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On the number of coprime integer pairs within a circle

by

Wenguang Zhai (Jinan) and Xiaodong Cao (Beijing)

1. Introduction. Let P (x) denote the number of integer pairs within
the circle a2 + b2 ≤ x, and E(x) denote the difference P (x)− πx. Then the
well-known circle problem is to estimate the upper bound of E(x) and the
best result at present is

(1.1) E(x) = O(x23/73+ε).

See Huxley [6].
Let V (x) denote the number of coprime integer pairs within the circle

a2 + b2 ≤ x. It is an exercise to deduce that

(1.2) V (x) =
6
π
x+O(x1/2 exp(−c log3/5 x(log log x)−2/5)),

where c is some absolute constant. The problem of reducing the exponent
1/2 is open. One way to make progress is to assume the Riemann Hypothesis
(RH). W. G. Nowak [11] proved that RH implies

(1.3) V (x) =
6
π
x+O(x15/38+ε).

D. Hensley [5] also got a result of this type, but with a larger exponent.
The aim of this paper is to further improve this result. We have the

following

Theorem. If RH is true, then

(1.4) V (x) =
6
π
x+O(x11/30+ε).

Notations. e(x) = exp(2πix). m ∼ M means c1M ≤ m ≤ c2M for
absolute constants c1 and c2. E(x) always denotes the error term in the
circle problem. ε denotes an arbitrary small positive number and may be
different at each occurrence.
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2. Some preliminary lemmas and results. The following lemmas
are needed.

Lemma 1. Suppose 0 < c1λ1 ≤ |f ′(n)| ≤ c2λ1 and |f ′′(n)| ∼ λ1N
−1 for

N ≤ n ≤ cN . Then ∑

N<n≤cN
e(f(n))� λ−1

1 + λ
1/2
1 N1/2.

P r o o f. If c2λ1 ≤ 1/2, this estimate is contained in the Kuz’min–Landau
inequality; otherwise, the estimate follows from the well-known van der Cor-
put’s estimate for the second order derivative.

Lemma 2. Suppose a(n) = O(1), 0 < L ≤ M < N ≤ cL, L � 1, T ≥ 2.
Then

∑

M<n≤N
a(n) =

1
2πi

T\
−T

∑

L<l≤cL

a(l)
lit
· N

it −M it

t
dt

+O

(
min

(
1,

L

T‖M‖
)

+ min
(

1,
L

T‖N‖
)

+O

(
L log(1 + L)

T

))
.

P r o o f. This is the well-known Perron formula.

Lemma 3. Suppose f(n)� P and f ′(n)� ∆ for n ∼ N. Then
∑

n∼N
min

(
D,

1
‖f(n)‖

)
� (P + 1)(D +∆−1) log(2 +∆−1).

P r o o f. This is contained in Lemma 2.8 of Krätzel [9].

Lemma 4. Suppose a(n) are any complex numbers and 1 ≤ Q ≤ N. Then
∣∣∣
∑

N<n≤cN
a(n)

∣∣∣
2
� N

Q

∑

0≤q≤Q

(
1− q

Q

)
<

∑

N<n≤cN−q
a(n)a(n+ q).

P r o o f. This is Weyl’s inequality.

Lemma 5. Let M ≤ N < N1 ≤ M1 and a(n) be any complex numbers.
Then

∣∣∣
∑

N<n≤N1

a(n)
∣∣∣ ≤

∞\
−∞

K(θ)
∣∣∣

∑

M<n≤M1

a(m)e(mθ)
∣∣∣ dθ
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with K(θ) = min(M1 −M + 1, (π|θ|)−1, (π|θ|)−2) and
∞\
−∞

K(θ) dθ ≤ 3 log(2 +M1 −M).

P r o o f. This is Lemma 2.2 of Bombieri and Iwaniec [2].

Lemma 6. Let αβ 6= 0,∆ > 0,M ≥ 1, N ≥ 1. Let A(M,N,∆) be the
number of quadruples (m, m̃, n, ñ) such that

|(m̃/m)α − (ñ/n)β | < ∆

with M ≤ m, m̃ ≤ 2M and N ≤ n, ñ ≤ 2N . Then

A(M,N,∆)�MN log 2MN +∆M2N2.

