ; t)$ be given by the right side of (11.11) and (11.12), with $\varphi^{(I)}$ and $f^{(I)}$ replaced by $\varphi_{b}^{(I)}$ and $f_{b}^{(I)}$, respectively. Note that by (10.7), we have

$$
\begin{array}{ll}
\varphi^{(I)}(z ; t)=Q^{(I)}\left(z,\left(\alpha_{1}^{\prime p^{\kappa}} \zeta^{a_{1}^{\prime}}\right)^{z}, \ldots,\left(\alpha_{r}^{\prime p^{\kappa}} \zeta^{a_{r}^{\prime}}\right)^{z} ; t\right) \quad \text { for any } z \in \mathbb{Z}_{p} \\
\varphi_{b}^{(I)}(z ; t)=Q_{b}^{(I)}\left(z,\left(\alpha_{1}^{\prime p^{\kappa}} \zeta^{a_{1}^{\prime}}\right)^{z}, \ldots,\left(\alpha_{r}^{\prime p^{\kappa}} \zeta^{a_{r}^{\prime}}\right)^{z} ; t\right) \quad \text { for any } z \in \mathbb{Z}_{p} \tag{11.14}
\end{array}
$$

Recall η, I^{*}, S, T given by (9.3), (9.8), (9.12), (9.14). Let

$$
\begin{equation*}
S^{(I)}=\eta^{-(r+1) I} S, \quad T^{(I)}=\eta^{(r+1) I} T \tag{11.15}
\end{equation*}
$$

We write $\rho^{(I)}=\left(\rho^{(I)}(\lambda): \lambda \in \Lambda^{(I)}\right)$.
The main inductive argument. Suppose that Proposition 9.1 is false, that is,

$$
\begin{equation*}
\operatorname{ord}_{p} \Xi \geq U \tag{11.16}
\end{equation*}
$$

for some $\alpha_{1}, \ldots, \alpha_{n} \in K$ and $b_{1}, \ldots, b_{n} \in \mathbb{Z}$ satisfying (1.9) and (1.13) with $\alpha_{1}, \ldots, \alpha_{n}$ multiplicatively independent and b_{1}, \ldots, b_{n} not all zero. Then for every $I \in \mathbb{Z}$ with $0 \leq I \leq \min \left(\left[\log D_{r} / \log q\right]+1, I^{*}\right)$ there exist $\varepsilon^{(I)} \in \mathbb{N}, D_{i}^{(I)} \in \mathbb{N}(-1 \leq i \leq r), \Lambda^{(I)} \subseteq \mathbb{Z}^{r+2}$ with $\operatorname{gcd}\left(a_{1}^{\prime}, \ldots, a_{r}^{\prime}, G_{1}\right) \mid \varepsilon^{(I)}$, $D_{i}^{(I)}=D_{i}(i=-1,0), D_{i}^{(I)} \leq q^{-I} D_{i}(1 \leq i \leq r), \Lambda^{(I)}$ satisfying (11.2), and $\rho^{(I)}(\lambda)=\rho^{(I)}\left(\lambda_{-1}, \ldots, \lambda_{r}\right) \in \mathcal{O}_{K}\left(\lambda \in \Lambda^{(I)}\right)$, not all zero, with

$$
\begin{align*}
h_{0}\left(\rho^{(I)}\right) \leq & \frac{S D}{d}\left\{g_{12}+\frac{1}{c_{0}-1}\left[\frac{1}{2} g_{9}+\left(1+\frac{1}{2 g_{2}+1}\right) \frac{1}{c_{1} c_{2}}\right.\right. \tag{11.17}\\
& \left.\left.+\left(\frac{107}{103} \cdot \frac{1}{e_{\mathfrak{p}} \mathfrak{N}}+g_{10}\right) \frac{1}{c_{1} c_{3}}+\left(1+\frac{1}{g_{6}}\right) \frac{1}{c_{1} c_{4}(\mathfrak{N} / \vartheta)}\right]\right\}
\end{align*}
$$

such that

$$
\begin{equation*}
\varphi_{b}^{(I)}(s ; t)=0 \quad \text { for all } b \in \mathcal{B}^{(I)},|s| \leq q S^{(I)},|t| \leq \eta T^{(I)} \tag{11.18}
\end{equation*}
$$

In the remainder of this section, we always keep (11.16).
LEmma 11.1. Suppose $b \in \mathcal{B}^{(I)}$ and $\rho^{(I)}(\lambda) \in \mathcal{O}_{K}\left(\lambda \in \Lambda_{b}^{(I)}\right)$ are not all zero. Then for $y \in \mathbb{Q} \cap \mathbb{Z}_{p},|t| \leq T$ we have

$$
\operatorname{ord}_{p}\left(f_{b}^{(I)}(y ; t)-\varphi_{b}^{(I)}(y ; t)\right) \geq U-\operatorname{ord}_{p} b_{n}+\min _{\lambda \in \Lambda_{b}^{(I)}} \operatorname{ord}_{p} \rho^{(I)}(\lambda)
$$

Proof. This is similar to the proof of Lemma 11.1*. We omit the details.

Let $\varepsilon^{(0)}=0, D_{i}^{(0)}=D_{i}(-1 \leq i \leq r)$. Then $\mathcal{B}^{(0)}=\mathcal{B}$. We can choose $\Lambda^{(0)}=\Lambda$, and let $\rho^{(0)}(\lambda)=\rho(\lambda)\left(\lambda \in \Lambda^{(0)}\right)$, which are determined by Lemma 10.1. Thus $\Lambda_{b}^{(0)}=\Lambda_{b}, \gamma_{j}^{(0)}=\gamma_{j}, \Pi^{(0)}(t)=\Pi(t), Q^{(0)}(t)=Q(t)$, $Q_{b}^{(0)}(t)=Q_{b}(t)$, and by Lemma 10.1, (11.14) and (11.15), we have

$$
\begin{equation*}
\varphi_{b}^{(0)}(s ; t)=0 \quad \text { for all } b \in \mathcal{B}^{(0)},|s| \leq S^{(0)},|t| \leq T^{(0)} . \tag{11.19}
\end{equation*}
$$

Lemma 11.2. Suppose $I=0$ or I is a positive integer with

$$
\begin{equation*}
I \leq \min \left(\left[\log D_{r} / \log q\right], I^{*}-1\right) \tag{11.20}
\end{equation*}
$$

for which the main inductive argument holds. Then for $J=1, \ldots, r$, we have

$$
\begin{equation*}
\varphi_{b}^{(I)}(s ; t)=0 \quad \text { for all } b \in \mathcal{B}^{(I)},|s| \leq q^{J} S^{(I)},|t| \leq \eta^{J} T^{(I)} \tag{11.21}
\end{equation*}
$$

Proof. We abbreviate $\left(\tau_{0}, \ldots, \tau_{r-1}\right) \in \mathbb{N}^{r}$ to $\tau,\left(\mu_{0}, \ldots, \mu_{n-1}\right) \in \mathbb{N}^{n}$ to μ and write $|\tau|=\tau_{0}+\ldots+\tau_{r-1},|\mu|=\mu_{0}+\ldots+\mu_{n-1}$. (There should be no confusion with the μ defined by (10.1).) Similarly to the proof of (11.19) ${ }^{\boldsymbol{*}}$, it is readily verified that for every $m \in \mathbb{N}$ we have

$$
\begin{align*}
\frac{1}{m!}\left(\frac{d}{d z}\right)^{m} & f_{b}^{(I)}(z ; t) \tag{11.22}\\
= & \sum_{|\mu|=m}\binom{\tau_{0}}{\mu_{0}} \frac{q^{-I \mu_{0}}\left(b_{n} q^{\nu}\right)^{-\left(m-\mu_{0}\right)}}{\left(v\left(D_{-1}+1\right)\right)^{\mu_{0}}} \\
& \times \prod_{j=1}^{n-1} \frac{\left(\log \left(\alpha_{j}^{p_{j}^{\kappa}} \zeta^{a_{j}}\right)\right)^{\mu_{j}}}{\mu_{j}!} \sum_{\tau_{1}, \ldots, \tau_{r-1}} C(\mu, \tau) f_{b}^{(I)}(z ; \tau)
\end{align*}
$$

where $\tau=\left(\tau_{0}, \tau_{1}, \ldots, \tau_{r-1}\right)$ with $\tau_{0}=t_{0}+\mu_{0}$, the second sum is over $\tau_{1}, \ldots, \tau_{r-1}$ with $|\tau| \leq|t|+m$, and $C(\mu, \tau) \in \mathbb{Q} \cap \mathbb{Z}_{p}$.

Note that (11.21) holds for $J=0$ when $I=0$ by (11.19), and for $J=1$ when $I>0$ by (11.18). Assume (11.21) holds for $J=k$ with $0 \leq k \leq r$ when $I=0$, and with $1 \leq k \leq r$ when $I>0$. We shall prove (11.21) for $J=k+1$ with $k<r$ and include the case $k=r$ for later use.

Clearly, for any fixed $b \in \mathcal{B}^{(I)}$, we may assume $\rho^{(I)}(\lambda), \lambda \in \Lambda_{b}^{(I)}$, are not all zero, and we write

$$
\rho_{b}^{(I)}=\left(\rho^{(I)}(\lambda): \lambda \in \Lambda_{b}^{(I)}\right)
$$

Now we prove that for every $\lambda \in \Lambda^{(I)}$,

$$
\begin{equation*}
\prod_{i=1}^{r} \exp \left\{p^{-\mathfrak{N}} z q^{-\nu} M_{i}\left(0, \log \left(\alpha_{1}^{p^{\kappa}} \zeta^{a_{1}}\right), \ldots, \log \left(\alpha_{n-1}^{p^{\kappa}} \zeta^{a_{n-1}}\right)\right)\left(\lambda_{i}-\lambda_{i}^{(I)}\right)\right\} \tag{11.23}
\end{equation*}
$$ is a p-adic normal function of z.

To see this, we note, by (11.8) and (10.7), that

$$
\begin{aligned}
& \prod_{i=1}^{r} \exp \left\{q^{-\nu} M_{i}\left(0, \log \left(\alpha_{1}^{p^{\kappa}} \zeta^{a_{1}}\right), \ldots, \log \left(\alpha_{n-1}^{p^{\kappa}} \zeta^{a_{n-1}}\right)\right)\left(\lambda_{i}-\lambda_{i}^{(I)}\right)\right\} \\
& \quad=e^{\delta(\lambda)} \prod_{i=1}^{r} \exp \left\{q^{-\nu} L_{i}\left(0, \log \left(\alpha_{1}^{p^{\kappa}} \zeta^{a_{1}}\right), \ldots, \log \left(\alpha_{n}^{p^{\kappa}} \zeta^{a_{n}}\right)\right)\left(\lambda_{i}-\lambda_{i}^{(I)}\right)\right\} \\
& \quad=e^{\delta(\lambda)} \prod_{i=1}^{r}\left(\alpha_{i}^{\prime p^{\kappa}} \zeta^{a_{i}^{\prime}}\right)^{\lambda_{i}-\lambda_{i}^{(I)}},
\end{aligned}
$$

where

$$
\delta(\lambda)=-\left(q^{\nu} b_{n}\right)^{-1} L\left(\log \left(\alpha_{1}^{p^{\kappa}} \zeta^{a_{1}}\right), \ldots, \log \left(\alpha_{n}^{p^{\kappa}} \zeta^{a_{n}}\right)\right) \sum_{i=1}^{r}\left(\lambda_{i}-\lambda_{i}^{(I)}\right) \partial L_{i} / \partial z_{n} .
$$

By (11.4) and (11.2)(iii), we have, for every $\lambda \in \Lambda^{(I)}$,

$$
\prod_{i=1}^{r}\left(\alpha_{i}^{\prime p^{\kappa}} \zeta^{a_{i}^{\prime}}\right)^{\lambda_{i}-\lambda_{i}^{(I)}} \equiv 1\left(\bmod \mathfrak{p}^{\mathfrak{m}_{0}+\mathfrak{m}}\right)
$$

which implies, by (2.5) and the definition of \mathfrak{m}_{0} given in (10.9),

$$
\operatorname{ord}_{p}\left(\prod_{i=1}^{r}\left(\alpha_{i}^{\prime p^{\kappa}} \zeta^{a_{i}^{\prime}}\right)^{\lambda_{i}-\lambda_{i}^{(I)}}-1\right)>\mathfrak{N}+\frac{1}{p-1} .
$$

