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1. Introduction. In this paper we consider several related problems
of the theory of Diophantine approximation. The following notation will
be used. We denote by #S the number of elements in a finite set S. The
Lebesgue measure of a measurable set S ⊂ R is denoted by |S|. The set
S ⊂ R has full measure means that |R \ S| = 0. Throughout the paper,
Ψ denotes a monotonic sequence of positive numbers. We denote by Pn the
set of integral polynomials of degree≤ n. The set of real algebraic numbers of
degree n is denoted by An. Given a polynomial P , H(P ) denotes the height
of P . Given an algebraic number α, H(α) denotes the height of α. We use
the Vinogradov symbol �, which means “≤ up to a constant multiplier”.
We begin with a short review.

In 1924 Khinchin proved a remarkable result on the approximation of real
numbers by rationals [9]. According to his theorem, for almost all x ∈ R the
inequality

|qx− p| < Ψ(q)

has at most finitely or infinitely many solutions p, q ∈ Z according as the
sum

∑∞
q=1 Ψ(q) converges or diverges.

In 1932 K. Mahler [13] introduced a classification of real numbers and
showed [12] that almost all numbers are S-numbers. In fact, he proved that
wn(x) ≤ 4n for almost all x ∈ R, where wn(x) is defined to be the supremum
of the set of real numbers w for which the inequality

(1) |P (x)| < H(P )−w

has infinitely many solutions P ∈ Pn. At the same time Mahler conjectured
that wn(x) = n for almost all x ∈ R. In 1964 Mahler’s conjecture was
completely proved by V. Sprindžuk [15–17].
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There have been many efforts to make the error term more precise on
the right hand side of inequality (1). The case n = 2 has been individually
considered by Cassels, Kubilius and Bernik. In 1966 A. Baker [1] proved
that for almost all x ∈ R the inequality

(2) |P (x)| < Ψn(H(P ))

has at most finitely many solutions P ∈ Pn if
∑∞
h=1 Ψ(h) <∞. At the same

time Baker conjectured that a stronger result had to be true. Regarding this
V. Bernik proved in 1989 [6] that for almost all x ∈ R the inequality

(3) |P (x)| < H(P )−n+1Ψ(H(P ))

has at most finitely many solutions P ∈ Pn if
∑∞
h=1 Ψ(h) <∞. There were

some grounds to suppose that the convergence condition in Bernik’s theorem
could not be omitted. In this paper we confirm this by proving the following
theorem.

Theorem 1. Let Ψ be a decreasing sequence of positive numbers such
that

∑∞
h=1 Ψ(h) = ∞. Then for almost all x ∈ R the inequality (3) has

infinitely many solutions P ∈ Pn.

It should be noted that there is an analogous problem for polynomials of
complex variables. One should expect that for almost all z ∈ C the inequality
|P (z)| < H(P )−(n−2)/2Ψ1/2(H(P )) has at most finitely or infinitely many
solutions in integral polynomials of degree ≤ n according as

∑∞
h=1 Ψ(h)

converges or diverges. The methods of this paper and those of [6] with
necessary modifications can probably be applied for solving the problem.
But the question remains open for both the convergence and the divergence
case.

The ideas of this paper can also be generalized to Diophantine approx-
imation of points of smooth manifolds. Consider the solubility problem for
the inequality

(4) |anxn + . . .+ a1x1 + a0| < H−n+1Ψ(H),

in (a0, . . . , an) ∈ Zn+1, where H = max{|a0|, . . . , |an|} and the points x =
(x1, . . . , xn) lie on a manifold M . If M = Rn, it has been shown by Groshev
(see [18, pp. 28–33]) that a so-called Khinchin-type theorem is available.
This means that for almost all x ∈M the inequality (4) has at most finitely
or infinitely many solutions according as

∑∞
h=1 Ψ(h) converges or diverges.