P r o o f. This is Lemma 1 of [3].

Lemma 7. Suppose f(x) and g(x) are algebraic functions in [a, b] and

|f ′′(x)| ∼ 1
R
, |f ′′′(x)| � 1

RU
,

|g(x)| � G, |g′(x)| � GU−1
1 , U, U1 ≥ 1.

Then
∑

a<n≤b
g(n)e(f(n)) =

∑

α<u≤β
bu

g(nu)√
|f ′′(nu)|e(f(nu)− unu + 1/8)

+O(G log(β − α+ 2) +G(b− a+R)(U−1 + U−1
1 ))

+O(Gmin(
√
R, 1/〈α〉) +Gmin(

√
R, 1/〈β〉)),

where [α, β] is the image of [a, b] under the mapping y = f ′(x), nu is the
solution of the equation f ′(x) = u,

bu =
{

1 for α < u < β,
1
2 for u = α ∈ Z or u = β ∈ Z,

and the function 〈t〉 is defined as follows:

〈t〉 =
{ ‖t‖ if t is not an integer ,
β − α otherwise,

where ‖t‖ = minn∈Z{|t− n|}.
P r o o f. This is Theorem 2.2 of Min [10].

Lemma 8. Suppose Ai, Bj , ai and bj are all positive numbers. If Q1

and Q2 are real with 0 < Q1 ≤ Q2, then there exists some q such that
Q1 ≤ q ≤ Q2 and
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m∑

i=1

Aiq
ai +

n∑

j=1

Bjq
−bj

≤ 2m+n
( m∑

i=1

n∑

j=1

(Abji B
ai
j )1/(ai+bj) +

m∑

i=1

AiQ
ai
1 +

n∑

j=1

BjQ
−bj
2

)
.

P r o o f. This is Lemma 3 of Srinivasan [12].

Lemma 9. Suppose x is a large positive real number , M,N,U are positive
integers such that 1 ≤ N ≤M1/4, xε ≤M ≤ x4/15 and M1/6 ≤ U ≤M5/6.
Then

S =
∑

n∼N
an
∑

u∼U
bu

∑

v∼MU−1

cve

(√
nx

uv

)
(2.1)

� (x1/12M7/12N11/12 +M11/12N1/2) log x,

where an, bu, cv are coefficients satisfying |an| ≤ 1, |bu| ≤ 1, |cv| ≤ 1.

P r o o f. We use Heath-Brown’s method [4].
Without loss of generality, suppose M1/2 ≤ U ≤ M5/6; otherwise we

change the order of U and V = MU−1. Suppose 1 ≤ Q ≤ V N is a parameter
to be determined. For each q (1 ≤ q ≤ V N) define

wq =
{

(v, n)
∣∣∣∣ v ∼ V, n ∼ N,

2
√
N(q − 1)
V Q

<

√
n

v
<

2
√
Nq

V Q

}
.

Then

S =
∑

u∼U
bu

Q∑
q=1

( ∑

(v,n)∈wq
ancve

(√
nx

uv

))
.

By Cauchy’s inequality

|S|2 � UQ
∑

u∼U

Q∑
q=1

∑

(v1,n1),(v2,n2)∈wq
an1an2(2.2)

× cv1cv2e

(√
x

u

(√
n1

v1
−
√
n2

v2

))

� UQ
∑

(∗)

∣∣∣∣
∑

u∼U
e

(√
x

u

(√
n1

v1
−
√
n2

v2

))∣∣∣∣,

where (∗) denotes the condition

(2.3)
∣∣∣∣
√
n1

v1
−
√
n2

v2

∣∣∣∣ ≤
2
√
N

VQ
, v1, v2 ∼ V, n1, n2 ∼ N.
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Let λ =
√
n1/v1 − √n2/v2. Then by Lemma 1, the inner sum in (2.2) can

be estimated by

(2.4) min
(
U,

U2
√
x|λ|

)
+ x1/4|λ|1/2U−1/2.

