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On the average number of direct factors
of finite abelian groups (II)

by

Wenguang Zhai (Jinan)

1. Introduction. Let a : n→ a(n) be as usual the arithmetic function
which counts the number of finite abelian groups of given order n and define
t = a ∗ a and ω = a ∗ a ∗ a. We shall be concerned with obtaining estimates
for the sums T (x) =

∑
n≤x t(n) and W (x) =

∑
n≤x ω(n).

The asymptotic behaviour of T (x) was first studied by Cohen [1], who
derived that

(1.1) T (x) = c1x(log x+ 2γ − 1) + c2x+∆0(x)

with ∆0(x)� √x log x. Krätzel [6] improved this result to

(1.2) ∆0(x) = c3
√
x((log x)/2 + 2γ − 1) + c4

√
x+∆1(x)

with ∆1(x) � x5/12 log4 x. The exponent 5/12 was improved to 83/201,
45/109, 9/22, 3/8, 7/19, 4/11 by Menzer [8], Menzer and Seibold [10], Men-
zer [9], Yu [14], Liu [7], Zhai and Cao [15], respectively. It should be men-
tioned that recently J. Wu [13] has obtained a better exponent 47/131.

H. Menzer [9] studied the asymptotic behaviour of W (x). He proved that

(1.3) W (x) = xP
(2)
1 (log x) +

√
xP

(2)
2 (log x) +O(x76/153 log4 x),

where P (2)
j (j = 1, 2) denotes a polynomial of degree 2.

The aim of this short note is to further improve Menzer’s result by a
different approach giving

Theorem 1. We have the asymptotic formula

(1.4) W (x) = xP
(2)
1 (log x) +

√
xP

(2)
2 (log x) +O(x53/116+ε).
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Following H. Menzer [9], we only need to study the asymptotic behaviour
of the divisor function

d(1, 1, 1, 2, 2, 2;n) =
∑

n1n2n3m2
1m

2
2m

2
3=n

1.

Let ∆(1, 1, 1, 2, 2, 2;x) denote the error term of the summation function

D(1, 1, 1, 2, 2, 2;x) =
∑

n≤x
d(1, 1, 1, 2, 2, 2;n).

Then Theorem 1 follows from

Theorem 2. We have

(1.5) ∆(1, 1, 1, 2, 2, 2;x) = O(x53/116+ε).

The key of the proof is contained in Lemma 8 of Section 2, which con-
nects the problem with the well-known Piltz divisor problem. So the cor-
responding exponential sums are bilinear forms which can be estimated by
the well-known double large sieve inequality due to Bombieri and Iwaniec
(Proposition 1 of Fouvry and Iwaniec [2]; see Lemma 1 below). A detailed
proof of Theorem 2 is given in Section 3.

Notations. e(t) = exp(2πit). n ∼ N means C1N < n < C2N for some
absolute constants C1 and C2. ε is a sufficiently small number which may
be different at each occurrence. ∆3(t) always denotes the error term of the
Piltz divisor problem. We use notation SC(Σ) to denote the summation
conditions of the sum Σ if these conditions are complicated. For example,
instead of

F (x) =
∑

a≤n≤x
f(n)

we write

F (x) =
∑

f(n), SC(Σ) : a ≤ n ≤ x.

2. Some preliminary lemmas. We need the following lemmas.

Lemma 1. Let X and Y be two finite sets of real numbers, X ⊂ [−X,X],
Y ⊂ [−Y, Y ]. Then for any complex functions u(x) and v(y) we have
∣∣∣
∑

x∈X

∑

y∈Y
u(x)v(y)e(xy)

∣∣∣
2

≤ 20(1 +XY )
∑

x,x′∈X
|x−x′|≤Y −1

|u(x)u(x′)|
∑

y,y′∈Y
|y−y′|≤X−1

|v(y)v(y′)|.

P r o o f. This is Proposition 1 of Fouvry and Iwaniec [2].
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Lemma 2. Suppose that 0 < a < b ≤ 2a and R is an open convex set in
C containing the real segment [a, b]. Suppose further that f(z) is analytic
on R, f(x) is real for real x in R, |f ′′(z)| ≤ M for z ∈ R, and there is a
constant k > 0 such that f ′′(x) ≤ −kM for all real x in R. Let α = f ′(b),
β = f ′(a) and define xv for each integer v in the range α < v < β by
f ′(xv) = v. Then∑

a<n≤b
e(f(n)) = e(−1/8)

∑

α<v≤β
|f ′′(xv)|−1/2e(f(xv)− vxv)

+O(M−1/2 + log(2 +M(b− a))).