Also, similarly to the proof of [8], Lemma 3.2, we have $a_{1} b_{1}+\ldots+a_{n} b_{n} \equiv 0$ $(\bmod G)$, whence by (11.16) and recalling (7.3), (9.10) and (9.32), we get

$$
\begin{aligned}
\operatorname{ord}_{p} \delta(\lambda) & \geq \operatorname{ord}_{p} L\left(\log \left(\alpha_{1}^{p^{\kappa}} \zeta^{a_{1}}\right), \ldots, \log \left(\alpha_{n}^{p^{\kappa}} \zeta^{a_{n}}\right)\right)-\operatorname{ord}_{p} b_{n} \\
& \geq \operatorname{ord}_{p}\left(p^{\kappa} \log \left(\alpha_{1}^{b_{1}} \cdots \alpha_{n}^{b_{n}}\right)\right)-\left(\log B^{\circ}\right) / \log p \\
& \geq \operatorname{ord}_{p} \Xi-h / \log p \geq U-h / \log p>\mathfrak{N}+\frac{1}{p-1} .
\end{aligned}
$$

Thus (11.23) follows. Further

$$
p^{\left(D_{-1}+1\right)\left(D_{0}+1\right) \mathfrak{N}}\left(\left(D_{-1}+1\right)!\right)^{D_{0}+1} \Theta\left(q^{-I} p^{-\mathfrak{N}} z ; t\right)
$$

is a p-adic normal function of z. Hence for $|t| \leq \eta^{k+1} T^{(I)}$,

$$
\begin{equation*}
F_{b}^{(I)}(z ; t):=p^{\left(D_{-1}+1\right)\left(D_{0}+1\right)(\mathfrak{N}+1 /(p-1))-\Delta_{b}^{(I)}} f_{b}^{(I)}\left(p^{-\mathfrak{N}_{z}} z ; t\right) \tag{11.24}
\end{equation*}
$$

are p-adic normal functions of z, where

$$
\Delta_{b}^{(I)}=\min _{\lambda \in \Lambda_{b}^{(I)}} \operatorname{ord}_{p} \rho^{(I)}(\lambda) .
$$

Obviously

$$
\begin{align*}
& \frac{1}{m!}\left(\frac{d}{d z}\right)^{m} F_{b}^{(I)}\left(s p^{\mathfrak{N}} ; t\right) \tag{11.25}\\
& \quad=p^{\left(D_{-1}+1\right)\left(D_{0}+1\right)(\mathfrak{N}+1 /(p-1))-\Delta_{b}^{(I)}-m \mathfrak{N}} \frac{1}{m!}\left(\frac{d}{d z}\right)^{m} f_{b}^{(I)}(s ; t) .
\end{align*}
$$

We now apply Lemma $2.1^{\boldsymbol{\natural}}$ with $\theta=\mathfrak{N}$ to each function in (11.24), taking

$$
\begin{equation*}
R=\left[q^{k} S^{(I)}\right], \quad M=\left[\frac{c_{5}}{r+1} \eta^{k} T^{(I)}\right] . \tag{11.26}
\end{equation*}
$$

Similarly to $\S 11^{\boldsymbol{*}}$, we see, by (11.25), (11.22), (11.21) with $J=k$ and Lemma 11.1, that condition $(2.3)^{\mathfrak{d}}$ with $\theta=\mathfrak{N}$ holds for each $F_{b}^{(I)}(z ; t)$ with $|t| \leq \eta^{k+1} T^{(I)}$ whenever

$$
\begin{align*}
U & +\left(D_{-1}+1\right)\left(D_{0}+1\right)\left(\mathfrak{N}+\frac{1}{p-1}\right) \tag{11.27}\\
& \geq(M+1)(2 R+1) \mathfrak{N}+(M+1) \frac{\max (h+\nu \log q, \log (2 R+1))}{\log p}
\end{align*}
$$

Similarly to $\S 11^{\boldsymbol{\mu}}$, we see that $(11 . j):=(11 . j)^{\boldsymbol{q}}$ holds for $j=28,29$. Thus by (9.14) and (9.32), we have

$$
\begin{align*}
\frac{2 c_{5}}{c_{1}} q^{k-r} \eta^{k}\left(1-\frac{1}{2 g_{2}}\right) U & <(M+1)(2 R+1) \mathfrak{N} \tag{11.30}\\
& \leq \frac{2 c_{5}}{c_{1}} q^{k-r}\left(\eta^{k}+g_{11}\right)\left(1+\frac{1}{2 g_{2}}\right) U
\end{align*}
$$

From (11.29), (9.12), (9.10), (9.1) and (9.2), we see that

$$
\eta^{(r+1) I} \log (2 R+1) \leq h+\nu \log q
$$

This together with (11.28), (9.12), (9.14) and (9.32) gives

$$
\begin{align*}
& (M+1) \frac{\max (h+\nu \log q, \log (2 R+1))}{\log p} \tag{11.31}\\
& \quad \leq\left(\eta^{k}+g_{11}\right) \frac{1}{(r+1) q^{r+1}} \cdot \frac{1}{e_{\mathfrak{p}} \mathfrak{N}} \cdot \frac{c_{5}}{c_{1} c_{3}} U
\end{align*}
$$

It is readily seen that the sum of the (extreme) right sides of (11.30) and (11.31) is at most its value at $k=r$:

$$
\frac{U}{c_{1}} \cdot c_{5}\left(\eta^{r}+g_{11}\right)\left\{2+\frac{1}{g_{2}}+\frac{1}{(r+1) q^{r+1}} \cdot \frac{1}{e_{\mathfrak{p}} \mathfrak{N}} \cdot \frac{1}{c_{3}}\right\}
$$

Thus (11.27) follows from (9.6), (2.5), (2.4) and (2.8). By Lemma 2.1 ${ }^{\boldsymbol{\omega}}$ with $\theta=\mathfrak{N}$ and (11.24), we get, for $s \in \mathbb{Z}$ and $|t| \leq \eta^{k+1} T^{(I)}$,
$\operatorname{ord}_{p} f_{b}^{(I)}\left(\frac{s}{q} ; t\right) \geq(M+1)(2 R+1) \mathfrak{N}-\left(D_{-1}+1\right)\left(D_{0}+1\right)\left(\mathfrak{N}+\frac{1}{p-1}\right)+\Delta_{b}^{(I)}$.
Further Lemma 11.1, (11.27) and (11.30) give

$$
\begin{align*}
& \operatorname{ord}_{p} \varphi_{b}^{(I)}\left(\frac{s}{q} ; t\right)+\left(D_{-1}+1\right)\left(D_{0}+1\right)\left(\mathfrak{N}+\frac{1}{p-1}\right)-\Delta_{b}^{(I)} \tag{11.32}\\
& \quad>\frac{U}{c_{1}} \cdot 2 c_{5} q^{k-r} \eta^{k}\left(1-\frac{1}{2 g_{2}}\right) \quad \text { for } s \in \mathbb{Z} \text { and }|t| \leq \eta^{k+1} T^{(I)}
\end{align*}
$$

Now we assume $k<r$ and prove (11.21) for $J=k+1$. Suppose it were false, i.e., $\varphi_{b}^{(I)}(s ; t) \neq 0$ for some s, t with $|s| \leq q^{k+1} S^{(I)},|t| \leq \eta^{k+1} T^{(I)}$. We proceed to deduce a contradiction. In the remaining part of the proof we fix this set of s, t.

For $\lambda \in \Lambda_{b}^{(I)}$, by (11.3) and (11.4), there exists $w^{(I)}(\lambda) \in \mathbb{Z}$ such that

$$
\sum_{i=1}^{r} a_{i}^{\prime}\left(\lambda_{i}-\lambda_{i}^{(I)}\right)=\left(b-b^{(I)}\right) G_{1}+w^{(I)}(\lambda) G_{0}
$$

whence by (10.2), (10.3) and (10.12), we have

$$
\begin{align*}
& \text { (i) } \prod_{i=1}^{r}\left(\alpha_{i}^{\prime p^{\kappa}} \zeta^{a_{i}^{\prime}}\right)^{s\left(\lambda_{i}-\lambda_{i}^{(I)}\right)}=\zeta^{s\left(b-b^{(I)}\right) G_{1}} \alpha_{0}^{s w^{(I)}(\lambda)} \prod_{i=1}^{r} \alpha_{i}^{\prime p^{\kappa} s\left(\lambda_{i}-\lambda_{i}^{(I)}\right)} \tag{11.33}\\
& \text { (ii) } \prod_{i=1}^{r}\left(\alpha_{i}^{\prime p^{\kappa}} \zeta^{a_{i}^{\prime}}\right)^{\frac{s}{q}\left(\lambda_{i}-\lambda_{i}^{(I)}\right)} \\
& \\
& \quad=\xi^{s\left(b-b^{(I)}\right) G_{1}}\left(\alpha_{0}^{1 / q}\right)^{s w^{(I)}(\lambda)} \prod_{i=1}^{r}\left(\alpha_{i}^{\prime 1 / q}\right)^{p^{\kappa} s\left(\lambda_{i}-\lambda_{i}^{(I)}\right)}
\end{align*}
$$

Let

$$
\delta_{I}= \begin{cases}0 & \text { if } I=0 \\ 1 & \text { if } I>0\end{cases}
$$

Then, by [9], III, Lemma 1.3 (see the remark before (10.11) in [10]),

$$
\begin{equation*}
q^{\delta_{I}\left\{I\left(D_{-1}+1\right)\left(D_{0}+1\right)+\left(D_{0}+1\right) \operatorname{ord}_{q}\left(\left(D_{-1}+1\right)!\right)\right\}} \Theta\left(q^{-I} s ; t\right) \Pi^{(I)}(t) \in \mathbb{Z} \tag{11.34}
\end{equation*}
$$

By (11.33)(i) and $\operatorname{ord}_{\mathfrak{p}} \alpha_{i}^{\prime}=0(1 \leq i \leq r)$ (see $\left.\S 8\right)$, we have

$$
\operatorname{ord}_{p} \varphi_{b}^{(I)}(s ; t)=\operatorname{ord}_{p} \varphi^{\prime}
$$

where

$$
\begin{aligned}
& \varphi^{\prime}=\sum_{\lambda \in \Lambda_{b}^{(I)}} \rho^{(I)}(\lambda)\left(q^{\delta_{I}\left(D_{0}+1\right)\left\{\left(D_{-1}+1\right) I+\operatorname{ord}_{q}\left(\left(D_{-1}+1\right)!\right)\right\}} \Theta\left(q^{-I} s ; t\right) \Pi^{(I)}(t)\right) \\
& \times \alpha_{0}^{s w^{(I)}(\lambda)} \prod_{i=1}^{r} \alpha_{i}^{\prime p^{\kappa} s\left(\lambda_{i}-\lambda_{i}^{(I)}+D_{i}^{(I)}\right)}
\end{aligned}
$$

is in K and non-zero. Now let $\left\|\|_{v}\right.$ be an absolute value on K normalized as in [1], $\S 2$, and let $\left|\left.\right|_{v_{0}}\right.$ be the one corresponding to \mathfrak{p}, whence

$$
\begin{equation*}
\operatorname{ord}_{p} \varphi^{\prime}=\frac{1}{e_{\mathfrak{p}} f_{\mathfrak{p}} \log p}\left(-\log \left|\varphi^{\prime}\right|_{v_{0}}\right)=\frac{1}{e_{\mathfrak{p}} f_{\mathfrak{p}} \log p} \sum_{v \neq v_{0}} \log \left|\varphi^{\prime}\right|_{v} \tag{11.35}
\end{equation*}
$$

by the product formula on K. Note (11.36) := (11.36) holds, by (11.2)(i) and (9.28). Also, $(11 . j):=(11 . j)^{\boldsymbol{\alpha}}(j=37,41)$ remain valid. Now by (9.26),

$$
\begin{align*}
\delta_{I}\left(D_{0}+1\right) & \left\{\left(D_{-1}+1\right) I+\operatorname{ord}_{q}\left(\left(D_{-1}+1\right)!\right)\right\} \log q \tag{11.38}\\
\leq & \left(1+\frac{1}{g_{6}}\right) \frac{\delta_{I}(I+1 /(q-1)) \log q}{\max \left(f_{\mathfrak{p}} \log p, g_{1}\right)} \cdot \frac{1}{c_{1} c_{4} \mathfrak{N} / \vartheta} \cdot \frac{S D}{d}
\end{align*}
$$