There have been many attempts to prove Khinchin-type theorems for
manifolds of dimension < n embedded in Rn satisfying various arithmetic,
analytic and(or) geometric conditions. In particular, one is available when
a manifold of dimension at least max{2, n/2} satisfies a curvature condition
that for surfaces in R3 corresponds to the Gaussian curvature being positive
almost everywhere [8]. V. Bernik proved a Khinchin-type theorem for a
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manifold being a topological product of at least four 3-smooth curves in
R2 with non-vanishing curvature almost everywhere [7]. A Khinchin-type
theorem for inhomogeneous approximation by values of 2-degree integral
polynomials has been obtained in [5].

Very recently, D. Y. Kleinbock and G. A. Margulis [10] have obtained
a strong extremality result for general non-degenerate C(l)-manifolds of di-
mension d < n in Rn. In addition they generalized the theorem of Baker
(see (2)) to these manifolds; more precisely, they proved that the inequality
(4) has infinitely many solutions almost nowhere provided that the decreas-
ing sequence hΨ(h), h = 1, 2, . . . , satisfies

∑∞
h=1 h

−1(hΨ(h))1/(dl) < ∞.
Generalizations to simultaneous approximation can also be considered.

In view of the existence of correlations between the approximation of
zero by values of integral polynomials and approximation of real numbers
by algebraic numbers, we are interested in the solubility of the inequality

(5) |x− α| < H(α)−nΨ(H(α))

in real algebraic numbers of degree n. It should be noted that there is a
classification of Koksma for real numbers [11] based on the solubility of the
inequality

(6) |x− α| < H(α)−w
∗−1.

The error term in (6) is a particular case of that of (5). Koksma considered
the value w∗n(x), which is defined to be the supremum of the set of real
numbers w∗ such that the inequality (6) has infinitely many solutions in
real algebraic numbers of degree ≤ n, where n ∈ N. It can be shown by
the theorem of Sprindžuk [17], a result of Wirsing [19] and the lemma of
Borel–Cantelli that w∗n(x) = n for almost all real x. We are interested in the
measure of the set

An(Ψ) = {x ∈ R : inequality (5) holds for infinitely many α ∈ An}.
It was expected that it would essentially depend on the behaviour of the∑∞
h=1 Ψ(h) as in the polynomial case above. We prove

Theorem 2. Let Ψ be a decreasing sequence of positive numbers. Then

|An(Ψ)| =
{

0 if
∑∞
h=1 Ψ(h) <∞,

full if
∑∞
h=1 Ψ(h) =∞.

The proof of Theorem 2 is based on the distribution of real algebraic
numbers. We use the concept of regular systems introduced by A. Baker
and W. Schmidt [2].

Definition 1. Let Γ be a countable set of real numbers and N : Γ → R
be a positive function. The pair (Γ,N) is called a regular system if there
exists a constant C1 = C1(Γ,N) > 0 such that for any interval I there
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exists a sufficiently large number T0 = T0(Γ,N, I) > 0 such that for any
integer T ≥ T0 there are α1, . . . , αt in Γ ∩ I such that

(7) N(αi) ≤ T (1 ≤ i ≤ t),
(8) |αi − αj | ≥ T−1 (1 ≤ i < j ≤ t),
(9) t ≥ C1|I|T.

For the set of algebraic numbers the function N normally depends on
the height of the corresponding algebraic number. A. Baker and W. Schmidt
have found that the set of real algebraic numbers of degree ≤ n together with
the function N(α) = H(α)n+1(lnH(α))−3n2

is a regular system. For n = 2
this has been generalized by R. Baker [3] to the set of zeros of functions
of a general form. Also, it has been shown in [4] that the set of quadratic
irrationals on the interval [0, 1] together with the function N(α) = H(α)3 is
a regular system.

In this paper we extend this to the set of real algebraic numbers of any
degree.

Theorem 3. The set An together with the function

N(α) = (H(α)/(1 + |α|)n)n+1

is a regular system.

2. Effective measure bounds. Throughout this section, n denotes an
integer ≥ 2, Q a natural number, ε a positive number, and I an interval of
the form [a, b) embedded in [−1/2, 1/2). Given n and Q, we define Pn(Q) =
{P ∈ Pn : H(P ) ≤ Q}. Given I, Q, ε and P ∈ Pn(Q), we denote by σ(P )
the set consisting of x ∈ I satisfying

(10) |P (x)| ≤ ε, |P ′(x)| ≥ 2|I|−1.

