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Rapidly convergent series representations
for ζ(2n+ 1) and their χ-analogue

by

Masanori Katsurada (Kagoshima)

1. Introduction. Let s = σ + it be a complex variable. The Riemann
zeta-function ζ(s) is defined by

ζ(s) =
∞∑
m=1

m−s (Re s = σ > 1),

and its meromorphic continuation over the whole s-plane, whose only sin-
gularity is a simple pole at s = 1 with residue unity.

For specific values of ζ(s) at positive even integers, the formula

(1.1) ζ(2n) = (−1)n−1 (2π)2n

2(2n)!
B2n (n = 1, 2, . . .),

due to Euler, is classically known. Here Bn (n ≥ 0) is the Bernoulli number
defined by the Taylor series expansion

z

ez − 1
=
∞∑
n=0

Bn
n!
zn (|z| < 2π).

Evaluations in closed form like (1.1), however, for the values of ζ(s) at
positive odd integers have been unknown up to the present time.

It is the purpose of this paper to study rapidly convergent series rep-
resentations for the values of ζ(s) at positive odd integers. We shall prove
certain transformation formulae for the power series including the values of
ζ(s) at positive even integers in their coefficients (see Theorems 1 and 2
below). A particular case of each of these formulae implies the previously
known rapidly convergent series representations for the values of ζ(s) at
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positive odd integers. (One is classic, and the other is recently found.) A
χ-analogue of our transformation formulae will also be given (Theorem 3).

It was found by Euler in 1772 (see [Ay, p. 1080, Section 7]) that ζ(3) has
an infinite series representation

(1.2) ζ(3) =
1
7
π2
{

1− 4
∞∑

k=1

ζ(2k)
(2k + 1)(2k + 2)22k

}
.

This formula was rediscovered by Ramaswami [Ra] and (more recently) by
Ewell [Ew1]. The basic frame of Ewell’s proof of (1.2) was due to Boo Rim
Choe [Ch], who gave an elementary derivation of (1.1) for n = 1. Euler’s
formula (1.2) was in fact reproduced by Srivastava [Sr1, p. 7, (2.23)] from the
work of Ramaswami [Ra]. Inspired by Ewell’s rediscovery of (1.2) and by his
subsequent result [Ew2], Yue and Williams [YW] established a generalization
of (1.2), which, though complicated, gives an exact series representation for
ζ(2n+ 1) with any nonnegative integer n. The formula of Yue and Williams
was considerably simplified by Cvijović and Klinowski [CK, Theorem A],
who proved

ζ(2n+ 1) = (−1)n
(2π)2n

n(22n+1 − 1)
(1.3)

×
{ n−1∑

k=1

(−1)k−1 kζ(2k + 1)
(2n− 2k)!π2k +

∞∑

k=0

(2k)!ζ(2k)
(2n+ 2k)!22k

}

for any positive integer n, where the finite sum on the right-hand side is to
be regarded as null if n = 1. Since ζ(0) = −1/2, we see that (1.3) reduces
to (1.2) when n = 1.

Srivastava [Sr2] (see also [Sr3]) recently found the existence of certain
families of rapidly convergent series representations for ζ(2n + 1). Cvijović
and Klinowski’s formula (1.3) belongs to one of these families, while another
family includes classical Wilton’s [Wi] formula

ζ(2n+ 1) = (−1)n−1π2n
{

1
(2n+ 1)!

( 2n+1∑
m=1

1
m
− log π

)
(1.4)

+
n−1∑

k=1

(−1)k
ζ(2k + 1)

(2n− 2k + 1)!π2k

+ 2
∞∑

k=1

(2k − 1)!ζ(2k)
(2n+ 2k + 1)!22k

}
.

From the observation of various series representations for ζ(2n+ 1) ap-
pearing in [Sr2], we may say that Cvijović and Klinowski’s formula (1.3)
is one of the formulae that have the simplest form among these families.
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It is in fact possible to show that (1.3) is a particular case of a general
transformation formula:

Theorem 1. Let n be a positive integer , and x a real variable with
|x| ≤ 1. Then

(1.5) nζ(2n+ 1)− n
∞∑

l=1

cos(2πlx)
l2n+1 − πx

∞∑

l=1

sin(2πlx)
l2n

= (−1)n(2πx)2n
{ n−1∑

k=1

(−1)k−1 kζ(2k + 1)
(2n− 2k)!(2πx)2k +

∞∑

k=0

(2k)!ζ(2k)
(2n+ 2k)!

x2k
}
.