By (10.17) $\boldsymbol{q}^{\boldsymbol{\varkappa}},[9]$, II, Lemma 1.6 and (11.15), $q \eta^{r+1}>1$, (9.29), we have

$$
\begin{aligned}
\log \left|\Theta\left(q^{-I} s ; t\right)\right| \leq & \frac{107}{103} t_{0}\left(D_{-1}+1\right)+\left(D_{-1}+1\right)\left(D_{0}+1\right) \\
& \times \max \left(f_{\mathfrak{p}} \log p, g_{1}\right)\left(1+\frac{k \log q}{\max \left(f_{\mathfrak{p}} \log p, g_{1}\right)}\right)
\end{aligned}
$$

Further, it is readily seen that $(10.24)^{\boldsymbol{\omega}}$ with $\Pi(t)$ and γ_{j} replaced by $\Pi^{(I)}(t)$ and $\gamma_{j}^{(I)}$ remains true for the fixed t and any $\lambda \in \Lambda_{b}^{(I)}$, since $\left|\lambda_{i}-\lambda_{i}^{(I)}\right| \leq D_{i}^{(I)}$ $(1 \leq i \leq r)$ by (11.2)(iii). These and (9.25), (9.26), $g_{0}>48$ imply for all $\lambda \in \Lambda_{b}^{(I)}$

$$
\begin{align*}
& \log \left|\Theta\left(q^{-I} s ; t\right) \Pi^{(I)}(t)\right| \tag{11.39}\\
& \leq\left\{\left(\frac{107}{103} \cdot \frac{1}{e_{\mathfrak{p}} \mathfrak{N}} \eta^{k+1}+g_{10}\right) \frac{1}{c_{1} c_{3}}\right. \\
&\left.+\left(1+\frac{k \log q}{\max \left(f_{\mathfrak{p}} \log p, g_{1}\right)}\right)\left(1+\frac{1}{g_{6}}\right) \frac{1}{c_{1} c_{4}(\mathfrak{N} / \vartheta)}\right\} \frac{S D}{d}
\end{align*}
$$

Observe that for $\lambda \in \Lambda_{b}^{(I)}$,

$$
\begin{align*}
\left.\log \mid \alpha_{0}^{s w^{(I)}(\lambda)} \prod_{i=1}^{r} \alpha_{i}^{\prime p^{\kappa} s\left(\lambda_{i}-\lambda_{i}^{(I)}\right.}+D_{i}^{(I)}\right) & \left.\right|_{v} \tag{11.40}\\
& \leq p^{\kappa} \sum_{i=1}^{r} 2 D_{i}^{(I)} \log \max \left(1,\left|\alpha_{i}^{\prime s}\right|_{v}\right)
\end{align*}
$$

Now, using (11.34)-(11.41), (11.17), (9.24), (9.26), (9.32), we obtain

$$
\begin{align*}
\operatorname{ord}_{p} \varphi_{b}^{(I)}(s ; t)+\left(D_{-1}+1\right) & \left(D_{0}+1\right)\left(\mathfrak{N}+\frac{1}{p-1}\right)-\Delta_{b}^{(I)} \tag{11.42}\\
& \leq \frac{U}{c_{1} q^{r+1}} \times \text { the right side of }(9.36)
\end{align*}
$$

Hence by (9.36), (11.42) contradicts (11.32). This contradiction proves (11.21) for $J=k+1$. Thus the induction on J is complete and Lemma 11.2 follows at once.

Lemma 11.3. For every I as in Lemma 11.2 we have

$$
\begin{align*}
\varphi_{b}^{(I)}(s / q ; t) & =0 \tag{11.43}\\
& \text { for all } b \in \mathcal{B}^{(I)},|s| \leq q\left(\left[S^{(I+1)}\right]+1\right),|t| \leq T^{(I+1)}
\end{align*}
$$

Proof. Note that $T^{(I+1)}=\eta^{r+1} T^{(I)}$ and by (9.9) we have (11.44) $:=$ $(11.44)^{\boldsymbol{e}}$, whence (11.43) for s with $q \mid s$ follows from Lemma 11.2 with $J=1$. Now we consider s with $(s, q)=1$. For any fixed $b \in \mathcal{B}^{(I)}$, we may assume that $\rho^{(I)}(\lambda), \lambda \in \Lambda_{b}^{(I)}$, are not all zero. Now, by (11.32) with $k=r$ we have,
for $s \in \mathbb{Z},|t| \leq T^{(I+1)}$,

$$
\begin{align*}
\operatorname{ord}_{p} \varphi_{b}^{(I)}\left(\frac{s}{q} ; t\right)+\left(D_{-1}+1\right)\left(D_{0}+1\right)(\mathfrak{N} & \left.+\frac{1}{p-1}\right)-\Delta_{b}^{(I)} \tag{11.45}\\
& >\frac{U}{c_{1}} \cdot 2 c_{5} \eta^{r}\left(1-\frac{1}{2 g_{2}}\right)
\end{align*}
$$

Let $K^{\prime}=K\left(\alpha_{0}^{1 / q}, \alpha_{1}^{1 / q}, \ldots, \alpha_{r}^{1 / q}\right)$. By consecutively applying Fröhlich and Taylor [3], III.2, (2.28)(c) $r+1$ times, we see that

$$
\mathfrak{p} \mathcal{O}_{K^{\prime}}=\mathfrak{P}_{1} \mathfrak{P}_{2} \cdots \mathfrak{P}_{q^{r_{1}}}
$$

for some r_{1} with $0 \leq r_{1} \leq r+1$, where \mathfrak{P}_{j} are distinct prime ideals of $\mathcal{O}_{K^{\prime}}$ with ramification index and residue class degree (over \mathbb{Q})

$$
e_{\mathfrak{P}_{j}}=e_{\mathfrak{p}}, \quad f_{\mathfrak{P}_{j}}=q^{r+1-r_{1}} f_{\mathfrak{p}}, \quad j=1, \ldots, q^{r_{1}} .
$$

Denote by $\|\left.\right|_{v^{\prime}}$ an absolute value on K^{\prime} normalized as in [1], $\S 2$, and let $\|\left.\right|_{v_{j}^{\prime}}$ be the one corresponding to \mathfrak{P}_{j}, and $K_{\mathfrak{P}_{j}}^{\prime}$ be the completion of K^{\prime} with respect to $\|_{v_{j}^{\prime}}$. The embedding of $K_{\mathfrak{p}}$ into \mathbb{C}_{p} (see $\S 1$) can be extended to an embedding of $K_{\mathfrak{P}_{j}}^{\prime}$ into \mathbb{C}_{p} and we define, for $\beta \in K_{\mathfrak{P}_{j}}^{\prime}$ with $\beta \neq 0$,

$$
\operatorname{ord}_{p}^{(j)} \beta:=\frac{1}{e_{\mathfrak{F}_{j}} f_{\mathfrak{F}_{j}} \log p}\left(-\log |\beta|_{v_{j}^{\prime}}\right)=\frac{1}{q^{r+1-r_{1}} e_{\mathfrak{p}} f_{\mathfrak{p}} \log p}\left(-\log |\beta|_{v_{j}^{\prime}}\right) .
$$

On noting that $\varphi_{b}^{(I)}(s / q ; t) \in K_{\mathfrak{p}}\left(\subset K_{\mathfrak{P}_{j}}^{\prime}\right)$, we have

$$
\operatorname{ord}_{p}^{(j)} \varphi_{b}^{(I)}(s / q ; t)=\operatorname{ord}_{p} \varphi_{b}^{(I)}(s / q ; t) \quad\left(j=1, \ldots, q^{r_{1}}\right)
$$

whence (11.45) yields

$$
\begin{align*}
\sum_{j=1}^{q^{r_{1}}} \operatorname{ord}_{p}^{(j)} \varphi_{b}^{(I)}\left(\frac{s}{q} ; t\right)+q^{r_{1}}\left(D_{-1}+1\right) & \left(D_{0}+1\right)\left(\mathfrak{N}+\frac{1}{p-1}\right)-q^{r_{1}} \Delta_{b}^{(I)} \tag{11.45}\\
& >\frac{U}{c_{1}} \cdot 2 c_{5} q^{r_{1}} \eta^{r}\left(1-\frac{1}{2 g_{2}}\right)
\end{align*}
$$

Suppose that (11.43) were false, that is,

$$
\varphi_{b}^{(I)}(s / q ; t) \neq 0
$$

for some s, t with $(s, q)=1,|s| \leq q\left(\left[S^{(I+1)}\right]+1\right),|t| \leq T^{(I+1)}$. We proceed to deduce a contradiction. In the sequel we fix this set of s, t.

Now by [9], III, Lemma 1.3, we have, for $\lambda \in \Lambda_{b}^{(I)}$,

$$
\begin{equation*}
q^{\left(D_{0}+1\right)\left\{\left(D_{-1}+1\right)(I+1)+\operatorname{ord}_{q}\left(\left(D_{-1}+1\right)!\right)\right\}} \Theta\left(q^{-(I+1)} s ; t\right) \Pi^{(I)}(t) \in \mathbb{Z} \tag{11.46}
\end{equation*}
$$

Hence, by (11.33)(ii) and $\operatorname{ord}_{\mathfrak{p}} \alpha_{i}^{\prime}=0(1 \leq i \leq r)$ (see $\S 8$), we have, for $j=1, \ldots, q^{r_{1}}$,

$$
\begin{equation*}
\operatorname{ord}_{p}^{(j)} \varphi_{b}^{(I)}(s / q ; t)=\operatorname{ord}_{p}^{(j)} \varphi^{\prime \prime} \tag{11.47}
\end{equation*}
$$

where

$$
\begin{align*}
\varphi^{\prime \prime}= & \sum_{\lambda \in \Lambda_{b}^{(I)}} \rho^{(I)}(\lambda)\left(q^{\left(D_{0}+1\right)\left\{\left(D_{-1}+1\right)(I+1)+\operatorname{ord}_{q}\left(\left(D_{-1}+1\right)!\right)\right\}}\right. \tag{11.48}\\
& \left.\times \Theta\left(q^{-(I+1)} s ; t\right) \Pi^{(I)}(t)\right)\left(\alpha_{0}^{1 / q}\right)^{s w^{(I)}(\lambda)} \\
& \times \prod_{i=1}^{r}\left(\alpha_{i}^{\prime 1 / q}\right)^{p^{\kappa} s\left(\lambda_{i}-\lambda_{i}^{(I)}+D_{i}^{(I)}\right)} \neq 0
\end{align*}
$$

is in $K^{\prime}=K\left(\alpha_{0}^{1 / q}, \alpha_{1}^{\prime 1 / q}, \ldots, \alpha_{r}^{\prime 1 / q}\right)$. Then, by the product formula on K^{\prime},

$$
\begin{align*}
\sum_{j=1}^{q^{r_{1}}} \operatorname{ord}_{p}^{(j)} \varphi^{\prime \prime} & =\frac{1}{q^{r+1-r_{1}} e_{\mathfrak{p}} f_{\mathfrak{p}} \log p}\left(-\sum_{j=1}^{q^{r_{1}}} \log \left|\varphi^{\prime \prime}\right|_{v_{j}^{\prime}}\right) \tag{11.49}\\
& =\frac{1}{q^{r+1-r_{1}} e_{\mathfrak{p}} f_{\mathfrak{p}} \log p} \sum^{\prime} \log \left|\varphi^{\prime \prime}\right|_{v^{\prime}}
\end{align*}
$$

where \sum^{\prime} signifies the summation over all $v^{\prime} \neq v_{1}^{\prime}, \ldots, v_{q^{r_{1}}}^{\prime}$. Note that $(11.50):=(11.50)^{\boldsymbol{\sim}}$ holds. By $(9.26),(11.51):=(11.51)^{\boldsymbol{\mu}}$ with its right side divided by $(\mathfrak{N} / \vartheta)$ is valid. Similarly to the proof of (11.52) and (11.39), we can verify that for all $\lambda \in \Lambda_{b}^{(I)}$,
(11.52) $\log \left|\Theta\left(q^{-(I+1)} s ; t\right) \Pi^{(I)}(t)\right| \leq\left(\frac{107}{103} \cdot \frac{1}{e_{\mathfrak{p}} \mathfrak{N}} \eta^{r+1}+g_{10}\right) \cdot \frac{1}{c_{1} c_{3}} \cdot \frac{S D}{d}$

$$
+\left(1+\frac{1}{g_{6}}\right) \cdot \frac{1}{c_{1} c_{4}(\mathfrak{N} / \vartheta)} \cdot \frac{S D}{d}
$$