P r o o f. This is Lemma 6 of Heath-Brown [3].

Lemma 3. Let αβ 6= 0, ∆ > 0, M ≥ 1 and N ≥ 1. Let A(M,N ;∆) be
the number of quadruples (m1,m2, n1, n2) such that

∣∣∣∣
(
m1

m2

)α
−
(
n1

n2

)β∣∣∣∣ < ∆

with M ≤ m1,m2 ≤ 2M and N ≤ n1, n2 ≤ 2N . Then

A(M,N ;∆)�MN log 2MN +∆M2N2.

P r o o f. This is Lemma 1 of Fouvry and Iwaniec [2].

Lemma 4. Let 0 < L ≤ N < M ≤ cL and al be complex numbers such
that |al| ≤ 1. Then

∑

N<n≤M
an =

1
2π

cL\
−cL

( ∑

L<l≤cL
all
−it
)

(M it −N it)t−1 dt+O(log(2 + L)).

P r o o f. This is essentially Lemma 6 of Fouvry and Iwaniec [2].

Lemma 5. For 1� Y � x2 we have

∆3(x) =
x1/3
√

3π

∑

1≤n≤Y

d3(n)
n2/3

cos(6(nx)1/3) +O(x2/3+εY −1/3).

P r o o f. See Chapter 3 of Ivić [4] or p. 80 of Min [11].

Lemma 6. Let M > 0, N > 0, um > 0, vn > 0, Am > 0, Bn > 0
(1 ≤ m ≤ M, 1 ≤ n ≤ N), and let Q1 and Q2 be given non-negative
numbers, Q1 ≤ Q2. Then there is a q such that Q1 ≤ q ≤ Q2 and

M∑
m=1

Amq
um +

N∑
n=1

Bnq
−vn

�
M∑
m=1

N∑
n=1

(Avnm B
um
n )1/(um+vn) +

M∑
m=1

AmQ
um
1 +

N∑
n=1

BnQ
−vn
2 .

P r o o f. See Srinivasan [12].
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Lemma 7. Suppose M ≥ 2, N ≥ 2, z ≥ 2 are positive numbers, α
and β are real non-integer constants and F = zMαNβ , a(m) � d3(m),
b(n)� d3(n). Then

∑

m∼M
a(m)

∑

n∼N
b(n)e(zmαnβ)

� (FMN)1/2
(

1 +
M

F

)1/2(
1 +

N

F

)1/2

log8 FMN.

P r o o f. This can be easily derived from Theorem 1 of Fouvry and Iwa-
niec [2] if we notice

∑
n≤x d

2
3(n)� x log8 x.

Lemma 8. We have

(2.1) ∆(1, 1, 1, 2, 2, 2;x)

=
∑

m≤x1/3

d3(m)∆3

(
x

m2

)
+

∑

m≤x1/3

d3(m)∆3

(√
x

m

)
+O(x1/3+ε).

P r o o f. This lemma plays an important role in our proof and the same
idea has been used in Zhai and Cao [15].

We only sketch the proof since it is elementary and direct. We leave the
details to the reader.

We begin with

(2.2) D(1, 1, 1, 2, 2, 2;x)

=
∑

n≤x
d(1, 1, 1, 2, 2, 2;n)

=
∑

n1n2n3m2
1m

2
2m

2
3≤x

1 =
∑

m2n≤x
d3(n)d3(m)

=
∑

n≤x1/3

d3(n)D3

(√
x

n

)
+

∑

m≤x1/3

D3

(
x

m2

)
−D2

3(x1/3)

= Σ1 + Σ2 −D2
3(x1/3),

say, where D3(x) =
∑
n≤x d3(n). We use the following abelian partial sum-

mation formula:

(2.3)
∑

n≤u
d3(n)f(n) = D3(u)f(u)−

u\
1

D3(t)f ′(t) dt

to Σ1 and Σ2. For D3(u), we use

(2.4) D3(u) = d1u log2 u+ d2u log u+ d3u+∆3(u)
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with ∆3(u)� u1/2 and

(2.5)
T\
1

∆3(u) du� T 1+ε (T ≥ 2).