Remark 1. Since
∞∑

l=1

(−1)l

l2n+1 = (2−2n − 1)ζ(2n+ 1),

we see that the case x = 1/2 of Theorem 1 implies (1.3).

Remark 2. The formula (1.5) contains the variable x, so that (1.5)
can be differentiated and integrated, as a function of x. In this way new
identities can be derived. This also holds true for the formulae (1.6)–(1.8)
in the following theorems.

For the proof of Theorem 1 we treat the infinite sum on the right-hand
side of (1.5), based on a Mellin transform technique (see (2.1) and (2.2)
below). This technique has the advantage over heuristic treatments, partic-
ularly for the infinite sums of the type mentioned above. Studies on certain
power series and asymptotic series associated with the Riemann zeta and
allied zeta-functions, based on this technique, were recently made by the
author (see [Ka1]–[Ka3]). The same technique also yields another transfor-
mation formula, which includes Wilton’s formula (1.4) as a particular case.

Theorem 2. Let n be a positive integer , and x a real variable with
|x| ≤ 1. Then

(1.6) ζ(2n+ 1) +
1

2πx

∞∑

l=1

sin(2πlx)
l2n+2

= (−1)n−1(2πx)2n
{

1
(2n+ 1)!

( 2n+1∑
m=1

1
m
− log 2πx

)

+
n−1∑

k=1

(−1)k
ζ(2k + 1)

(2n− 2k + 1)!(2πx)2k + 2
∞∑

k=1

(2k − 1)!ζ(2k)
(2n+ 2k + 1)!

x2k
}
.

Remark. The formula which has a similar nature to (1.6) was proved
in a quite different way by Ewell [Ew3, Theorem 1]. His formula yields a
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determinant expression of ζ(2n + 1), from which he derived exact infinite
series representations for ζ(2n+ 1) with n = 1, 2 and 3.

Furthermore, the proof of Theorem 1 suggests that a χ-analogue of (1.5)
exists. Let q be a positive integer, and χ a Dirichlet character of modulus q.
We denote by L(s, χ) the Dirichlet L-function attached to χ, and τ(χ) Gauss’
sum defined by

τ(χ) =
q∑
a=1

χ(a)e2πia/q.

Theorem 3. Let n be a positive integer , and x a real variable with
|x| ≤ 1. For any primitive character χ of modulus q, we have the following
formulae.

(i) If χ is an even character (i.e., χ(−1) = 1), then

(1.7) nL(2n+ 1, χ)− n
∞∑

l=1

χ(l) cos(2πlx/q)
l2n+1 − πx

∞∑

l=1

χ(l) sin(2πlx/q)
l2n

= (− 1)n
(

2πx
q

)2n{ n−1∑

k=1

(−1)k−1 kL(2k + 1, χ)
(2n− 2k)!(2πx/q)2k

+
τ(χ)
q

∞∑

k=0

(2k)!L(2k, χ)
(2n+ 2k)!

x2k
}
.

(ii) If χ is an odd character (i.e., χ(−1) = −1), then

(1.8) L(2n, χ)−
∞∑

l=1

χ(l) cos(2πlx/q)
l2n

= (−1)n
(

2πx
q

)2n−1{ n−1∑

k=1

(−1)k
L(2k, χ)

(2n− 2k)!(2πx/q)2k−1

+ 2i
τ(χ)
q

∞∑

k=0

(2k)!L(2k + 1, χ)
(2n+ 2k)!

x2k+1
}
.

Remark. The shape of the left-hand side of (1.8) shows that this formula
is rather a χ-analogue of (1.6).

The author would like to express his sincere gratitude to Professor H. M.
Srivastava for kindly sending the paper [Sr2]. He would also like to thank
the referee for valuable comments on the earlier version of the present paper.