Note that

$$
\begin{align*}
& \log \left|\prod_{i=1}^{r}\left(\alpha_{i}^{\prime 1 / q}\right)^{p^{\kappa} s\left(\lambda_{i}-\lambda_{i}^{(I)}+D_{i}^{(I)}\right)}\right|_{v^{\prime}} \tag{11.53}\\
& \leq p^{\kappa} \sum_{i=1}^{r} 2 D_{i}^{(I)} \cdot \log \max \left(1,\left|\left(\alpha_{i}^{\prime 1 / q}\right)^{s}\right| v^{\prime}\right)
\end{align*}
$$

Also $(11.54):=(11.54)^{\boldsymbol{\sim}}$ is valid. Observe that by (8.3) we have $\left[K^{\prime}: \mathbb{Q}\right]=$ $q^{r+1} d$. Utilizing (11.36), (11.46)-(11.54), (11.17), (9.24), (9.26), (9.32), we see that

$$
\begin{align*}
\sum_{j=1}^{q^{r_{1}}} \operatorname{ord}_{p}^{(j)} \varphi_{b}^{(I)}\left(\frac{s}{q} ; t\right) & +q^{r_{1}}\left(D_{-1}+1\right)\left(D_{0}+1\right)\left(\mathfrak{N}+\frac{1}{p-1}\right)-q^{r_{1}} \Delta_{b}^{(I)} \tag{11.55}\\
\leq & \frac{U}{q^{r+1-r_{1}} c_{1}}\left\{c_{1}\left[g_{12}+\left(1+\frac{1}{2\left(c_{0}-1\right)}\right) g_{9}\right]\right. \\
& +\left[\frac{q}{\left(q \eta^{r+1}\right)^{I}}+\frac{1}{2\left(c_{0}-1\right)}\left(1+\frac{1}{2 g_{2}+1}\right)\right] \frac{2}{c_{2}}
\end{align*}
$$

$$
\begin{aligned}
& +\left[\frac{107}{103} \cdot \frac{1}{e_{\mathfrak{p}} \mathfrak{N}}\left(\eta^{r+1}+\frac{1}{c_{0}-1}\right)+\left(1+\frac{1}{c_{0}-1}\right) g_{10}\right] \frac{1}{c_{3}}+\left(1+\frac{1}{g_{6}}\right) \\
& \left.\times\left[1+\frac{1}{c_{0}-1}+\frac{(I+q /(q-1)) \log q}{\max \left(f_{\mathfrak{p}} \log p, g_{1}\right)}+\left(\mathfrak{N}+\frac{1}{p-1}\right) \frac{1}{f_{\mathfrak{p}}}\right] \frac{1}{c_{4}(\mathfrak{N} / \vartheta)}\right\} .
\end{aligned}
$$

Now we prove

$$
\begin{equation*}
\frac{q^{r+1-r_{1}} c_{1}}{U} \times \text { the right side of }(11.55) \tag{11.56}
\end{equation*}
$$

$$
\leq(q \eta)^{r} \times \text { the right side of }(9.5)
$$

If $p>2$, then by (11.20) and (9.7)(i), the left side of (11.56) as a function of I attains its maximum at $I=0$, whence (11.56) follows from the inequality (which is a consequence of (9.1)-(9.3))

$$
(q \eta)^{r}-1 \geq 2^{r} e^{-c_{5}}-1>\frac{2 \log 2}{\log \left(e^{4} \cdot 4\right)} \geq \frac{q \log q}{(q-1) g_{1}}
$$

If $p=2$, then by $(11.20),(9.7)(i i),(9.8)$, the value of the left side of (11.56) increases when $q /\left(q \eta^{r+1}\right)^{I}$ is replaced by q and $I \log q / \max \left(f_{\mathfrak{p}} \log p, g_{1}\right)$ is replaced by $5(1-1 / q) \log q / \log \left(q \eta^{r+1}\right)$, whence (11.56) follows from

$$
\left((q \eta)^{r}-1\right) \frac{2 q}{c_{2}} \geq\left(1+\frac{1}{g_{6}}\right) \frac{1}{c_{4}(\mathfrak{N} / \vartheta)}\left\{\frac{q \log q}{(q-1) g_{1}}+\left(1-\frac{1}{q}\right) \frac{5 \log q}{\log \left(q \eta^{r+1}\right)}\right\}
$$

which can be verified by direct computation, using (9.1)-(9.3) and (9.33). Thus (11.56) is proved. By (11.56) and (9.5), (11.55) contradicts (11.45) ${ }^{\oplus}$. This contradiction proves (11.43), and the proof of Lemma 11.3 is thus complete.

In order to prove Lemma 11.4, we need the following observation (recalling that q is given by (1.3)):

$$
\begin{equation*}
\text { If } \beta \in K_{\mathfrak{p}} \text { satisfies } \beta \equiv 1(\bmod \mathfrak{p}) \text { and } \beta^{q} \equiv 1\left(\bmod \mathfrak{p}^{m}\right) \text { for } a \tag{11.57}
\end{equation*}
$$ positive integer m, then $\beta \equiv 1\left(\bmod \mathfrak{p}^{m}\right)$.

Proof. We prove (11.57) for the case $p=2$. Then $\mathfrak{p} \mid 2, q=3$ and $\zeta_{3} \in K_{\mathfrak{p}}$ by (1.2). Thus $(\beta-1)\left(\beta-\zeta_{3}\right)\left(\beta-\zeta_{3}^{2}\right) \equiv 0\left(\bmod \mathfrak{p}^{m}\right)$. We assert that $\beta-\zeta_{3} \not \equiv 0(\bmod \mathfrak{p})$, for otherwise we would have $\zeta_{3}-1 \equiv 0(\bmod \mathfrak{p})$, whence $2 \mid N_{\mathbb{Q}\left(\zeta_{3}\right) / \mathbb{Q}}\left(\zeta_{3}-1\right)(=3)$, which is absurd. Similarly, $\beta-\zeta_{3}^{2} \not \equiv 0$ $(\bmod \mathfrak{p})$. Hence $\beta \equiv 1\left(\bmod \mathfrak{p}^{m}\right)$. We omit the proof for the case $p>2$.

LEmmA 11.4. For every I as in Lemma 11.2, there exist $\varepsilon^{(I+1)} \in \mathbb{N}$, $D_{i}^{(I+1)} \in \mathbb{N}(-1 \leq i \leq r), \Lambda^{(I+1)}$ with

$$
\begin{gather*}
\operatorname{gcd}\left(a_{1}^{\prime}, \ldots, a_{r}^{\prime}, G_{1}\right) \mid \varepsilon^{(I+1)} \tag{11.58}\\
D_{i}^{(I+1)}=D_{i} \quad(i=-1,0), \quad D_{i}^{(I+1)} \leq q^{-(I+1)} D_{i} \quad(1 \leq i \leq r) \\
\Lambda^{(I+1)} \text { having properties }(11.2) \text { with I replaced by } I+1
\end{gather*}
$$

and $\rho^{(I+1)}(\lambda)=\rho^{(I+1)}\left(\lambda_{-1}, \ldots, \lambda_{r}\right) \in \mathcal{O}_{K}\left(\lambda \in \Lambda^{(I+1)}\right)$, not all zero, satisfying (11.17) with I replaced by $I+1$, such that

$$
\begin{align*}
& \varphi_{b}^{(I+1)}(s ; t)=0 \tag{11.61}\\
& \quad \text { for all } b \in \mathcal{B}^{(I+1)},|s| \leq q\left(\left[S^{(I+1)}\right]+1\right),|t| \leq \eta T^{(I+1)},
\end{align*}
$$

where $\mathcal{B}^{(I+1)}, \Lambda_{b}^{(I+1)}$, and $\varphi_{b}^{(I+1)}(z ; t)$ are defined by (11.1), (11.3) and (11.14) with I replaced by $I+1$.

Proof. From Lemma 11.3, we have

$$
\begin{align*}
& \varphi^{(I)}(s / q ; t)=\sum_{b \in \mathcal{B}^{(I)}} \varphi_{b}^{(I)}(s / q ; t)=0 \tag{11.62}\\
& \text { for }|s| \leq q\left(\left[S^{(I+1)}\right]+1\right),|t| \leq T^{(I+1)}
\end{align*}
$$

By (1.2), (8.3), (10.3) and an argument similar to that in the proof of [9], III, Lemma 2.5, it is readily seen that

$$
\begin{equation*}
\left[K\left(\xi^{G_{1}}\right)\left(\alpha_{1}^{\prime 1 / q}, \ldots, \alpha_{r}^{\prime 1 / q}\right): K\left(\xi^{G_{1}}\right)\right]=q^{r} . \tag{11.63}
\end{equation*}
$$

Recalling (11.4), for $\left(\lambda_{1}^{*}, \ldots, \lambda_{r}^{*}\right) \in \mathbb{Z}^{r}$ with $0 \leq \lambda_{i}^{*}<q(1 \leq i \leq r)$ we define

$$
\begin{aligned}
& \Lambda^{(I)}\left(\lambda_{1}^{*}, \ldots, \lambda_{r}^{*}\right)=\left\{\iota=\left(\iota_{-1}, \ldots, \iota_{r}\right) \in \Lambda^{(I)} \mid\right. \\
&\left.\iota_{i}-\lambda_{i}^{(I)} \equiv \lambda_{i}^{*}(\bmod q), 1 \leq i \leq r\right\}, \\
& \Gamma^{(I)}\left(\lambda_{1}^{*}, \ldots, \lambda_{r}^{*}\right)=\left\{\lambda=\left(\lambda_{-1}, \ldots, \lambda_{r}\right) \mid \lambda_{i}=\iota_{i}(i=-1,0),\right. \\
& \lambda_{i}=\left.\left(\iota_{i}-\lambda_{i}^{(I)}-\lambda_{i}^{*}\right) / q(1 \leq i \leq r) \text { with } \iota \in \Lambda^{(I)}\left(\lambda_{1}^{*}, \ldots, \lambda_{r}^{*}\right)\right\} .
\end{aligned}
$$

By the hypothesis that the main inductive argument holds for I, there exists an r-tuple $\left(\lambda_{1}^{*}, \ldots, \lambda_{r}^{*}\right)$ such that $\Lambda^{(I)}\left(\lambda_{1}^{*}, \ldots, \lambda_{r}^{*}\right) \neq \emptyset$ and $\rho^{(I)}(\iota)$, $\iota \in \Lambda^{(I)}\left(\lambda_{1}^{*}, \ldots, \lambda_{r}^{*}\right)$, are not all zero. Set

$$
\begin{aligned}
\Lambda^{(I+1)} & =\Gamma^{(I)}\left(\lambda_{1}^{*}, \ldots, \lambda_{r}^{*}\right), \\
\rho^{(I+1)}(\lambda) & =\rho^{(I)}(\iota) \quad \text { for } \lambda \in \Lambda^{(I+1)} \text { corresponding to } \iota \in \Lambda^{(I)}\left(\lambda_{1}^{*}, \ldots, \lambda_{r}^{*}\right) .
\end{aligned}
$$

Thus $h_{0}\left(\rho^{(I+1)}\right)\left(\leq h_{0}\left(\rho^{(I)}\right)\right)$ satisfies (11.17), and $0<\# \Lambda^{(I+1)} \leq \# \Lambda^{(I)} \leq$ $\prod_{i=-1}^{r}\left(D_{i}+1\right)$. Further

$$
\sum_{i=1}^{r} a_{i}^{\prime}\left(q \lambda_{i}+\lambda_{i}^{*}\right)=\sum_{i=1}^{r} a_{i}^{\prime}\left(\iota_{i}-\lambda_{i}^{(I)}\right) \equiv 0\left(\bmod G_{1}\right),
$$

whence

$$
\sum_{i=1}^{r} a_{i}^{\prime} \lambda_{i} \equiv \varepsilon^{(I+1)}\left(\bmod G_{1}\right)
$$

where $\varepsilon^{(I+1)} \in \mathbb{N}$ is a solution to the congruence $q x \equiv-\sum_{i=1}^{r} a_{i}^{\prime} \lambda_{i}^{*}\left(\bmod G_{1}\right)$, which is soluble uniquely $\bmod G_{1}$ by (10.1). Thus $\Lambda^{(I+1)}$ satisfies (11.2)(ii)
with I replaced by $I+1$ and (11.58) is valid. Finally if λ and λ^{\prime} in $\Lambda^{(I+1)}$ correspond to ι and ι^{\prime} in $\Lambda^{(I)}\left(\lambda_{1}^{*}, \ldots, \lambda_{r}^{*}\right)$, then

$$
\iota_{i}-\iota_{i}^{\prime}=q\left(\lambda_{i}-\lambda_{i}^{\prime}\right) \quad(1 \leq i \leq r)
$$