By Lemma 6, the contribution of U (namely |λ| ≤ Ux−1/2) to |S|2 is

(2.5) U2Q(V N log 2V N + Ux−1/2N3/2V 3)� U2QVN log 2V N.

The contribution of U2x−1/2|λ|−1 (|λ| > Ux−1/2) is

U2QVN(log 2V N)2

by a similar argument. The contribution of x1/4|λ|1/2U−1/2 is (note |λ| �√
N/(V Q), Q� V N)

x1/4U1/2N9/4V 3/2Q−1/2.

Now, taking Q = 1 + [x1/6U−1N5/6V 1/3], we get

(2.6) |S| log−1 2V N � UV 1/2N1/2 + x1/12U1/2V 2/3N11/12,

whence the lemma follows since M1/2 ≤ U ≤M5/6.

Lemma 10. Suppose x,M,N satisfy the conditions of Lemma 9. Then

T (M,N) =
∑

n∼N
a(n)

∑

m∼M
µ(m)e

(√
nx

m

)
(2.7)

� (x1/12M7/12N11/12 +M11/12N1/2)xε,

where |a(n)| ≤ 1.

P r o o f. By Heath-Brown’s identity (k = 4), T (M,N) can be written as
O(log8 x) sums of the form

(2.8) T =
∑

n∼N
a(n)

∑

m1∼M1

. . .
∑

m8∼M8

µ(m1) . . . µ(m4)e
( √

nx

m1 . . .m8

)
,

where M � M1 . . .M8 � M,M1,M2,M3,M4 ≤ (2M)1/4. Some mi may
only take value 1.

To prove the lemma we consider three cases.

Case 1: There is some Mi such that Mi > M5/6. It must follow that
i ≥ 5; i = 8 for example. We use the exponent pair (1/6, 4/6) to estimate the
sum on m8 and estimate other variables trivially, to get (F =

√
NxM−1)

T � NMM−1
8

(
M8

F
+
(
F

M8

)1/6

M
2/3
8

)
(2.9)

� x−1/2M2N1/2 + x1/12M5/12N13/12

� x1/12M5/12N13/12 � x1/12M7/12N11/12.
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Case 2: There is some Mi satisfying M1/6 ≤ Mi ≤ M5/6. Let u = mi,
v =

∏
j 6=imj , U = Mi. Then by Lemma 9 we get

(2.10) x−εT � x1/12M7/12N11/12 +M11/12N1/2,

where xε comes from the divisor argument.

Case 3: All Mi satisfy Mi ≤ M1/6. Without loss of generality, suppose
M1 ≥M2 ≥ . . . ≥M8. Let l be the first positive integer j such that

(2.11) M1 . . .Mj > M1/6;

then l ≥ 2. Thus we have

M1 . . .Ml ≤ (M1 . . .Ml−1)Ml ≤M2/6.

Now take u = m1 . . .mj , v = mj+1 . . .m6, U = M1 . . .Mj . By Lemma 9,
(2.10) still holds.

Lemma 10 follows from the three cases.

Now we prove the following proposition. It plays an important role in
this paper. The idea of the proof has been used by several authors; see Jia
[8], Baker and Harman [1], for example.

Proposition 1. Suppose M,N are large positive numbers, A > 0, α, β
are rational numbers (not non-negative numbers). Suppose m ∼M, n ∼ N,
F = AMαNβ � N, |a(m)| ≤ 1, |b(n)| ≤ 1. Then

S =
∑

M<m≤2M

∑

N<n≤2N

a(m)b(n)e(Amαnβ)

� (MN1/2 + F 4/20M13/20N15/20 + F 4/23M15/23N18/23

+ F 1/6M2/3N7/9 + F 1/5M3/5N4/5 + F 1/10M4/5N7/10) log4 F.