We prove Theorem 1 in the next section. Theorem 2 is shown in Section 3.
The last section is devoted to the proof of Theorem 3.
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2. Proof of Theorem 1. Let n be a fixed positive integer, x a real
variable, and set

(2.1) I(x) =
1
4i

\
(σ0)

cot(πs/2)ζ(s)
xs

(s+ 1)(s+ 2) . . . (s+ 2n)
ds (|x| ≤ 1),

where σ0 is a constant satisfying −1/2 < σ0 < 0, and (σ0) denotes the
vertical straight line from σ0−i∞ to σ0+i∞. The integral in (2.1) converges
absolutely, because the integrand is O(|t|1/2−σ0−2n+ε) as t→ ±∞, with an
arbitrary small ε > 0. This immediately follows from the vertical estimate
ζ(s) = O(|t|1/2−σ+ε) for σ < 0 (cf. [Ti, p. 95, Chapter V]).

We start the proof of Theorem 1 with the observation that

(2.2) I(x) = −
∞∑

k=0

ζ(2k)
(2k + 1)(2k + 2) . . . (2k + 2n)

x2k (|x| ≤ 1).

This can be shown by moving the path (σ0) of the integral in (2.1) to the
right, and collecting the residues of the poles at s = 2k (k = 0, 1, 2, . . .),
because the order of the integrand is O{(K + |t|)−2n−1|x|K} as t → ±∞,
on the line σ = 2K + 1 (K = 1, 2, . . .).

We next transform the integral in (2.1) by applying the functional equa-
tion

(2.3) ζ(s) = 2sπs−1 sin(πs/2)Γ (1− s)ζ(1− s)
(cf. [Iv, p. 9, Chapter 1, (1.24)]), where Γ (s) denotes the gamma function.
Substituting this into the integral in (2.1) and changing the variable s into
1− s, we obtain

(2.4) I(x) =
1
2i
x

\
(σ1)

sin(πs/2)F (s)ζ(s)(2πx)−s ds,

where σ1 = 1− σ0 and

F (s) =
Γ (s)

(s− 2)(s− 3) . . . (s− 2n− 1)
.

Note that σ1 satisfies 1 < σ1 < 3/2. Since ζ(s) =
∑∞
l=1 l

−s converges
absolutely for σ = σ1, it follows from (2.4) that

(2.5) I(x) =
1
2
πix

∞∑

l=1

{f(2πilx)− f(−2πilx)},

where

(2.6) f(z) =
1

2πi

\
(σ1)

F (s)z−s ds.
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This integral converges absolutely for |arg z| ≤ π/2, since the order of the
integrand is O{|t|σ1−1/2−2ne−(π/2−|arg z|)|t|} as t → ±∞ (cf. [Iv, p. 492,
Appendix, (A.34)]), and so that the interchange of the order of summa-
tion and integration is justified by the fact that f(±2πilx) = O(l−σ1) for
l = 1, 2, . . . The identity

1
(s−2)(s−3) . . . (s−2n−1)

=
1

(s−1) . . . (s− 2n)
+

2n
(s−1) . . . (s−2n−1)

and the functional equation Γ (z + 1) = zΓ (z) show that

(2.7) F (s) = Γ (s− 2n) + 2nΓ (s− 2n− 1).

To evaluate the integral in (2.6), we need

Lemma. Let σ1 be a constant satisfying 1 < σ1 < 3/2. For any integer
k ≥ 2 and any complex z with |arg z| ≤ π/2, we have

(2.8)
1

2πi

\
(σ1)

Γ (s− k)z−s ds = z−k
{
e−z −

k−2∑

h=0

(−z)h
h!

}
.

P r o o f. Suppose first that |arg z| < π/2. Then changing the variable s
into s+ k, we see that the left-hand side of (2.8) is equal to

1
2πi

z−k
\

(σ1−k)

Γ (s)z−s ds.

We move the path (σ1 − k) of this integral to the left, noting that 1− k <
σ1 − k < 3/2 − k (< 2 − k). Collecting the residues of the poles at s = −h
(h = k − 1, k, k + 1, . . .), we find that the left-hand side of (2.8) is further
modified as z−k

∑∞
h=k−1(−z)h/h!. This proves the lemma for |arg z| < π/2.