So, by (11.2), $\left|\lambda_{i}-\lambda_{i}^{\prime}\right| \leq D_{i}^{(I+1)}:=\left[q^{-1} D_{i}^{(I)}\right] \leq q^{-(I+1)} D_{i}(1 \leq i \leq r)$. We choose $D_{i}^{(I+1)}=D_{i}(i=-1,0)$. Also by (11.2)(iii)

$$
\left(\prod_{i=1}^{r}\left(\alpha_{i}^{\prime p^{\kappa}} \zeta^{a_{i}^{\prime}}\right)^{\lambda_{i}-\lambda_{i}^{\prime}}\right)^{q} \equiv \prod_{i=1}^{r}\left(\alpha_{i}^{\prime p^{\kappa}} \zeta^{a_{i}^{\prime}}\right)^{\iota_{i}-\iota_{i}^{\prime}} \equiv 1\left(\bmod \mathfrak{p}^{\mathfrak{m}_{0}+\mathfrak{m}}\right)
$$

whence by (11.57),

$$
\prod_{i=1}^{r}\left(\alpha_{i}^{\prime p^{\kappa}} \zeta^{a_{i}^{\prime}}\right)^{\lambda_{i}} \equiv \prod_{i=1}^{r}\left({\alpha_{i}^{\prime}}^{p^{\kappa}} \zeta^{a_{i}^{\prime}}\right)^{\lambda_{i}^{\prime}} \equiv 1\left(\bmod \mathfrak{p}^{\mathfrak{m}_{0}+\mathfrak{m}}\right)
$$

Thus we have proved that $\Lambda^{(I+1)}$ satisfies (11.2) with I replaced by $I+1$. We define $\mathcal{B}^{(I+1)}$ and $\Lambda_{b}^{(I+1)}$ by (11.1) and (11.3) with I replaced by $I+1$.

Now we fix $\left(\lambda_{1}^{(I+1)}, \ldots, \lambda_{r}^{(I+1)}\right)$ and $b^{(I+1)} \in \mathcal{B}^{(I+1)}$ such that (11.4) with I replaced by $I+1$ holds. Note that for $\iota \in \Lambda^{(I)}\left(\lambda_{1}^{*}, \ldots, \lambda_{r}^{*}\right)$ and $1 \leq j \leq r-1$,

$$
\gamma_{j}^{(I)}:=\sum_{i=1}^{r}\left(b_{n} \partial L_{i} / \partial z_{j}-b_{j} \partial L_{i} / \partial z_{n}\right)\left(\iota_{i}-\lambda_{i}^{(I)}\right)=q \gamma_{j}^{(I+1)}+\gamma_{j}^{*}
$$

where $\gamma_{j}^{(I+1)}$ is given by the right side of (10.20) with $\lambda_{i}^{(0)}$ replaced by $\lambda_{i}^{(I+1)}$ $(1 \leq i \leq r)$ and γ_{j}^{*} is given by the right side of (10.20) with $\lambda_{i}-\lambda_{i}^{(0)}$ replaced by $q \lambda_{i}^{(I+1)}+\lambda_{i}^{*}(1 \leq i \leq r)$. Thus $\gamma_{j}^{*} \in \mathbb{Z}(1 \leq j \leq r-1)$. By (11.62), (11.63) and arguing similarly to the proof of [9], II, Lemma 2.5, we obtain

$$
\begin{align*}
\sum_{\lambda \in \Lambda^{(I+1)}} \rho^{(I+1)}(\lambda) & \Theta\left(q^{-(I+1)} s ; t\right) \tag{11.64}\\
& \times \prod_{j=1}^{r-1} \Delta\left(q \gamma_{j}^{(I+1)}+\gamma_{j}^{*} ; t_{j}\right) \prod_{i=1}^{r}\left(\alpha_{i}^{\prime p^{\kappa}} \zeta^{a_{i}^{\prime}}\right)^{\lambda_{i} s}=0
\end{align*}
$$

for $|s| \leq q\left(\left[S^{(I+1)}\right]+1\right)$ with $(s, q)=1,|t| \leq T^{(I+1)}$.
On multiplying both sides of (11.64) by $\prod_{i=1}^{r}\left(\alpha_{i}^{\prime i^{\kappa}} \zeta^{a_{i}^{\prime}}\right)^{-\lambda_{i}^{(I+1)} s}$ and defining $\varphi^{(I+1)}(z ; t)$ by (11.13) with I replaced by $I+1$, and utilizing the argument of [8], p. 160, which is based on [8], Lemma 2.6, we get

$$
\begin{align*}
\varphi^{(I+1)}(s ; t)= & 0 \tag{11.65}\\
& |s| \leq q\left(\left[S^{(I+1)}\right]+1\right) \text { with }(s, q)=1,|t| \leq T^{(I+1)}
\end{align*}
$$

Note that $\zeta^{G_{1} s b}, b=0,1, \ldots, q^{\mu-u}-1$, are linearly independent over K. (See the proof of [9], III, Lemma 2.1. Here we have used $(s, q)=1$.) By this
fact and (11.33)(i) with I replaced by $I+1$, (11.65) implies

$$
\begin{equation*}
\varphi_{b}^{(I+1)}(s ; t)=0 \tag{11.66}
\end{equation*}
$$

for all $b \in \mathcal{B}^{(I+1)},|s| \leq q\left(\left[S^{(I+1)}\right]+1\right)$ with $(s, q)=1,|t| \leq T^{(I+1)}$.
It remains to verify (11.61) for s with $q \mid s$. In order to prove (11.61) with any fixed $b \in \mathcal{B}^{(I+1)}$, we may assume $\rho^{(I+1)}(\lambda), \lambda \in \Lambda_{b}^{(I+1)}$, are not all zero, and set

$$
\Delta_{b}^{(I+1)}=\min _{\lambda \in \Lambda_{b}^{(I+1)}} \operatorname{ord}_{p} \rho^{(I+1)}(\lambda)
$$

We now apply Lemma $2.2^{\boldsymbol{\alpha}}$ to each function in (11.24) with I replaced by $I+1$ and with $|t| \leq \eta T^{(I+1)}$, taking

$$
\begin{equation*}
R=q\left(\left[S^{(I+1)}\right]+1\right), \quad M=\left[\frac{c_{5}}{r+1} T^{(I+1)}\right] \tag{11.67}
\end{equation*}
$$

Similarly to the deduction of (11.27), by utilizing (11.25), (11.22), Lemma 11.1 (with I replaced by $I+1$) and (11.66), we see that condition $(2.6)^{\boldsymbol{q}}$ with $\vartheta=\mathfrak{N}$ holds for each $F_{b}^{(I+1)}(z ; t)$ with $|t| \leq \eta T^{(I+1)}$ whenever

$$
\begin{align*}
U & +\left(D_{-1}+1\right)\left(D_{0}+1\right)\left(\mathfrak{N}+\frac{1}{p-1}\right) \tag{11.68}\\
& \geq 2\left(1-\frac{1}{q}\right) R(M+1) \mathfrak{N}+(2 M+2) \frac{\max (h+\nu \log q, \log (2 R))}{\log p}
\end{align*}
$$

We now verify (11.68). Note that $(11.69):=(11.63)^{\boldsymbol{*}}$ and $(11.70):=(11.64)^{\boldsymbol{*}}$ hold, whence $\eta^{(r+1) I} \log (2 R) \leq h+\nu \log q$ (by (9.12), (9.10), (9.1), (9.2)) and

$$
\begin{align*}
& (2 M+2) \frac{\max (h+\nu \log q, \log (2 R))}{\log p} \tag{11.71}\\
& \quad \leq\left(\eta^{r+1}+g_{11}\right) \frac{1}{(r+1) q^{r+1}} \cdot \frac{1}{e_{\mathfrak{p}} \mathfrak{N}} \cdot \frac{2 c_{5}}{c_{1} c_{3}} U
\end{align*}
$$

By (11.69), (11.70), (9.14) and (9.32) we have

$$
\begin{equation*}
\frac{2 c_{5}}{c_{1}} \cdot \frac{q-1}{q^{r}} U<2\left(1-\frac{1}{q}\right) R(M+1) \mathfrak{N} \leq \frac{2 c_{5}}{c_{1}} \cdot \frac{q-1}{q^{r-1}} \cdot\left(\eta^{r+1}+g_{11}\right) U . \tag{11.72}
\end{equation*}
$$

From (9.2), (2.5), (2.4) and (2.8) we see that

$$
\frac{2(q-1)}{q^{r-1}}+\frac{1}{(r+1) q^{r+1} e_{\mathfrak{p}} \mathfrak{N} c_{3}} \leq 2
$$

Hence
$\frac{c_{1}}{U} \times$ the sum of the (extreme) right sides of (11.71) and (11.72)
\leq the right side of (9.6).

Thus (11.68) follows from (9.6), whence (2.6) with $\vartheta=\mathfrak{N}$ holds for each $F_{b}^{(I+1)}(z ; t)$ with $|t| \leq \eta T^{(I+1)}$. By applying Lemma $2.2^{\boldsymbol{*}}$ with $\theta=\mathfrak{N}$ to $F_{b}^{(I+1)}(z ; t)$, and utilizing (11.24), Lemma 11.1 with I replaced by $I+1$, (11.68) and (11.72), we obtain

$$
\begin{array}{r}
\operatorname{ord}_{p} \varphi_{b}^{(I+1)}(s ; t)+\left(D_{-1}+1\right)\left(D_{0}+1\right)\left(\mathfrak{N}+\frac{1}{p-1}\right)-\Delta_{b}^{(I+1)} \tag{11.73}\\
>\frac{2 c_{5}}{c_{1}} \cdot \frac{q-1}{q^{r}} U
\end{array}
$$

for $|s| \leq q\left(\left[S^{(I+1)}\right]+1\right)$ with $q\left|s,|t| \leq \eta T^{(I+1)}\right.$.
We now assume $\varphi_{b}^{(I+1)}(s ; t) \neq 0$ for some s, t in the range stated in (11.73) and proceed to deduce a contradiction. In the sequel we fix this set of s, t.