Given n, I, Q and ε, let Bn,I(Q, ε) denote the union of σ(P ) over all P ∈
Pn(Q). The aim of this section is to obtain an upper bound for |Bn,I(Q, ε)|.
We use the following

Lemma 1. Given n, I = [a, b), Q and ε such that ε < (16Q)−1, define

I ′′ε = [a, a+ ε] ∪ [b− ε, b) and I ′ε = I \ I ′′ε .
Then for any P ∈ Pn(Q) such that σ(P ) ∩ I ′ε 6= ∅, for any x0 ∈ σ(P ) ∩ I ′ε
there exists α ∈ I such that P (α) = 0, |P ′(α)| > |P ′(x0)|/2 and

(11) |x0 − α| < 2ε|P ′(α)|−1.

P r o o f. Let P (x) = anx
n + . . . + a0 ∈ Pn(Q) satisfy σ(P ) ∩ I ′ε 6= ∅.

Fix x0 ∈ σ(P ) ∩ I ′ε. Given x satisfying |x − x0| ≤ ε, we readily verify that
|x| ≤ 1/2. By Lagrange’s formula, we have P ′(x) = P ′(x0)+P ′′(x1)(x−x0),
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where x1 is a point between x and x0. Using |x| ≤ 1/2, it is easy to obtain
the estimate

|P ′′(x1)| = |n(n− 1)anxn−2
1 + . . .+ 2a2| < 16 max{|a0|, . . . , |an|} ≤ 16Q.

Then

|P ′′(x1)(x− x0)| ≤ 16Qε < 1 ≤ |I|−1 ≤ |P ′(x0)|/2.
Hence, for any x satisfying |x− x0| ≤ ε, we have

|P ′(x)| ≥ |P ′(x0)| − |P ′′(x1)(x− x0)| > |P ′(x0)|/2.
By Lagrange’s formula we have P (x) = P (x0) +P ′(x2)(x−x0), where x2 is
between x and x0. As shown above, |P ′(x2)| > |P ′(x0)|/2. Further, if we let
x = x0±ε then |P ′(x2)(x−x0)| > ε|P ′(x0)|/2 ≥ ε. Moreover, the expression
P ′(x2)(x − x0) has different signs at x0 − ε and x0 + ε. Since |P (x0)| ≤ ε,
we conclude that P (x) = P (x0) + P ′(x2)(x− x0) also has different signs at
x0 ± ε. Therefore, there exists α ∈ [x0 − ε, x0 + ε] ⊂ I satisfying P (α) = 0.
As shown above, |P ′(α)| ≥ |P ′(x0)|/2. Next, by Taylor’s formula, we write

P (x0) =
(
P ′(α) + 1

2P
′′(x3)(x0 − α)

)
(x0 − α).

Using the estimate
∣∣1

2P
′′(x3)(x0 − α)

∣∣ ≤ |P ′(x0)|/4, we get
∣∣P ′(α) + 1

2P
′′(x3)(x0 − α)

∣∣ ≥ |P ′(α)|/2.
This inequality and |P (x0)| ≤ ε yield (11). The proof is complete.

Proposition 1. Given n and I = [a, b), define Q1 = max{(2n−1|I|)−1/n,
4n2}. Then |Bn,I(Q, ε)| ≤ n2n+2εQn|I| for any Q > Q1 and any ε <
n−12−n−2Q−n.

P r o o f. Since the sets of solutions of the systems (10) defined by a poly-
nomial P and the polynomial −P coincide, without loss of generality, we
consider the polynomials of Pn(Q) with the coefficient of xn being non-
negative. Given P ∈ Pn(Q) and a real number α such that P ′(α) 6= 0,
σ(P, α) denotes the interval {x ∈ I : |x− α| < 2ε|P ′(α)|−1}. Let I ′ε and I ′′ε
be defined as in Lemma 1. For every P ∈ Pn(Q), we define

ZI(P ) = {α ∈ I : P (α) = 0 and |P ′(α)| ≥ |I|−1}.
By Lemma 1, for any P ∈ Pn(Q) we have

(12) σ(P ) ∩ I ′ε ⊂
⋃

α∈ZI(P )

σ(P, α).