The remaining case follows from the continuity of the integral in (2.8), since
the order of the integrand is O{|t|σ1−k−1/2e−(π/2−|arg z|)|t|} for |arg z| ≤ π/2
as t→ ±∞.

It follows from (2.6), (2.7) and the Lemma that

f(2πilx)− f(−2πilx)

= − 4n(2πilx)−2n−1 + 4n(2πilx)−2n−1 cos(2πlx)

− 2i(2πilx)−2n sin(2πlx)− 4
n−1∑

k=1

k

(2n− 2k)!
(2πilx)−2k−1.

Substituting this into (2.5), we obtain
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I(x) = − n(2πix)−2nζ(2n+ 1) + n(2πix)−2n
∞∑

l=1

cos(2πlx)
l2n+1

+ πx(2πix)−2n
∞∑

l=1

sin(2πlx)
l2n

−
n−1∑

k=1

kζ(2k + 1)
(2n− 2k)!

(2πix)−2k,

which together with (2.2) completes the proof of Theorem 1.

3. Proof of Theorem 2. In this section we prove Theorem 2. The
skeleton of the proof is the same as that of Theorem 1, so the details will
be omitted. Throughout the following sections, σ0 and σ1 are constants
satisfying −1/2 < σ0 < 0 and 1 < σ1 (= 1− σ0) < 3/2 respectively.

We begin the proof with the integral

(3.1) J(x) =
1
4i

\
(σ0)

cot(πs/2)ζ(s)
xs

s(s+ 1) . . . (s+ 2n+ 1)
ds (|x| ≤ 1).

Noting that ζ(0) = −1/2, ζ ′(0) = −(1/2) log 2π, and

1
s(s+ 1) . . . (s+ 2n+ 1)

=
Γ (s)

Γ (s+ 2n+ 2)

=
s−1

Γ (2n+ 2)
· 1 + ψ(1)s+O(s2)

1 + ψ(2n+ 2)s+O(s2)

with ψ(s) = (Γ ′/Γ )(s), we see that the residue of the pole at s = 0 of the
integrand in (3.1) is

1
π(2n+ 1)!

(ψ(2n+ 2)− ψ(1)− log 2πx).

Then moving the path of integration in (3.1) to the right, collecting the
residues of the poles at s = 2k (k = 0, 1, 2, . . .), and using ψ(z + 1) =
ψ(z) + 1/z, we get

J(x) = − 1
2(2n+ 1)!

( 2n+1∑
m=1

1
m
− log 2πx

)
(3.2)

−
∞∑

k=1

ζ(2k)
(2k)(2k + 1) . . . (2k + 2n+ 1)

x2k (|x| ≤ 1).

On the other hand, we substitute (2.3) into the integral in (3.1), then
change the variable s into 1− s, and obtain

(3.3) J(x) =
1
2i
x

\
(σ1)

sin(πs/2)G(s)ζ(s)(2πx)−s ds,
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where

(3.4) G(s) =
Γ (s)

(s− 1)(s− 2) . . . (s− 2n− 2)
= Γ (s− 2n− 2).

Remark. In comparison with (2.7), the gamma factor (3.4) does not
split in this case; the evaluation of J(x) becomes simpler than that of I(x)
in the preceding case.

Substituting the representation ζ(s) =
∑∞
l=1 l

−s into the integral in (3.3)
and changing the order of summation and integration, we obtain

(3.5) J(x) =
1
2
πix

∞∑

l=1

{g(2πilx)− g(−2πilx)},

where

g(z) =
1

2πi

\
(σ1)

G(s)z−s ds

for |arg z| ≤ π/2. Hence by the Lemma and (3.5),

J(x) =
1
2

(2πix)−2nζ(2n+ 1) + πx(2πix)−2n−2
∞∑

l=1

sin(2πlx)
l2n+2

+
1
2

n−1∑

k=1

ζ(2k + 1)
(2n− 2k + 1)!

(2πix)−2k.

Together with (3.2) this establishes Theorem 2.