P r o o f. Without loss of generality, we suppose β > 0; for β < 0, the
proof is the same. By Cauchy’s inequality and Lemma 4 we get

|S|2 �M
∑

M<m≤2M

∣∣∣
∑

N<n≤2N

b(n)e(Amαnβ)
∣∣∣
2

(2.12)

� M2N2

Q
+
MN

Q
|Σ1|

with

Σ1 =
Q∑
q=1

(
1− q

Q

) ∑

N<n≤2N−q
b(n)b(n+ q)

∑

M<m≤2M

e(Amαg(n, q)),

where Q is a parameter satisfying logN ≤ Q ≤ N log−1N, g(n, q) =
(n+ q)β − nβ .
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We write

Σ1 =
∑

1≤q≤Q

∑

2N−Q<n≤2N−q

∑
m

+
∑

q≤B

∑

N<n≤2N−Q

∑
m

(2.13)

+
∑

B≤q≤Q

∑

N<n≤2N−Q

∑
m

= Σ2 + Σ3 + Σ4,

where B = max(logN,MN/(c(α, β))F ) and

c(α, β) = 2|αβ|max(2α−1, 1) max(2β−1, 1).

By Lemma 1 we have

Σ2 �
(
MNQ

F
+
F 1/2Q5/2

N1/2

)
logN,(2.14)

Σ3 �
(
MN2

F
+ F 1/2N1/2

)
log2N.(2.15)

So we only need to bound Σ4. Notice that Σ4 can be written as the sum
of O(logQ) exponential sums of the form

(2.16) Σ5 =
∑

Q1<q≤2Q1

c(q)
∑

N<n≤2N−Q
b(n)b(n+q)

∑

M<m≤2M

e(Amαg(n, q)),

where B ≤ Q1 ≤ Q/2, c(q) = 1− q/Q.
By Lemma 7 we have

(2.17)
∑

M<m≤2M

e(Amαg(n, q))

= c3
∑

U1<u≤U2

(Ag)1/(2(1−α))

u(1−α/2)/(1−α)
e(c4A1/(1−α)g1/(1−α)u−α/(1−α))

+O

(
logF +

MN

Fq
+ min

(
MN1/2

F 1/2q1/2
,max

(
1
〈U2〉 ,

1
〈U1〉

)))
,

where U1 = c5AM
α−1g, U2 = c6AM

α−1g, g = g(n, q). By Lemma 3, the
contribution of the error term to Σ5 is

NQ1 logF +MN2F−1 logQ1 + F 1/2Q
3/2
1 N−1/2.

It can be easily seen that g(n, q) < βqnβ−1 for 0 < β < 1, g(n, q) >
βqnβ−1 for β > 1. If βqAMα−1nβ−1 − AMα−1g > log−1N, then by the
trivial estimate we have (i = 5, 6)

(2.18)
∑
q∼q1

∑

n∼N

∣∣∣∣
∑

ciAMα−1g<u≤ciβqAMα−1nβ−1

(Ag)1/(2(1−α))

u(1−α/2)/(1−α)

× e(c4A1/(1−α)g1/(1−α)u−α/(1−α))
∣∣∣∣

� F 1/2Q
5/2
1 N−1/2 log2N.
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Now suppose βqAMα−1nβ−1−AMα−1g ≤ log−1N. Notice that the fact
that

[ciβqAMα−1nβ−1]− [ciAMα−1g] = 1

always implies

‖ciAMα−1g‖ ≤ ciβqAMα−1nβ−1 − ciAMα−1g = δi.

We have

(2.19)
∑

ciAMα−1g<u≤ciβqAMα−1nβ−1

(Ag)1/(2(1−α))

u(1−α/2)/(1−α)

� MN1/2

F 1/2Q
1/2
1

∑

ciAMα−1g<u≤ciβqAMα−1nβ−1

1

� MN1/2

F 1/2Q
1/2
1

min
(

1,
δi

‖ciAMα−1g‖
)

� MN1/2

F 1/2Q
1/2
1

min
(

1,
FQ2

1

MN2 ·
1

‖ciAMα−1g‖
)
,

thus by Lemma 3,

(2.20)
∑
q∼q1

∑

n∼N

∣∣∣∣
∑

ciAMα−1g<u≤ciβqAMα−1nβ−1

(Ag)1/(2(1−α))

u(1−α/2)/(1−α)

× e(c4A1/(1−α)g1/(1−α)u−α/(1−α))
∣∣∣∣

� F 1/2Q
3/2
1 N−1/2 log2N.