Fix integers a1, . . . , an such that |ai| ≤ Q (i = 1, . . . , n) and an ≥ 0.
Set R(x) = anx

n + . . . + a1x and Pn(Q,R) = {P ∈ Pn(Q) : P − R ∈ Z}.
There exists a collection of pairwise non-intersecting intervals [wi−1, wi) ⊂ I
(i = 1, . . . , s) which cover I and the derivative R′ is monotonic and of
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constant sign on each [wi−1, wi). It is clear that s can be chosen such that
1 ≤ s ≤ 2n− 2. Order the set ZI,R =

⋃
P∈Pn(Q,R) ZI(P ) as

ZI,R = {α(1)
1 , . . . , α

(k1)
1 , α

(1)
2 , . . . , α

(k2)
2 , . . . , α(1)

s , . . . , α(ks)
s }.

Here ki = #(ZI,R ∩ [wi−1, wi)) and ZI,R ∩ [wi−1, wi) = {α(1)
i , . . . , α

(ki)
i },

where α(j)
i < α

(j+1)
i . Given P ∈ Pn(Q,R), by the identity P ′ ≡ R′, we have

σ(P, α) = σ(R,α) for any α ∈ ZI(P ). Using (12), we get
( ⋃

P∈Pn(Q,R)

σ(P )
)
∩ I ′ε ⊂

( ⋃

P∈Pn(Q,R)

⋃

α∈ZI(P )

σ(R,α)
)

(13)

=
s⋃

i=1

ki⋃

j=1

σ(R,α(j)
i ).

Fix an index i (1 ≤ i ≤ s). If ki ≥ 2 then we can consider two con-
secutive roots α(j)

i and α
(j+1)
i of two polynomials R + ai,j0 and R + ai,j+1

0
respectively. For convenience we assume that R′ is increasing and positive on
[wi−1, wi). Then R is monotonic on [wi−1, wi), and ai,j0 6= ai,j+1

0 . It follows
that |ai,j0 − ai,j+1

0 | ≥ 1. Using Lagrange’s formula and the monotonicity of
R′, we get

1 ≤ |ai,j0 − ai,j+1
0 | = |R(α(j)

i )−R(α(j+1)
i )|

= |R′(α̃(j)
i )| · |α(j)

i − α(j+1)
i | ≤ |R′(α(j+1)

i )| · |α(j)
i − α(j+1)

i |,
where α̃(j)

i is between α(j)
i and α(j+1)

i . This implies |R′(α(j+1)
i )|−1 ≤ α(j+1)

i −
α

(j)
i , whence we readily get

ki−1∑

j=1

|R′(α(j+1)
i )|−1 ≤

ki−1∑

j=1

(α(j+1)
i − α(j)

i ) = α
(ki)
i − α(1)

i ≤ wi − wi−1.

The last inequality and |R′(α(1)
i )| ≥ |I|−1 yield

(14)
ki∑

j=1

|R′(α(j)
i )|−1 ≤ wi − wi−1 + |I|.

This method can be applied to all situations, i.e. when the behaviour of
R′ differs from the above, giving (14). This estimate also remains true when
ki = 1, and certainly when ki = 0. Summing (14) over all i, we find

(15)
s∑

i=1

ki∑

j=1

|R′(α(j)
i )|−1 ≤

s∑

i=1

(wi − wi−1 + |I|) ≤ (2n− 1)|I|.

The obvious estimate |σ(R,α)| ≤ 4ε|R′(α)|−1 together with (13) and (15)
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gives

(16)
∣∣∣

⋃

P∈Pn(Q,R)

σ(P ) ∩ I ′ε
∣∣∣ ≤ 4ε(2n− 1)|I|.

We notice that

(17) Bn,I(Q, ε) =
⋃

R

( ⋃

P∈Pn(Q,R)

σ(P )
)
.