4. Proof of Theorem 3. We first treat the even character case (i) of
Theorem 3. In this case the functional equation is of the form

(4.1) L(s, χ) = 2τ(χ)−1(2π/q)s−1 sin(πs/2)Γ (1− s)L(1− s, χ)

(cf. [Wa, p. 29, Chapter 4]). This suggests considering the integral

(4.2) K(x) =
1
4i

\
(σ0)

cot(πs/2)L(s, χ)
xs

(s+ 1)(s+ 2) . . . (s+ 2n)
ds

(|x| ≤ 1),

as an initial setting. We first move the path (σ0) to the right, passing over
the poles at s = 2k (k = 0, 1, 2, . . .) of the integrand, and obtain

(4.3) K(x) = −
∞∑

k=0

L(2k, χ)
(2k + 1)(2k + 2) . . . (2k + 2n)

x2k (|x| ≤ 1).
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Next substituting (4.1) into the integral in (4.2), and then changing the
variable s into 1− s, we get

K(x) =
1
2i
xτ(χ)−1

\
(σ1)

sin(πs/2)F (s)L(s, χ)(2πx/q)−s ds.

Hence, noting that L(s, χ) =
∑∞
l=1 χ(l)l−s converges absolutely for σ = σ1,

we obtain

K(x) =
1
2
πixτ(χ)−1

∞∑

l=1

χ(l)
{
f

(
2πilx
q

)
− f

(
−2πilx

q

)}
,

where f(z) is given by (2.6). The evaluation of f(2πilx/q)− f(−2πilx/q) is
the same as in the proof of Theorem 1, so that

K(x) = − nqτ(χ)−1
(

2πix
q

)−2n

L(2n+ 1, χ)

+ nqτ(χ)−1
(

2πix
q

)−2n ∞∑

l=1

χ(l) cos(2πlx/q)
l2n+1

+ πxτ(χ)−1
(

2πix
q

)−2n ∞∑

l=1

χ(l) sin(2πlx/q
l2n

− qτ(χ)−1
n−1∑

k=1

kL(2k + 1, χ)
(2n− 2k)!

(
2πix
q

)−2k

.

Together with (4.3) this establishes Theorem 3(i).

We proceed to treat the odd character case (ii) of Theorem 3. The func-
tional equation in this case asserts that

(4.4) L(s, χ) = 2iτ(χ)−1(2π/q)s−1 cos(πs/2)Γ (1− s)L(1− s, χ)

(cf. [Wa, p. 29, Chapter 4]). This suggests considering the integral

(4.5) H(x) =
1
4i

\
(σ0)

tan(πs/2)L(s, χ)
xs

s(s+ 1) . . . (s+ 2n− 1)
ds

(|x| ≤ 1),

at a starting point. We first move the path of integration in (4.5) to the
right, passing over the poles at s = 2k+ 1 (k = 0, 1, 2, . . .) of the integrand,
and obtain

(4.6) H(x) =
∞∑

k=0

L(2k + 1, χ)
(2k + 1)(2k + 2) . . . (2k + 2n)

x2k+1 (|x| ≤ 1).
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Next substituting (4.4) into the integral in (4.5), and then changing the
variable s into 1− s, we get

H(x) = −1
2
xτ(χ)−1

\
(σ1)

cos(πs/2)Γ (s− 2n)L(s, χ)
(

2πx
q

)−s
ds.

This yields

H(x) =
1
2
πixτ(χ)−1

∞∑

l=1

χ(l)
{
h

(
2πilx
q

)
+ h

(
−2πilx

q

)}
,

where

h(z) =
1

2πi

\
(σ1)

Γ (s− 2n)z−s ds

for |arg z| ≤ π/2. The evaluation of h(2πilx/q) + h(−2πilx/q) is performed
by the Lemma, and it is seen that

H(x) = − 1
2
qτ(χ)−1

(
2πix
q

)−2n+1

L(2n, χ)

+
1
2
qτ(χ)−1

(
2πix
q

)−2n+1 ∞∑

l=1

χ(l) cos(2πlx/q)
l2n

− 1
2
qτ(χ)−1

n−1∑

k=1

L(2k, χ)
(2n− 2k)!

(
2πix
q

)−2k+1

.

Together with (4.6) this establishes Theorem 3(ii). The proof of Theorem 3
is therefore complete.
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