Now it suffices to bound

Σ6 =
∑

Q1<q≤2Q1

c(q)
∑

N<n≤2N−Q
b(n)b(n+ q)(2.21)

×
∑
u

(Ag)1/(2(1−α))

u(1−α/2)/(1−α)
e(c4A1/(1−α)g1/(1−α)u−α/(1−α)),

where

c5βqAM
α−1nβ−1 < u ≤ c6βqAMα−1nβ−1.

By Lemmas 2 and 3 we get (choose T = F 10)

(2.22) Σ6 � |Σ7|+ F 1/2Q
3/2
1 N−1/2 logN

with



Coprime integer pairs within a circle 9

Σ7 =
∑

Q1<q≤2Q1

c(q)
∑

N<n≤2N−Q
b(n)b(n+ q)

∑
u

(Ag)1/(2(1−α))

u(1−α/2)/(1−α)
(2.23)

× qitAitM (α−1)itn(β−1)it

uit
e(c4A1/(1−α)g1/(1−α)u−α/(1−α)),

where t is a real number independent of the variables and

c7FQ1(MN)−1 < u ≤ c8FQ1(MN)−1.

It is easy to see that

Σ7 =
∑
u

A1/(2(1−α))+itM (α−1)it

u(1−α/2)/(1−α)+it

∑

N<n≤2N−Q
b(n)n(β−1)it(2.24)

×
∑

Q1<q≤2Q1

j(q)b(n+ q)g1/(2(1−α))

× e(c4A1/(1−α)g1/(1−α)u−α/(1−α))

�
∑
u

(Ag)1/(2(1−α))

u(1−α/2)/(1−α)
(Q1N

β−1)1/(2(1−α))Σ8(u)

� F 1/2Q
1/2
1 N−1/2Σ8(u0)

for some u0 with

(2.25) Σ8(u) =
∑

N<n≤2N−Q

∣∣∣
∑

Q1<q≤2Q1

j(q)b(n+ q)g1/(2(1−α))
0

× e(c4A1/(1−α)g1/(1−α)u−α/(1−α))
∣∣∣,

where j(q) = c(q)qit, 1� g0 = g(Q1N
β−1)−1 � 1.

Suppose 10 ≤ R ≤ Q1 log−1/2N is a parameter to be determined. By
Cauchy’s inequality and Lemma 4 we get

Σ8(u)2 � N
∑
n

∣∣∣
∑
q

j(q)b(n+ q)g1/(2(1−α))
0(2.26)

× e(c4A1/(1−α)g1/(1−α)u−α/(1−α))
∣∣∣
2

� N2Q2
1

R
+
NQ1

R

∑

1≤r≤R
|Er|,

where

Er =
∑

N<n≤2N−Q

∑

Q1<q≤2Q1−r
j(q)b(n+ q)g1/(2(1−α))

0 (n, q)

× j(q + r)b(n+ q + r)g1/(2(1−α))
0 (n, q + r)

× e(c4A1/(1−α)u−α/(1−α)(g1/(2(1−α))(n, q)− g1/(2(1−α))(n, q + r))).
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So it reduces to bound Er for fixed r. Making the change of variable
n+ q = l, we have

Er =
∑

Q1<q≤2Q1−r
j(q)j(q + r)

∑

N+q<l≤2N+q−Q
b(l)b(l + r)g1/(2(1−α))

0 (l − q, q)

× g1/(2(1−α))
0 (l − q, q + r)

× e(c4A1/(1−α)u−α/(1−α)(g1/(2(1−α))(l, q)− g1/(2(1−α))(l, q + r)))

=
∑

N+Q1<n≤2N+2Q1−r−Q
b(n)b(n+ r)

×
∑

max(Q1,n−2N+Q)<q≤min(2Q1−r,n−N)

j(q)j(q + r)

× g1/(2(1−α))
0 (n− q, q)g1/(2(1−α))

0 (n− q, q + r)

× e(c4A1/(1−α)u−α/(1−α)k(n, q, r)),

where

k(n, q, r) = g1/(2(1−α))(n− q, q)− g1/(2(1−α))(n− q, q + r).