Formula (2.4) is in Chapter 13 of Ivić [4]. Formula (2.5) can be easily derived
from Lemma 5.

After some calculations, we can get

D(1, 1, 1, 2, 2, 2;x) = main terms +
∑

m≤x1/3

d3(m)∆3

(
x

m2

)
(2.6)

+
∑

n≤x1/3

d3(n)∆3

(√
x

n

)
+O(x1/3+ε),

whence our lemma follows.

3. Proof of Theorem 2. In order to prove Theorem 2, we only need
to estimate the two sums in Lemma 8. We first prove the following

Proposition 1. We have the estimate
∑

m≤x1/3

d3(m)∆3

(
x

m2

)
= O(x53/116+ε).

P r o o f. We only need to show that

(3.1) S(M) =
∑

m∼M
d3(m)∆3

(
x

m2

)
� x53/116+ε

for any fixed 1�M � x1/3.

Case 1: M � x5/58. In this case (3.1) follows from Kolesnik’s well-known
estimate ∆3(u)� u43/96+ε (see Kolesnik [5]).

Case 2: x5/58 � M � x1/5. Suppose 1 � Y � x is a parameter to be
determined. By Lemma 5 we get

S(M)� x1/3

∣∣∣∣
∑

m∼M

d3(m)
m2/3

∑

n≤Y

d3(n)
n2/3

e

(
3(nx)1/3

m2/3

)∣∣∣∣+
x2/3+ε

(YM)1/3
+ xε(3.2)

� x1/3|S(M,N)| log x+
x2/3+ε

(YM)1/3
+ xε

for some 1� N � Y , where

(3.3) S(M,N) =
∑

m∼M

d3(m)
m2/3

∑

n∼N

d3(n)
n2/3

e

(
3(nx)1/3

m2/3

)
.
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We choose Y = xM−2, thus

x2/3+ε

(YM)1/3
� (xM)1/3xε � x2/5+ε.

Let a(m) = d3(m)(M/m)2/3, b(n) = d3(n)(N/n)2/3, F = (xN)1/3M−2/3,
and

T (M,N) =
∑

m∼M
a(m)

∑

n∼N
b(n)e

(
3(nx)1/3

m2/3

)
.

Obviously

(3.4) S(M,N)� x1/3(MN)−2/3|T (M,N)|.
Since M � x1/5, it is easy to check that F �M . If N � x1/2/M , then

F � N . By Lemma 7 we can get

T (M,N)� (FMN)1/2 log8 x,

which combined with (3.4) gives

(3.5) S(M,N)� x1/2M−1/2 log8 x� x53/116+ε.

Now suppose N � x1/2/M . Using the expression d3(n) =
∑
n=uvw 1, we

find that T (M,N) can be divided into O(log3 x) sums of the form

T (M,U, V,W ) =
∑

m∼M
a(m)

∑

(u,v,w)

e

(
3(uvwx)1/3

m2/3

)
,

where

SC
( ∑

(u,v,w)

)
: N ≤ uvw ≤ 2N, U < u ≤ 2U, V < v ≤ 2V,

W < w ≤ 2W, u ≤ v ≤ w, UVW ∼ N.
It follows that W � N1/3. If W � N2/3, then by the exponent pair

(1/2, 1/2) we have

T (M,U, V,W ) log−8 x�MUV F 1/2 +MN/F(3.6)

� F 1/2MN1/3 +MN/F,

whose contribution to S(M,N) is

� F 3/2MN−2/3 log8 x+M log8 x� x1/2N−1/6 log8 x+M log8 x

� x5/12M1/6 log8 x+M log8 x� x9/20 log8 x,

where we used the assumptions N � x1/2/M and M � x1/5.
Later we always suppose N1/3 � W � N2/3, namely, N1/3 � UV �

N2/3. Let a = max(N/(uv),W, v), b = min(2W, 2N/(uv)). Using Lemma 2
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to the variable w we have

(3.7)
∑

a≤w≤b
e

(
3(uvwx)1/3

m2/3

)

= c0
∑
r

(xuv)1/4

m2/4r5/4
e

(
2(xuv)1/2

mr1/2

)
+O

(
log x+

W

F 1/2

)
,

where

SC
(∑

r

)
: B =

(xuv)1/3

(mb)2/3
≤ r ≤ (xuv)1/3

(ma)2/3
= A, r ∼ R = F/W.