For $\lambda \in \Lambda_{b}^{(I+1)}$, by [9], III, Lemma 1.3 and the fact that $q \mid s$, we see that (recalling $\delta_{I}=0$ if $I=0$ and $\delta_{I}=1$ if $I>0$)

$$
\begin{equation*}
q^{\delta_{I}\left(D_{0}+1\right)\left\{\left(D_{-1}+1\right) I+\operatorname{ord}_{q}\left(\left(D_{-1}+1\right)!!\right\}\right.} \Theta\left(q^{-(I+1)} s ; t\right) \Pi^{(I+1)}(t) \in \mathbb{Z} . \tag{11.74}
\end{equation*}
$$

Now by (11.33)(i) with I replaced by $I+1$ and $\operatorname{ord}_{\mathfrak{p}} \alpha_{i}^{\prime}=0(1 \leq i \leq r)$ (see §8),

$$
\begin{equation*}
\operatorname{ord}_{p} \varphi_{b}^{(I+1)}(s ; t)=\operatorname{ord}_{p} \varphi^{\prime \prime \prime} \tag{11.75}
\end{equation*}
$$

where

$$
\begin{align*}
\varphi^{\prime \prime \prime} & =\sum_{\lambda \in \Lambda_{b}^{(I+1)}} \rho^{(I+1)}(\lambda)\left(q^{\delta_{I}\left(D_{0}+1\right)\left\{\left(D_{-1}+1\right) I+\operatorname{ord}_{q}\left(\left(D_{-1}+1\right)!\right)\right\}}\right. \tag{11.76}\\
& \left.\times \Theta\left(q^{-(I+1)} s ; t\right) \Pi^{(I+1)}(t)\right) \alpha_{0}^{s w^{(I+1)}(\lambda)} \prod_{i=1}^{r} \alpha_{i}^{\prime^{k} s\left(\lambda_{i}-\lambda_{i}^{(I+1)}+D_{i}^{(I+1)}\right)}
\end{align*}
$$

is in K and non-zero. Let $\left.\left\|\|_{v}\right.$ and $\|\right|_{v_{0}}$ be as in the proof of Lemma 11.2. Thus

$$
\begin{equation*}
\operatorname{ord}_{p} \varphi^{\prime \prime \prime}=\frac{1}{e_{\mathfrak{p}} f_{\mathfrak{p}} \log p}\left(-\log \left|\varphi^{\prime \prime \prime}\right|_{v_{0}}\right)=\frac{1}{e_{\mathfrak{p}} f_{\mathfrak{p}} \log p} \sum_{v \neq v_{0}} \log \left|\varphi^{\prime \prime \prime}\right|_{v}, \tag{11.77}
\end{equation*}
$$

by the product formula on K. Note that $(11.36)^{\boldsymbol{*}}$ and (11.37) with I replaced by $I+1$ remain valid. On noting $|t| \leq \eta T^{(I+1)} \leq \eta^{r+2} T$ and (9.29), $(10.24)^{\boldsymbol{t}}$ with $\Pi(t)$ and γ_{j} replaced by $\Pi^{(I+1)}(t)$ and $\gamma_{j}^{(I+1)}$, we have

$$
\begin{align*}
& \text { 88) } \quad \log \left|\Theta\left(q^{-(I+1)} s ; t\right) \Pi^{(I+1)}(t)\right| \tag{11.78}\\
& \leq\left(\frac{107}{103} \cdot \frac{1}{e_{\mathfrak{p}} \mathfrak{N}} \eta^{r+2}+g_{10}\right) \cdot \frac{1}{c_{1} c_{3}} \cdot \frac{S D}{d}+\left(1+\frac{1}{g_{6}}\right) \cdot \frac{1}{c_{1} c_{4}(\mathfrak{N} / \vartheta)} \cdot \frac{S D}{d} .
\end{align*}
$$

Further, (11.40) with I replaced by $I+1$ holds for every $\lambda \in \Lambda_{b}^{(I+1)}$. Also,
by $(11.44)\left(=(11.44)^{\boldsymbol{\omega}}\right)$, for $1 \leq i \leq r$,

$$
\begin{equation*}
\sum_{v \neq v_{0}} \log \max \left(1, \mid{\left.\left.\alpha_{i}^{\prime s}\right|_{v}\right) \leq q^{2} \eta^{-(r+1) I} S d \sigma_{i} ~}_{\text {. }}\right. \tag{11.79}
\end{equation*}
$$

Summing up, and using (11.38), we obtain

$$
\begin{equation*}
\operatorname{ord}_{p} \varphi_{b}^{(I+1)}(s ; t)+\left(D_{-1}+1\right)\left(D_{0}+1\right)\left(\mathfrak{N}+\frac{1}{p-1}\right)-\Delta_{b}^{(I+1)} \tag{11.80}
\end{equation*}
$$

$$
\begin{aligned}
\leq & \frac{U}{c_{1} q^{r+1}}\left\{c_{1}\left[g_{12}+\left(1+\frac{1}{2\left(c_{0}-1\right)}\right) g_{9}\right]\right. \\
& +\left[\frac{q}{\left(q \eta^{r+1}\right)^{I}}+\frac{1}{2\left(c_{0}-1\right)}\left(1+\frac{1}{2 g_{2}+1}\right)\right] \frac{2}{c_{2}} \\
& +\left[\frac{107}{103} \cdot \frac{1}{e_{\mathfrak{p}} \mathfrak{N}}\left(\eta^{r+2}+\frac{1}{c_{0}-1}\right)+\left(1+\frac{1}{c_{0}-1}\right) g_{10}\right] \frac{1}{c_{3}}+\left(1+\frac{1}{g_{6}}\right) \\
& \left.\times\left[1+\frac{1}{c_{0}-1}+\frac{\delta_{I}(I+1 /(q-1)) \log q}{\max \left(f_{\mathfrak{p}} \log p, g_{1}\right)}+\left(\mathfrak{N}+\frac{1}{p-1}\right) \frac{1}{f_{\mathfrak{p}}}\right] \frac{1}{c_{4}(\mathfrak{N} / \vartheta)}\right\}
\end{aligned}
$$

If $I=0$, then

$$
\frac{c_{1} q^{r+1}}{U} \times \text { the right side of }(11.80) \leq \text { the right side of }(9.5)
$$

whence, by (9.5), (11.80) contradicts (11.73). If $I>0$ and $p>2$ (thus $q=2$), then, by (11.20), (9.7)(i) and $\eta^{r+1}<e^{-c_{5}}$, we have $\frac{c_{1} q^{r+1}}{U} \times$ the right side of (11.80) - the right side of (9.5)

$$
\leq \frac{107}{103} \cdot \frac{1}{e_{\mathfrak{p}} \vartheta_{0}+1} \cdot \frac{1}{c_{3}}\left(\eta^{r+2}-\eta\right)+\left(1+\frac{1}{g_{6}}\right) \frac{1}{c_{4}(\mathfrak{N} / \vartheta)} \cdot \frac{\log q}{(q-1) g_{1}} \leq 0
$$

Now by (9.5), (11.80) contradicts (11.73). If $I>0$ and $p=2$ (thus $q=3$), then
(11.81) $\frac{c_{1} q^{r+1}}{U} \times$ the right side of $(11.80) \leq 2 \times$ the right side of (9.5),
since by (11.20), (9.7)(ii) and (9.8), the value of the left side of (11.81) increases when $q /\left(q \eta^{r+1}\right)^{I}$ is replaced by q and $I \log q / \max \left(f_{\mathfrak{p}} \log p, g_{1}\right)$ is replaced by $5(1-1 / q) \log q / \log \left(q \eta^{r+1}\right)$, whence (11.81) follows from

$$
\begin{array}{r}
\left(q+\frac{1}{2\left(c_{0}-1\right)}\right) \frac{2}{c_{2}}+\frac{107}{103} \cdot \frac{1}{e_{\mathfrak{p}} \vartheta_{0}+1}\left(\eta\left(2-\eta^{r+1}\right)+\frac{1}{c_{0}-1}\right) \frac{1}{c_{3}} \\
\geq\left(1+\frac{1}{g_{6}}\right) \frac{1}{c_{4}(\mathfrak{N} / \vartheta)}\left\{\frac{\log q}{(q-1) g_{1}}+\left(1-\frac{1}{q}\right) \frac{5 \log q}{\log \left(q \eta^{r+1}\right)}\right\}
\end{array}
$$

which can be verified by direct computation, using (9.1)-(9.3) and (9.33). By (11.81) and $(9.5),(11.80)$ contradicts (11.73). The fact that (11.80) con-
tradicts (11.73) for all I as in the hypothesis of the lemma proves

$$
\varphi_{b}^{(I+1)}(s ; t)=0 \quad \text { for }|s| \leq q\left(\left[S^{(I+1)}\right]+1\right) \text { with } q\left|s,|t| \leq \eta T^{(I+1)} .\right.
$$

Since $b \in \mathcal{B}^{(I+1)}$ is arbitrarily chosen, this and (11.66) establish Lemma 11.4.
By applying Lemma 11.2 to $I=0$ and taking $J=1$, and by applying Lemma 11.4 to $I=0$, we see that the main inductive argument is true for $I=0,1$. Now the main inductive argument follows by induction on I, utilizing Lemma 11.4.
12. Simple reduction. We first deal with the case $I:=\left[\log D_{r} / \log q\right]+$ $1 \leq I^{*}$. Thus $D_{r}^{(I)}=0$. We recall (11.2) and (11.4). On applying the main inductive argument and defining $\rho^{(I)}\left(\lambda_{-1}, \ldots, \lambda_{r}\right)=0$ for $\lambda \notin \Lambda^{(I)}$ with $0 \leq \lambda_{i} \leq D_{i}^{(I)}(i=-1,0),\left|\lambda_{i}-\lambda_{i}^{(I)}\right| \leq D_{i}^{(I)}(1 \leq i \leq r)$, we have

$$
\begin{align*}
& \quad \sum_{\substack{0 \leq \lambda_{i} \leq D_{i}^{(I)}, i=-1,0 \\
\left|\lambda_{i}-\lambda_{i}^{(I)}\right| \leq D_{i}^{(I)}, 1 \leq i<r}} \rho^{(I)}\left(\lambda_{-1}, \ldots, \lambda_{r-1}, \lambda_{r}^{(I)}\right) \Theta\left(q^{-I} s ; t\right) \tag{12.1}\\
& \times \Pi\left(\gamma_{1}^{(I)}, \ldots, \gamma_{r-1}^{(I)} ; t_{1}, \ldots, t_{r-1}\right) \cdot \prod_{i=1}^{r-1}\left(\alpha_{i}^{p^{\kappa}} \zeta^{a_{i}^{\prime}}\right)^{s\left(\lambda_{i}-\lambda_{i}^{(I)}\right)}=0
\end{align*}
$$

for $|s| \leq q S^{(I)},|t| \leq \eta T^{(I)}$, where

$$
\begin{equation*}
\gamma_{j}^{(I)}=\sum_{i=1}^{r-1}\left(b_{n} \partial L_{i} / \partial z_{j}-b_{j} \partial L_{i} / \partial z_{n}\right)\left(\lambda_{i}-\lambda_{i}^{(I)}\right) \quad(1 \leq j<r), \tag{12.2}
\end{equation*}
$$

since $\lambda_{r}=\lambda_{r}^{(I)}$ because of $D_{r}^{(I)}=0$. In virtue of (12.2) and (8.15)*, each of $\lambda_{1}-\lambda_{1}^{(I)}, \ldots, \lambda_{r-1}-\lambda_{r-1}^{(I)}$ is a linear combination of $\gamma_{1}^{(I)}, \ldots, \gamma_{r-1}^{(I)}$. Thus $\prod_{i=1}^{r-1} \Delta\left(\lambda_{i}-\lambda_{i}^{(I)} ; t_{i}\right)\left(t_{i} \in \mathbb{N}, 1 \leq i<r\right)$ is a linear combination
 $\Pi\left(\gamma_{1}^{(I)}, \ldots, \gamma_{r-1}^{(I)} ; \tau_{1}, \ldots, \tau_{r-1}\right)$ with $\left(\tau_{1}, \ldots, \tau_{r-1}\right) \in \mathbb{N}^{r-1}$ and $\tau_{1}+\ldots+$ $\tau_{r-1} \leq t_{1}+\ldots+t_{r-1}$. So (12.1) gives

$$
\begin{align*}
& \sum_{\substack{0 \leq \lambda_{i} \leq D_{i}^{(I)}, i=-1,0 \\
\left|\lambda_{i}-\lambda_{i}^{(I)}\right| \leq D_{i}^{(I)}, 1 \leq i<r}} \rho^{(I)}\left(\lambda_{-1}, \ldots, \lambda_{r-1}, \lambda_{r}^{(I)}\right) \Theta\left(q^{-I} s ; t\right) \tag{12.3}\\
& \times \prod_{i=1}^{r-1} \Delta\left(\lambda_{i}-\lambda_{i}^{(I)} ; t_{i}\right) \prod_{i=1}^{r-1}\left(\alpha_{i}^{\prime p^{\kappa}} \zeta^{a_{i}^{\prime}}\right)^{s\left(\lambda_{i}-\lambda_{i}^{(I)}\right)}=0
\end{align*}
$$

for $|s| \leq q S^{(I)},|t| \leq \eta T^{(I)}$.
Note that $2 D_{1}^{(I)}+\ldots+2 D_{r-1}^{(I)} \leq \frac{1}{2} \eta T^{(I)}$ by (11.15), $D_{i}^{(I)} \leq q^{-I} D_{i}$ $(1 \leq i<r),(9.14),(9.17),(9.2),(9.3),(2.5),(2.6),(2.1),(9.33)$ and
$q \eta^{r+1}>1$. Thus (12.3) holds for $|s| \leq q S^{(I)}$ and t with

$$
0 \leq t_{0} \leq \frac{1}{2} \eta T^{(I)}, \quad 0 \leq t_{i} \leq 2 D_{i}^{(I)} \quad(1 \leq i<r) .
$$