By Lemma 5 we get

Er log−1N �
∑

n∼N

∣∣∣
∑

q∼Q1

j(q)j(q + r)g1/(2(1−α))
0 (n− q, q)

× g1/(2(1−α))
0 (n− q, q + r)e(c4A1/(1−α)u−α/(1−α)k(n, q, r) + θ0q)

∣∣∣,

where θ0 is a real number independent of n and q.
Suppose 10 ≤ T ≤ Q1 log−1/2N is a parameter to be determined. By

Cauchy’s inequality and Lemma 4 we get

(2.27) |Er|2 log−2N � N2Q2
1

T
+
NQ1

T
|Dt(r)|,

with

Dt(r) =
∑

n∼N

∑

Q1<q≤2Q1−t
j(q)j(q + r)g1/(2(1−α))

0 (n− q, q)

× g1/(2(1−α))
0 (n− q, q + r)j(q + t+ r)j(q + t)

× g1/(2(1−α))
0 (n− q − t, q + t)g1/(2(1−α))

0 (n− q − t, q + t+ r)

× e(c4A1/(1−α)u−α/(1−α)(k(n, q, r)− k(n, q + t, r)))

�
∑

q∼Q1

∣∣∣
∑

n∼N
φ(n)e(f(n))

∣∣∣,
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where

φ(n) = g
1/(2(1−α))
0 (n− q, q)g1/(2(1−α))

0 (n− q, q + r)

× g1/(2(1−α))
0 (n− q − t, q + t)g1/(2(1−α))

0 (n− q − t, q + t+ r)
and

f(n) = c4A
1/(1−α)u−α/(1−α)(k(n, q, r)− k(n, q + t, r)).

It is an easy exercise to verify that φ(n) is monotonic and

|f ′(n)| ∼ Frt

Q1N2 , |f ′′(n)| ∼ Frt

Q1N3 (N < n ≤ 2N);

thus by Lemma 1 we get

(2.28) Dt(r)� Q1

(
Q1N

2

Frt
+

(Frt)1/2

(Q1N)1/2

)
=
Q2

1N
2

Frt
+

(FrtQ1)1/2

N1/2
.

Inserting (2.28) into (2.27) we get

(2.29) |Er|2 log−2N � Q2
1N

2

T
+
Q3

1N
3

FrT
+Q

3/2
1 (NFTr)1/2.

Notice that (2.29) is also true for 0 < T < 10; then by Lemma 8 choosing a
best T ∈ (0, Q1 log−1/2N) we get

(2.30) |Er|2 log−2N � N1/2Q
5/6
1 F 1/6r1/6 +N2/3Q1 +NQ

1/2
1 +

N3/2Q1

F 1/2r1/2
.

Inserting (2.30) into (2.26) we have

(2.31) Σ8(u)2 log−2N

� Q2
1N

2

R
+N3/2Q

11/6
1 F 1/6R1/6 +

N5/2Q2
1

F 1/2R1/2
+N5/3Q2

1 +N2Q
3/2
1 .

This is also true for 0 < R ≤ 10. Choosing a best R ∈ (0, Q1 log−1/2N) via
Lemma 8 we get

Σ8(u) log−2N � N11/14Q
13/14
1 F 1/14 +N14/16Q

15/16
1(2.32)

+N5/4Q
3/4
1 F−1/4 +N5/6Q1 +NQ

3/4
1 .

Inserting (2.32) into (2.24) we have

Σ7 � N4/14Q
20/14
1 F 8/14 +N6/16Q

23/16
1 F 8/16 +N3/4Q

5/4
1 F 1/4(2.33)

+N1/3Q
3/2
1 F 1/2 +N1/2Q

5/4
1 F 1/2.