Since the number of different polynomials R is at most (Q+ 1)(2Q+ 1)n−1,
using (16) and (17), we conclude that

|Bn,I(Q, ε) ∩ I ′ε| ≤ 4ε(2n− 1)|I|(Q+ 1)(2Q+ 1)n−1.

Now we make the following transformations:

|Bn,I(Q, ε)| ≤ 4ε(2n− 1)|I|(Q+ 1)(2Q+ 1)n−1 + 2ε

≤ n2n+2εQn|I|((1− (2n)−1)(1+Q−1)n+ 2−n−1n−1Q−n|I|−1)

≤ n2n+2εQn|I|
× ((1− (4n)−1)(1 +Q−1)n+ 2−n−1n−1Q−n|I|−1− (4n)−1).

The inequality Q > (2n−1|I|)−1/n gives 2−n−1n−1Q−n|I|−1 − (4n)−1 < 0.
The inequality Q > 4n2 implies (1 − (4n)−1)(1 + Q−1)n < 1. Then we get
the required estimate and the proof is complete.

3. Distribution of real algebraic numbers. This section is devoted to
the study of the distribution of real algebraic numbers. To prove Theorem 3
we need the following

Proposition 2. Let I be a finite interval. Then for almost all x ∈ I the
system

(18) |P (x)| < H(P )−n, |P ′(x)| < 2|I|−1

has at most finitely many solutions P ∈ Pn.

This follows from Propositions 1–3 of [6], where a more general statement
is proved.

Now we proceed to prove Theorem 3. First of all, note that it is sufficient
to show that the required distribution holds for any interval of length ≤ 1.
Fix an interval I ⊂ [−1/2, 1/2) and Q ∈ N. Let εQ = n−12−n−5Q−n. We
now define five relatively small subsets of I.

1. The first is B1(I,Q) = Bn,I(Q, εQ). By Proposition 1, we have
|B1(I,Q)| ≤ |I|/8 whenever Q > Q1.
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2. Given P ∈ Pn, define σ2(P ) to consist of all solutions of system (18),
and set

B2(I,Q) =
⋃

P∈Pn
H(P )>Q

σ2(P ).

By Proposition 2, we have |B2(I,Q)| → 0 as Q→∞. Therefore, there exists
a sufficiently large number Q2 such that |B2(I,Q2)| ≤ |I|/16.

3. For any non-zero P ∈ Pn(Q2) define σ3(P,Q) = {x ∈ I : |P (x)| < εQ}.
Let B3(I,Q2, Q) be the union of σ3(P,Q) over all P ∈ Pn(Q2) \ {0}. Since
Q2 depends on I and n only, the number of different intervals σ3(P,Q)
is bounded by a constant independent of Q. Moreover, |σ3(P,Q)| → 0 as
Q → ∞. Now, it is not difficult to see that there exists Q3 > 0 such that
for any Q > Q3 we have |B3(I,Q2, Q)| ≤ |I|/16. Note that the constant Q3

can be explicitly calculated.
4. We denote by B4(I,Q) the union of the intervals σ4(α,Q) = {x ∈

I : |x − α| ≤ 8εQQ−1} over all real algebraic numbers of degree ≤ n − 1
of height ≤ (n24n+2 + 1)Q. Since the number of different intervals in this
union is at most � Qn and every interval has length � Q−(n+1), there
exists a sufficiently large number Q4 > 0 such that |B4(I,Q)| ≤ |I|/8 for
any Q > Q4. The constant Q4 can be explicitly calculated.

5. Finally, set B5(I,Q) = [a, a + εQ] ∪ [b − εQ, b]. Whenever Q > Q5 =
(|I|n2n+1)−1/n, we have |B5(I,Q)| ≤ |I|/8.

Now we define

B(I,Q) = B1(I,Q) ∪B2(I,Q2) ∪B3(I,Q2, Q) ∪B4(I,Q) ∪B5(I,Q).

According to our calculations above, whenever Q > max{Q1, . . . , Q5} we
have the estimate |B(I,Q)| ≤ |I|/2.