It is readily seen, similarly to the proof of [8], Lemma 2.5, that for any $m \in \mathbb{N}$, the determinant of order $2 m+1$

$$
\begin{equation*}
\operatorname{det}(\Delta(j ; k))_{-m \leq j \leq m, 0 \leq k \leq 2 m} \neq 0 \tag{12.4}
\end{equation*}
$$

Thus, by an argument similar to [8], §3.5, we see that for any fixed $\lambda_{1}, \ldots, \lambda_{r-1}$ with $\left|\lambda_{i}-\lambda_{i}^{(I)}\right| \leq D_{i}^{(I)}(1 \leq i<r)$, the polynomial (recall$\left.\operatorname{ing} D_{i}^{(I)}=D_{i}, i=-1,0\right)$

$$
\begin{equation*}
\sum_{\lambda_{-1}=0}^{D_{-1}} \sum_{\lambda_{0}=0}^{D_{0}} \rho^{(I)}\left(\lambda_{-1}, \ldots, \lambda_{r-1}, \lambda_{r}^{(I)}\right)\left(\Delta\left(x+\lambda_{-1} ; D_{-1}+1\right)\right)^{\lambda_{0}+1} \tag{12.5}
\end{equation*}
$$

whose degree is at most $\left(D_{-1}+1\right)\left(D_{0}+1\right)$, has at least

$$
M:=\left(2\left[q S^{(I)}\right]+1\right)\left(\left[\frac{1}{2} \eta T^{(I)}\right]+1\right)
$$

zeros. Now, by (9.12), $g_{2}>1, g_{6}>1, c_{4}>3, c_{5}<1$ (see (9.1), (9.2)), (9.3), (9.14), (9.19), (9.26) and (11.15), we have

$$
M>\left(2 q-\frac{1}{g_{2}}\right) \cdot \frac{1}{2} \eta S^{(I)} T^{(I)} \geq\left(D_{-1}+1\right)\left(D_{0}+1\right)
$$

Thus the polynomial in (12.5) is identically zero. Further, $\left(\Delta\left(x+\lambda_{-1}\right.\right.$; $\left.\left.D_{-1}+1\right)\right)^{\lambda_{0}+1}\left(0 \leq \lambda_{i} \leq D_{i}, i=-1,0\right)$ are linearly independent over \mathbb{C} (see [1], §12). Hence

$$
\begin{gathered}
\rho^{(I)}\left(\lambda_{-1}, \ldots, \lambda_{r}\right)=0, \quad 0 \leq \lambda_{i} \leq D_{i}^{(I)} \quad(i=-1,0) \\
\left|\lambda_{i}-\lambda_{i}^{(I)}\right| \leq D_{i}^{(I)} \quad(1 \leq i \leq r)
\end{gathered}
$$

(recalling $D_{r}^{(I)}=0$), contradicting the construction in the main inductive argument that $\rho^{(I)}(\lambda), \lambda \in \Lambda^{(I)}$, are not all zero. This contradiction proves Proposition 9.1 in the case when $\left[\log D_{r} / \log q\right]+1 \leq I^{*}$.
13. Group variety reduction. It remains to prove Proposition 9.1 in the case

$$
\begin{equation*}
I^{*}<\left[\log D_{r} / \log q\right]+1, \tag{13.1}
\end{equation*}
$$

where I^{*} is given by (9.8). Take $I=I^{*}$ in the main inductive argument (see $\S 11$). There exists $b \in \mathcal{B}^{(I)}$ such that $\rho^{(I)}(\lambda), \lambda \in \Lambda_{b}^{(I)}$, are not all
zero. For every s with $q^{u} \mid s$ we have, by (11.33)(i), (1.4), and on multiplying (11.18) by $\prod_{i=1}^{r} \alpha_{i}^{\prime p^{k} q^{u} s D_{i}^{(I)}}$,

$$
\begin{equation*}
\sum_{\lambda \in \Lambda_{b}^{(I)}} \rho^{(I)}(\lambda) \Pi^{(I)}(t) \Theta\left(q^{-I} q^{u} s ; t\right) \prod_{i=1}^{r} \alpha_{i}^{\prime \rho^{\kappa} q^{u} s\left(\lambda_{i}-\lambda_{i}^{(I)}+D_{i}^{(I)}\right)}=0 \tag{13.2}
\end{equation*}
$$

for $|s| \leq q^{1-u} S^{(I)},|t| \leq \eta T^{(I)}$.
Recall that $\Pi^{(I)}(t)$ is given by (11.6). Now we take

$$
\begin{align*}
& \mathcal{P}\left(Y_{0}, \ldots, Y_{r}\right) \tag{13.3}\\
& =\sum_{\lambda \in \Lambda_{b}^{(I)}} \rho^{(I)}(\lambda)\left(\Delta\left(q^{-I} p^{-\kappa} Y_{0} ; D_{-1}+1\right)\right)^{\lambda_{0}+1} \prod_{i=1}^{r} Y_{i}^{\lambda_{i}-\lambda_{i}^{(I)}+D_{i}^{(I)}}, \\
& N=p^{\kappa} q^{u}, \quad \mathcal{S}=q^{1-u} S^{(I)}, \quad \mathcal{T}=\eta T^{(I)}, \quad \theta_{i}=\alpha_{i}^{\prime}(1 \leq i \leq r) . \tag{13.4}
\end{align*}
$$

Recall that $\partial_{0}^{*}=\partial_{0}=\partial / \partial Y_{0}$ and $\partial_{1}^{*}, \ldots, \partial_{r-1}^{*}$ are the differential operators specified in $\S 8^{\boldsymbol{\omega}}$, and note that

$$
\partial_{j}^{*} \prod_{i=1}^{r} Y_{i}^{\lambda_{i}-\lambda_{i}^{(I)}+D_{i}^{(I)}}=\left(\gamma_{j}^{(I)}+\gamma_{j}^{\dagger}\right) \prod_{i=1}^{r} Y_{i}^{\lambda_{i}-\lambda_{i}^{(I)}+D_{i}^{(I)}} \quad(1 \leq j<r),
$$

with $\gamma_{j}^{(I)}$ given in (11.5), and $\gamma_{j}^{\dagger} \in \mathbb{Z}$ given by the right side of (11.5) with $\lambda_{i}-\lambda_{i}^{(I)}$ replaced by $D_{i}^{(I)}$. By [8], Lemma 2.6, we see from (13.2)-(13.4) that

$$
\begin{equation*}
\partial_{0}^{* t_{0}} \partial_{1}^{* t_{1}} \cdots \partial_{r-1}^{* t_{r-1}} \mathcal{P}\left(N s, \theta_{1}^{N s}, \ldots, \theta_{r}^{N s}\right)=0 \tag{13.5}
\end{equation*}
$$

for $0 \leq s \leq \mathcal{S}, t_{0}+\ldots+t_{r-1} \leq \mathcal{T}$.
We note, as remarked in $\S^{\boldsymbol{*}}$, that Proposition $6.1^{\boldsymbol{*}}$ holds with ∂_{1}^{*}, \ldots $\ldots, \partial_{r-1}^{*}$ in place of $\partial_{1}, \ldots, \partial_{r-1}$. Let

$$
\begin{gather*}
\mathcal{D}_{0}=\left(D_{-1}+1\right)\left(D_{0}+1\right), \quad \mathcal{D}_{i}=2 q^{-I} \widetilde{D}_{i} \quad(1 \leq i \leq r), \tag{13.6}\\
\mathcal{S}_{0}=\left[\frac{1}{4} \mathcal{S}\right], \quad \mathcal{S}_{i}=\left[\frac{1}{r} \cdot \frac{3}{4} \mathcal{S}\right] \quad(1 \leq i \leq r) \\
\mathcal{T}_{i}=\left[\frac{1}{r+1} \mathcal{T}\right] \quad(0 \leq i \leq r) \tag{13.7}
\end{gather*}
$$

Then $\mathcal{S}_{0} \geq \mathcal{S}_{1}=\ldots=\mathcal{S}_{r}$ since $r \geq 3, \mathcal{T}_{0}=\ldots=\mathcal{T}_{r}$ and $\mathcal{S}_{0}+\ldots+\mathcal{S}_{r} \leq \mathcal{S}$, $\mathcal{T}_{0}+\ldots+\mathcal{T}_{r} \leq \mathcal{T}$.

For later convenience, we list the following inequalities derived from $\S 9$ and $\S 2$. We shall use them frequently in the remainder of this section.

$$
\begin{aligned}
& c_{3} / c_{4}>1 / 28, \quad c_{5} \geq 0.47, \quad r \geq 3 \text { if } p>2, \quad r \geq 4 \text { if } p=2 \\
& g_{3} / r>10^{7}, \quad g_{6}>10^{6}, \quad\left(1+\epsilon_{1}\right)\left(1+\epsilon_{2}\right)<1+10^{-5} \\
& h \geq \max \left(2 f_{\mathfrak{p}} \log p, g_{0}\right) \geq \max \left(f_{\mathfrak{p}} \log p, g_{1}\right), \quad \vartheta \leq p /(p-1) \leq 2 \\
& e_{\mathfrak{p}} \vartheta \geq 1 / 2, \quad q \eta^{r+1}>1, \quad \eta^{r+1}<e^{-c_{5}} \leq e^{-0.47} \\
& I=I^{*} \geq\left[5 g_{1} / \log \left(q \eta^{r+1}\right)\right]+1 \geq 92, \quad \eta^{(r+1) I}<10^{-18}
\end{aligned}
$$

By (13.4), (13.7) and (9.20) we have, for $\rho \in \mathbb{Z}$ with $1 \leq \rho \leq r$,

$$
\begin{equation*}
\mathcal{T}_{\rho}+\rho \leq\left(\frac{\eta^{(r+1) I}}{r+1}+\frac{\rho}{g_{3}}\right) T<10^{-6} T \tag{13.8}
\end{equation*}
$$

Now (13.8), (13.6), (9.12), (9.14) and (9.16) yield

$$
\begin{equation*}
\mathcal{T}_{\rho}+\rho<10^{-4} \mathcal{D}_{0} \quad(1 \leq \rho \leq r) \tag{13.9}
\end{equation*}
$$

whence $(6.2)^{\boldsymbol{\iota}}$ follows. Further by (13.6), (9.17), (9.16), (9.12), (2.5), (2.6), we get

$$
\begin{equation*}
\mathcal{D}_{i}<\mathcal{D}_{0} \quad(1 \leq i \leq r) \tag{13.10}
\end{equation*}
$$

Now we verify $(6.1)^{\boldsymbol{d}}$.
(i) $m=0$. By $(13.7),(13.4),(11.15),(9.18),(9.19)$, we have

$$
\begin{equation*}
\mathcal{S}_{0}\left(\mathcal{T}_{0}+1\right)>\left(\frac{(q-1) e_{\mathfrak{p}}}{4 d}-\frac{10^{-18}}{g_{2}}\right) \frac{\eta}{r+1} S T \tag{13.11}
\end{equation*}
$$

From (13.11), (13.6), (9.2), (9.3), (9.26), (9.14), we obtain

$$
\mathcal{S}_{0}\left(\mathcal{T}_{0}+1\right)>\mathcal{D}_{0}
$$

This and (13.10) establish $(6.1)^{\boldsymbol{\omega}}$ with $m=0$.
(ii) $1 \leq m<r$. By (13.7), (13.4), (11.15), (9.18), (9.19), we have
(13.12) $\quad \mathcal{S}_{m}\binom{\mathcal{T}_{m}+m+\delta_{m, r}}{m+\delta_{m, r}}$

$$
>\left(\frac{1}{r} \cdot \frac{3}{4}(q-1) \frac{e_{\mathfrak{p}}}{d}-\frac{10^{-18}}{g_{2}}\right) \frac{\eta^{m+1+(r+1) I m}}{(r+1)^{m+1}(m+1)!} S T^{m+1}
$$