Combining (2.17), (2.18), (2.20), (2.22) and (2.33) we get

Σ5 log−4 F � N4/14Q20/14F 8/14 +N6/16Q23/16F 8/16(2.34)

+N3/4Q5/4F 1/4 +N1/3Q3/2F 1/2

+N1/2Q5/4F 1/2 +NQ+MN2F−1

+ F 1/2Q5/2N−1/2.
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Inserting (2.14), (2.15) and (2.34) into (2.12) we get

|S|2 log−6 F � M2N2

Q
+MN18/14Q6/14F 8/14(2.35)

+MN22/16Q7/16F 8/16 +MN7/4Q1/4F 1/4

+MN4/3Q1/2F 1/2 +MN3/2Q1/4F 1/2 +MN2

+M2N3Q−1F−1 +MN1/2Q3/2F 1/2.

Since Q < N � F, we have

MN2 +MN7/4Q1/4F 1/4 �MN3/2Q1/4F 1/2,

M2N3(FQ)−1 �M2N2Q−1.

So we obtain

|S|2 log−6 F � M2N2

Q
+MN18/14Q6/14F 8/14(2.36)

+MN22/16Q7/16F 8/16 +MN4/3Q1/2F 1/2

+MN3/2Q1/4F 1/2 +MN1/2Q3/2F 1/2.

Note that (2.36) is trivial for 0 < Q ≤ logN. Now the proposition follows
from choosing a best Q ∈ (0, N log−1N) via Lemma 8.

3. An expression of the error term. In the rest of this paper, we
always use EP (x) to denote the difference V (x)− 6

πx. The aim of this section
is to give an expression of EP (x) subject to RH.

Let y be a parameter, xε ≤ y ≤ x1/2−ε,

(3.1) f1(s) =
∑

n≤y
µ(n)n−s, f2(s) = ζ−1(s)− f1(s).

Let r(n) be the number of representations of n as a sum of two squares.
Then

V (x) =
∑

a2+b2≤x
(a,b)=1

1 =
∑

a2+b2≤x

∑

m|(a,b)
µ(m)(3.2)

=
∑

m2(a2+b2)≤x
µ(m) =

∑

m2k≤x
µ(m)r(k)

=
∑

m≤y
+
∑
m>y

= Σ1 + Σ2, say.

Notice that for σ > 1,

(3.3)
∞∑
n=1

r(n)n−s = 4ζ(s)L(s, χ),
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where χ is the non-principal character mod 4, we have

Σ1 =
∑

m≤y
µ(m)P

(
x

m2

)
(3.4)

=
∑

m≤y
µ(m)

(
Ress=1

4ζ(s)L(s, χ)
s

(
x

m2

)s
+ E

(
x

m2

))

= Ress=1(4f1(2s)ζ(s)L(s, χ)xss−1) +
∑

m≤y
µ(m)E

(
x

m2

)
.

To treat Σ2 we begin with

f2(s) =
∑
m>y

µ(m)m−s

for σ > 1. Hence

(3.5) 4f2(2s)ζ(s)L(s, χ) =
∞∑
n=1

b(n)n−s (σ > 1),

where

b(n) =
∑

n=m2k,m>y

µ(m)r(k).

By Perron’s formula we have

(3.6) Σ2 =
∑

n≤x
b(n) =

1
2πi

1+ε+ix2\
1+ε−ix2

g(s) ds+O(xε),

where

g(s) = 4f2(2s)ζ(s)L(s, χ)xss−1.

By Cauchy’s theorem, we have

(3.7)
1

2πi

1+ε+ix2\
1+ε−ix2

g(s) ds = I1 + I2 − I3 + Ress=1g(s),

where

I1 =
1

2πi

1+ε+ix2\
0.5+ε+ix2

g(s) ds, I2 =
1

2πi

0.5+ε+ix2\
0.5+ε−ix2

g(s) ds,

I3 =
1

2πi

1+ε−ix2\
0.5+ε−ix2

g(s) ds.