Using Lemma 4 to the variable r we find that

(3.8)
∑

a≤w≤b
e

(
3(uvwx)1/3

m2/3

)

=
c0
2π

100F/W\
F/(100W )

( ∑

F/(100W )≤r≤100F/W

(xuv)1/4

m2/4r5/4+it
e

(
2(xuv)1/2

mr1/2

))

× Ait −Bit
t

dt+O(log x+WF−1/2 log x).

Thus we get

(3.9) T (M,U, V,W )

� W

F 1/2

∑

m∼M

∑

r∼R
d3(m)

∣∣∣∣
∑

(u,v)

c1(u)c2(v)e
(

2(xuv)1/2

mr1/2

)∣∣∣∣

+MN2/3 log x+MNF−1/2 log x

for some c1(u)� 1 and some c2(v)� 1, where

SC
( ∑

(u,v)

)
: U ≤ u < 2U, V ≤ v < 2V, u ≤ v.

Let T ∗ denote the exponential sum in the right side of (3.9). By Lemma 1
we get

(3.10) |T ∗|2 � FAB,
where

A =
∑
∗
d3(m)d3(m1), B =

∑
∗∗

1
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with

SC
(∑
∗

)
: |m−1r−1/2 −m−1

1 r
−1/2
1 | � (xUV )−1/2, m ∼M, r ∼ R,

SC
(∑
∗∗

)
: |u1/2v1/2 − u1/2

1 v
1/2
1 | �MR1/2x−1/2, u ∼ U, v ∼ V.

By Lemma 3 we get

(3.11) Ax−ε �MR+ (xUV )−1/2M3R5/2

and

B � UV log x+MR1/2x−1/2(UV )3/2(3.12)

� UV log x+ (UV )2/F � UV log x,

where we used the fact that F � N2/3.
Combining (3.9)–(3.12) we get

T (M,U, V,W )x−ε � F 5/4(UV )1/4M3/2x−1/4W−1/4(3.13)

+ (FMN)1/2 +MN2/3 +MNF−1/2

� (FMN)1/2 + x−1/4F 5/4M3/2N1/12

+MN2/3 +MNF−1/2,

whose contribution to S(M,N) is

� Fxε

N

(
(FMN)1/2 + x−1/4F 5/4M3/2N1/12 +MN2/3 +

MN

F 1/2

)

� (x1/2M−1/2 + x1/2N−1/6 + x1/3M1/3 + x1/6M4/6N1/6)xε

� (x1/2M−1/2 + x5/12M1/6 + x1/3M1/3)xε � x53/116+ε,

if we use the assumptions x1/2M−1 � N � xM−2 and M � x1/5.
Combining the above we see that (3.1) holds in Case 2.

Case 3: x1/5 �M � x1/3. We begin with (3.2). Using Lemma 7 directly
to bound T (M,N) we can get

S(M)x−ε � x1/2

M1/2
+ (xM)1/3 +

(xY )1/3

M1/6
(3.14)

+ x1/6M4/6Y 1/6 +
x2/3

(MY )1/3
.

Choosing a best Y ∈ [1, x1/2] via Lemma 6 we get

(3.15) S(M)x−ε � x1/2M−1/4 + x1/3M1/3 � x9/20.

This completes the proof of Proposition 1.

The second sum in Lemma 8 is handled in
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Proposition 2. We have the estimate
∑

m≤x1/3

d3(m)∆3

(√
x

m

)
= O(x4/9+ε).

P r o o f. It suffices to prove

(3.16) S1(M) =
∑

m∼M
d3(m)∆3

(√
x

m

)
� x4/9+ε

for 1�M � x1/3.
For M � x7/27, we use the trivial bound ∆3(u) � u1/2. For x7/27 �

M � x1/3, the proof of (3.16) is the same as that of Case 3 of Proposition 1.
This completes the proof of Proposition 2.

Theorem 2 immediately follows from Lemma 8 and the two propositions.
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gestions and for indicating Wu’s paper [13].
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