Let x ∈ I \B(I,Q). By Minkowski’s linear forms theorem [14, Ch. 2, §3],
there exists a non-zero polynomial P (t) = ant

n + . . .+ a0 ∈ Pn satisfying

(19) |P (x)| ≤ εQ, |P ′(x)| ≤ n24n+2Q, |ai| ≤ Q/8 (2 ≤ i ≤ n).

Assume that |P ′(x)| ≤ Q/2. Then, using |x| ≤ 1/2 and (19), we find

|a1| ≤ |P ′(x)|+
n∑

i=2

|iaixi−1| ≤ Q

2
+
Q

8

n∑

i=2

i2−i+1 ≤ Q.

Next, (19) together with |x| ≤ 1/2 gives

|a0| ≤ |P (x)|+
n∑

i=1

|aixi| ≤ Q

2
+Q

∞∑

i=1

2−i ≤ Q.

It follows that H(P ) ≤ Q. It is now easy to see that x belongs to one of
the sets B1(I,Q), B2(I,Q2) or B3(I,Q2, Q), contrary to x being a point of
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I \B(I,Q). Hence, whenever x ∈ I \B(Q, I), there exists a non-zero solution
P ∈ Pn of the system (19) such that

(20) |P ′(x)| > Q/2.

Using (19), it is easy to obtain by the same method as above that

(21) H(P ) ≤ (n24n+2 + 1)Q.

Now we are going to show that there exists a root of P very close to x.
To this end we define the constants Q6 = 2(3n−3)/(n−1) + 1 and Q7 = 4|I|−1

and ensure that Q > Q0 = max{Q1, . . . , Q7}. In this situation we can apply
Lemma 1, and conclude that there exists a real root α of P in I such that

(22) |x− α| ≤ 2|P (x)|
|P ′(x)|/2 ≤ 8εQQ−1.

By (21), we have H(α) ≤ (n24n+2 + 1)Q. Since x 6∈ B(I,Q), we have
x 6∈ B4(I,Q). It follows that the degree of α is exactly n.

We choose a maximal collection {α1, . . . , αt} ⊂ I consisting of real alge-
braic numbers with degαi = n,

(23) H(αi) ≤ (n24n+2 + 1)Q

for all i ∈ {1, . . . , t} and

(24) |αi − αj | ≥ 8εQQ−1 (1 ≤ i < j ≤ t).
As we have proved, for any x ∈ I \ B(I,Q) there exists α ∈ An satisfying
H(α) ≤ (n24n+2 + 1)Q and (22). Since the collection {α1, . . . , αt} is maxi-
mal, there exists αi in this collection such that |α − αi| ≤ 8εQQ−1. Hence,
|x− αi| ≤ 16εQQ−1 and so

I \B(I,Q) ⊂
t⋃

i=1

{x ∈ I : |x− αi| ≤ 16εQQ−1}.

Since |I \ B(I,Q)| ≥ |I|/2 we have |I|/2 ≤ |I \ B(I,Q)| ≤ t · 32εQQ−1 and
we get

(25) t ≥ n2n−1Qn+1|I|.
Now, let J be any interval of length ≤ 1. There exists an integer m

such that Jm = (J +m) ∩ [−1/2, 1/2) has measure ≥ |J |/2. Let Q0(Jm) =
max{Q1(Jm), . . . , Q7(Jm)}, where Q1, . . . , Q7 are defined as above. As we
have proved, for anyQ > Q0(Jm) there is a collection {α1, . . . , αt} ⊂ An∩Jm
satisfying (23)–(25). The numbers βi = αi −m ∈ J are algebraic of degree
n as well. If m 6= 0 one readily verifies that H(βi) ≤ H(αi)(1+ |m|)n+1/|m|.
Then, using this together with (23) and the obvious inequality 1 + |m| ≤
2(1 + |βi|), we get H(βi) ≤ (1 + |βi|)nn25n+4Q. Writing this in terms of the
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function N , we get

(26) N(βi) ≤ (n25n+4)n+1Qn+1.