Since RH is true, it follows that

ζ(s)� |t|ε + 1, σ ≥ 0.5 + ε,(3.8)
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f2(2s)� y−1/2(|t|ε + 1), σ ≥ 0.5 + ε.(3.9)

For L(s, χ), we have

(3.10) L(s, χ)� (|t|+ 1)(1−σ)/2, 0.5 ≤ σ ≤ 1.

Using (3.8)–(3.10) we get

I1 − I3 � y−1/2(1 + xε),(3.11)

I2 � y−1/2x1/2+ε
( x2\

1

|L(1/2 + ε+ it, χ)|
t

dt+ 1
)

(3.12)

� y−1/2x1/2+ε.

Combining (3.6)–(3.12) we get

(3.13) Σ2 = Ress=1(4f2(2s)ζ(s)L(s, χ)xss−1) +O(y−1/2x1/2+ε).

From (3.2), (3.4) and (3.13) we get

V (x) = Ress=1(4ζ−1(2s)ζ(s)L(s, χ)xss−1)(3.14)

+
∑

m≤y
µ(m)E

(
x

m2

)
+O(y−1/2x1/2+ε)

=
6
π
x+

∑

m≤y
µ(m)E

(
x

m2

)
+O(y−1/2x1/2+ε).

Now we obtain the main result of this section.

Proposition 2. If RH is true, then for xε ≤ y ≤ x1/2−ε, we have

(3.15) EP (x) =
∑

m≤y
µ(m)E

(
x

m2

)
+O(y−1/2x1/2+ε).

4. Proof of the Theorem. Take y = x4/15 in Proposition 2. We only
need to estimate the sum

∑

m∼M
µ(m)E

(
x

m2

)

for x1/10 �M � y. For M � x1/10, we have trivially

(4.1)
∑

m≤x1/10

µ(m)E
(
x

m2

)
�

∑

m≤x1/10

x1/3m−2/3 � x11/30.

By the well-known Voronoi formula of E(t) (see [7], 13.8) we get



Coprime integer pairs within a circle 15

(4.2) x−ε
∑

m∼M
µ(m)E

(
x

m2

)

�
∣∣∣∣
∑

m∼M

µ(m)x1/4

m1/2

∑

n≤x4/15

r(n)
n3/4

e

(√
nx

m

)∣∣∣∣+ x11/30.

It now suffices to show that (1� N � Y )

(4.3) S(M,N) =
∑

m∼M

µ(m)x1/4

m1/2

∑

n∼N

r(n)
n3/4

e

(√
nx

m

)
� x11/30+ε.

We consider three cases.

Case 1: M ≤ N ≤ x4/15. Let

T (M,N) =
∑

m∼M

µ(m)M1/2

m1/2

∑

n∼N

r(n)N3/4−ε

n3/4
e

(√
nx

m

)
.

By Proposition 1 (take (X,Y ) = (N,M)) we get

x−εT (M,N)� NM1/2 + x2/20N15/20M11/20(4.4)

+ x2/23N17/23M14/23 + x1/12N15/20M11/18

+ x2/20N14/20M12/20 + x1/20N17/20M12/20,

whence

x−εS(M,N)� x1/4N1/4 + x7/20M1/20 + x31/92M9/92(4.5)

+ x1/3M1/9 + x3/10N1/10M1/10

� x109/300 � x11/30.

Case 2: M1/4 ≤ N ≤M . We again use Proposition 1 to bound S(M,N)
(now take (X,Y ) = (M,N)) and get

x−εS(M,N)� x7/20N1/10M−1/20 + x31/92N11/92M−1/46(4.6)

+ x1/3N1/9 + x7/20N3/20M−1/10 + x3/10M1/5

+ x1/4N−1/4M1/2

� x109/300 + x1/4M7/16 � x11/30.

Case 3: N < M1/4. We use Lemma 10 to bound T (M,N) and get

x−εT (M,N)� x1/12N11/12M1/12 +N1/2M11/12,

whence we have

x−εS(M,N)� x1/3N1/6M1/12 + x1/4M5/12(4.7)

+ x1/3M1/8 + x1/4M5/12

� x11/30.

This completes the proof of the Theorem.
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