By (13.6), (13.10), (9.26) and (9.17) we get
(13.13) $\quad(m+1)!\mathcal{D}_{0}^{m_{0}} \cdots \mathcal{D}_{r}^{m_{r}}$

$$
\leq\left(1+\frac{1}{g_{6}}\right) \frac{1}{c_{4}(\mathfrak{N} / \vartheta)} \cdot \frac{1}{c_{1}^{m+1}\left(c_{2} p^{\kappa}\right)^{m}} \cdot \frac{(m+1)!2^{m}}{r^{m} q^{I m}} \cdot \frac{S D^{m+1}}{d\left(f_{\mathfrak{p}} \log p\right)^{m+1}}
$$

where $m_{i} \in\{0,1\}$ with $m_{0}+\ldots+m_{r}=m+1$. Now, by (13.12), (13.13), (9.14), (2.5), (2.6), (2.1) and

$$
\left(q \eta^{r+1}\right)^{I m}>\left(e^{4}(r+1) d\right)^{5 m} \quad(\text { see }(9.8),(9.1))
$$

we obtain $(6.1)^{\boldsymbol{m}}$ for $1 \leq m<r$.
(iii) $m=r$. We have, similarly to (13.12),

$$
\begin{equation*}
\mathcal{S}_{r}\binom{\mathcal{T}_{r}+r}{r}>\left(\frac{1}{r} \cdot \frac{3}{4}(q-1) \frac{e_{\mathfrak{p}}}{d}-\frac{10^{-18}}{g_{2}}\right) \frac{\eta^{r+(r+1) I(r-1)}}{(r+1)^{r} r!} S T^{r} . \tag{13.14}
\end{equation*}
$$

By (13.6), (9.26), (9.17), we have

$$
\begin{equation*}
(r+1)!\mathcal{D}_{0} \mathcal{D}_{1} \cdots \mathcal{D}_{r} \tag{13.15}
\end{equation*}
$$

$$
\leq \frac{(r+1)!2^{r}}{q^{I r} r^{r}}\left(1+\frac{1}{g_{6}}\right) \frac{S D^{r+1}}{c_{1}^{r+1}\left(c_{2} p^{\kappa}\right)^{r} c_{4}(\mathfrak{N} / \vartheta) d^{r+1} \sigma_{1} \cdots \sigma_{r} \max \left(f_{\mathfrak{p}} \log p, g_{1}\right)}
$$

In virtue of $(13.14),(13.15),(9.13),(9.14),(2.5),(2.6),(2.3)$, in order to prove $(6.1)^{\text {d }}$ with $m=r$, it suffices to show

$$
\begin{align*}
\left(\frac{1}{r} \cdot \frac{3}{4}(q-1)\right. & \left.\frac{e_{\mathfrak{p}}}{d}-\frac{10^{-18}}{g_{2}}\right)\left(q \eta^{r+1}\right)^{I r} \eta^{r-(r+1) I} \tag{13.16}\\
\geq & \left(1+10^{-100}\right)\left(1+\frac{1}{g_{6}}\right)\left(1+\epsilon_{1}\right)\left(1+\epsilon_{2}\right)\left(2+\frac{1}{g_{2}}\right) \\
& \quad \times c_{0}(r+1)!(r+1)^{r}\left(2 e \varsigma_{1} \varsigma_{2}\right)^{r} \cdot \frac{p^{f_{\mathfrak{p}}}-1}{q^{u}}
\end{align*}
$$

Now, by $I=I^{*},(9.8)$ and (9.1),

$$
\left(q \eta^{r+1}\right)^{I}>\exp \left(5 \max \left(f_{\mathfrak{p}} \log p, g_{1}\right)\right) \geq p^{f_{\mathfrak{p}}}\left(e^{4}(r+1) d\right)^{4}
$$

This implies (13.16) at once. Hence (6.1) with $m=r$ is valid.
Note that in (13.5), $\mathcal{P}\left(Y_{0}, \ldots, Y_{r}\right) \neq 0$ and $\theta_{i}=\alpha_{i}^{\prime}(1 \leq i \leq r)$ are multiplicatively independent, since $l_{0}^{\prime}\left(=l_{0}\right), l_{1}^{\prime}, \ldots, l_{r}^{\prime}$ are linearly independent over \mathbb{Q} by $(5.8)^{\boldsymbol{\alpha}}$ and $\S 8(\mathrm{i})$, (ii). Having verified $(6.1)^{\boldsymbol{\alpha}}$ and $(6.2)^{\boldsymbol{\alpha}}$, we can apply Proposition $6.1^{\boldsymbol{\kappa}}$ with $a_{i}=\sigma_{i}(1 \leq i \leq r)$. Thus there exists $\rho \in \mathbb{Z}$ with $1 \leq \rho<r$ and there is a set of primitive linear forms $\mathcal{L}_{1}, \ldots, \mathcal{L}_{\rho}$ in Z_{1}, \ldots, Z_{r} with coefficients in \mathbb{Z} such that $B_{1} Z_{1}+\ldots+B_{r} Z_{r}$ is in the module generated by $\mathcal{L}_{1}, \ldots, \mathcal{L}_{\rho}$ over \mathbb{Q} and, on defining

$$
\begin{equation*}
\mathcal{R}_{i}=\sum_{j=1}^{r}\left|\partial \mathcal{L}_{i} / \partial Z_{j}\right| \sigma_{j} \quad(1 \leq i \leq \rho), \tag{13.17}
\end{equation*}
$$

we have at least one of $(6.3)^{\boldsymbol{\alpha}}$ and $(6.4)^{\boldsymbol{\alpha}}$, whence $(6.4)^{\boldsymbol{\omega}}$ holds always, since $(6.3)^{\boldsymbol{\omega}}$ implies $(6.4)^{\boldsymbol{\omega}}$ by $(13.4),(13.6),(13.7)$ and (13.9). We shall prove shortly that $(6.4)^{\boldsymbol{\alpha}}$ implies

$$
\begin{equation*}
\mathcal{R}_{1} \cdots \mathcal{R}_{\rho} \leq \psi(\rho) h^{\prime}\left(\alpha_{1}\right) \cdots h^{\prime}\left(\alpha_{n}\right) \tag{13.18}
\end{equation*}
$$

where $\psi(\rho)$ is given by (8.7) with r replaced by ρ; thus (13.18) together with the same analysis as in $\S 13^{\boldsymbol{\alpha}}$ shows that the basic hypothesis in $\S 8$ holds with ρ in place of r. By the minimal choice of r, we have a contradiction and this establishes Proposition 9.1.

Now, by (6.4) , (13.4), (13.6), (13.7), (9.13), (9.14), (9.17), (9.18), (9.19), (9.26), (8.6), (8.7), (2.5), (2.6), (2.3), (2.1) and $e^{r} \geq r^{r} / r$!, in order to prove (13.18), it suffices to show

$$
\begin{equation*}
\frac{\left(\varsigma_{1} \varsigma_{2} e^{2}\right)^{\rho}(\rho+1)(\rho!)^{3} \rho^{\rho} r^{\rho} p^{f_{\mathfrak{p}}}}{\frac{1}{r} \cdot \frac{3}{4}(q-1) \frac{e_{\mathfrak{p}}}{d}-\frac{10^{-18}}{g_{2}}} \leq\left(q \eta^{r+1}\right)^{I \rho} \tag{13.19}
\end{equation*}
$$

Note that $(\rho+1)(\rho!)^{3} \rho^{\rho} r^{\rho} \leq(r+1)^{5 \rho-2}$ and that by $I=I^{*}$ and (9.8) we have

$$
\left(q \eta^{r+1}\right)^{I \rho}>p^{f_{\mathfrak{p}}}\left(e^{4}(r+1) d\right)^{5 \rho-1}
$$

Hence (13.19) follows. The proof of Proposition 9.1 is thus complete, whence Theorem 7.1 is established.

14. Proof of Theorem 1

Lemma 14.1. It suffices to prove Theorem 1 on a further assumption that $\alpha_{1}, \ldots, \alpha_{n}$ are multiplicatively independent.

Proof. Note that from (1.10), (1.12), Lemma 2.2 and $(1+1 / n)^{n+1}>e$, we have for $n=2,3, \ldots$,

$$
\begin{equation*}
\frac{C(n, d, \mathfrak{p})}{C(n-1, d, \mathfrak{p})}>\frac{C^{*}(n, d, \mathfrak{p})}{C^{*}(n-1, d, \mathfrak{p})}>\frac{16}{9} e^{2}(n+2) d \tag{14.1}
\end{equation*}
$$

Using (14.1), the proof is the same as that of Lemma 14.1.
Proof of Theorem 1. By [9], II, Lemma 1.4, it is readily seen that Theorem 1 is true for $n=1$. Thus we may assume that $n \geq 2$ and $\alpha_{1}, \ldots, \alpha_{n}$ are multiplicatively independent by Lemma 14.1. Note that

$$
\frac{d}{f_{\mathfrak{p}} \log p} \log 2<0.001 C(n, d, \mathfrak{p}) h^{\prime}\left(\alpha_{1}\right) \cdots h^{\prime}\left(\alpha_{n}\right) \log B
$$

Hence we may assume, by (1.6), (1.10), (14.2 $)^{\boldsymbol{*}},(14.3)^{\boldsymbol{n}}$ and Stirling's formula, that

$$
\frac{B}{\log B}>30\left(8 e^{2}\right)^{n} n^{3 / 2}\left(p^{f_{\mathfrak{p}}}-1\right) d>e^{13}
$$

whence we obtain

$$
\begin{equation*}
B>260\left(8 e^{2}\right)^{n} n^{3 / 2} p^{f_{\mathfrak{p}}} d \tag{14.2}
\end{equation*}
$$

We may further assume, without loss of generality, that (1.13) is satisfied, since the main inequality in Theorem 1 is symmetric in $\alpha_{1}, \ldots, \alpha_{n}$. On appealing to Theorem 7.1 and observing that (14.2) implies

$$
(n+1) \log B \geq \log \max \left\{\widetilde{c} B, \widetilde{c}(5 n)^{6 n} d^{1.2}, \widetilde{c} p^{2 f_{\mathfrak{p}}}\right\} \geq h^{*}+\log c^{*}
$$

where h^{*} is given by (7.2) and

$$
\begin{equation*}
\widetilde{c}=\left(\frac{3}{4} \log ^{3}(5 d) \cdot f_{\mathfrak{p}} \log p\right)^{n} \cdot n!\geq c^{*} \tag{14.3}
\end{equation*}
$$

by $(5.21)^{\boldsymbol{\alpha}}$ and $(5.24)^{\boldsymbol{\alpha}}$, Theorem 1 follows at once.

15. Proof of Theorem 2

LEMMA 15.1. It suffices to prove Theorem 2 on a further assumption that $\alpha_{1}, \ldots, \alpha_{n}$ are multiplicatively independent.

Proof. Using (14.1), the proof is the same as that of Lemma $15.1^{\boldsymbol{\omega}}$.
Proof of Theorem 2. It is readily seen, by Theorem 1 with $n=1$, that Theorem 2 is true for $n=1$. Thus we may assume that $n \geq 2$ and $\alpha_{1}, \ldots, \alpha_{n}$ are multiplicatively independent by Lemma 15.1. On using (14.1), the proof is the same as that of Theorem $2^{\boldsymbol{\omega}}$.

References

[1] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
[2] E. Bombieri and J. Vaaler, On Siegel's lemma, Invent. Math. 73 (1983), 11-32; Addendum, ibid. 75 (1984), 377.
[3] A. Fröhlich and M. J. Taylor, Algebraic Number Theory, Cambridge Univ. Press, 1991.
[4] H. Hasse, Number Theory, Springer, Berlin, 1980.
[5] E. M. Matveev, Elimination of the multiple n! from estimates for linear forms in logarithms, Tagungsbericht 11/1996, Diophantine Approximations, 17.03-23.03, 1996, Oberwolfach.
[6] -, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, Izv. Math. 62 (1998), 723-772.
[7] C. L. Stew art and K. Y u, On the abc conjecture, Math. Ann. 291 (1991), 225-230.
[8] K. Y u, Linear forms in p-adic logarithms, Acta Arith. 53 (1989), 107-186.
[9] —, Linear forms in p-adic logarithms II, III, Compositio Math. 74 (1990), 15-113; 91 (1994), 241-276.
[10] -, P-adic logarithmic forms and group varieties I, J. Reine Angew. Math. 502 (1998), 29-92.

Department of Mathematics
Hong Kong University of Science and Technology
Clear Water Bay
Kowloon, Hong Kong
E-mail: makryu@ust.hk