The last inequality also holds when m = 0. Further, by (24), (25) and
|J | ≥ |Jm|/2, we have

(27) |βi − βj | ≥ n−12−n−2Q−n−1 (1 ≤ i < j ≤ t),
(28) t ≥ n2n−2Qn+1|J |.

Now let T0 = (n25n+4)n+1(Q0(Jm) + 1)n+1. Then for any integer T >
T0 the number Q = [T 1/(n+1)/(n25n+4)] is greater than Q0(Jm). As we
have shown, there exist β1, . . . , βt ∈ J ∩ An satisfying (26)–(28). Then we
correspondingly have

N(βi) ≤ T (1 ≤ i ≤ t),
|βi − βj | ≥ n−12−n−2(n25n+4)n+1T−1 > T−1 (1 ≤ i < j ≤ t),

t ≥ n2n−2(n25n+5)−n−1T |J | = (nn25n2+9n+7)−1T |J |.
This completes the proof of Theorem 3 with C1 = (nn25n2+9n+7)−1.

4. Proof of Theorem 2. We proceed to prove Theorem 2. For any
α ∈ An we define the interval

σ(α) = {x ∈ R : |x− α| < H(α)−nΨ(H(α))}.
It is easy to see that the set An(Ψ) consists of all x ∈ R belonging to
infinitely many intervals σ(α).

First we consider the convergence part of Theorem 2. The following cal-
culation is readily verified:

∑

α∈An
|σ(α)| =

∞∑

h=1

∑

α∈An
H(α)=h

|σ(α)| =
∞∑

h=1

∑

α∈An
H(α)=h

2h−nΨ(h)�
∞∑

h=1

Ψ(h) <∞.

The Borel–Cantelli Lemma finishes the proof.
Now we proceed to prove the divergence part. We use the following lem-

mas.

Lemma 2. Let A be a measurable set. If there is a positive constant
C2 < 1 such that |A ∩ I| ≥ C2|I| for any finite interval I ⊂ R, then A has
full measure.

P r o o f. Suppose that |R \ A| > 0. Then, by the Lebesgue measure
density theorem, there exists x0 ∈ R such that for any 0 < ε < 1 there
is δ > 0 such that |(R \ A) ∩ [x0 − δ, x0 + δ]| ≥ 2δ(1 − ε). It follows that
|A∩[x0−δ, x0+δ]| < 2δ(1−ε). Putting ε = 1−C2, we obtain a contradiction.
The proof is finished.
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Lemma 3. Let Ei ⊂ R be a sequence of measurable sets and let the set
E consist of the points belonging to infinitely many Ei. If all the sets Ei are
totally bounded and

∑∞
i=1 |Ei| diverges, then

|E| ≥ lim sup
N→∞

(
∑N
i=1 |Ei|)2

∑N
i=1

∑N
j=1 |Ei ∩ Ej |

.

This lemma is proved in [18, Chapter 2, §2].

Lemma 4. Let {ai}∞i=1 be a decreasing sequence of positive numbers such
that

∑∞
i=1 ai diverges. Define bi = min{ai; i−1}. Then {bi}∞i=1 is also de-

creasing and
∑∞
i=1 bi diverges.

P r o o f. The monotonicity of bi is readily verified. Further, assume that∑∞
i=1 bi converges. It follows that

(29) ai > i−1 for infinitely many i.

Since bi is monotonic, for any integer l > 3 we have
∑l
i=[l/2] bi ≥

∑l
i=[l/2] bl

≥ lbl/2, which implies

(30) lbl ≤ 2
l∑

i=[l/2]

bi.

Since we have assumed that
∑∞
i=1 bi <∞, we infer

∑l
i=[l/2] bi → 0 as l→∞.

By (30), we get lbl → 0 as l→∞. But according to (29) and the definition
of bi we have bi ≥ 1 infinitely often. The derived contradiction tells us that
the series

∑∞
i=1 bi must diverge. The proof is complete.

Lemma 5. Given a decreasing sequence Ψ of positive numbers such
that

∑∞
h=1 Ψ(h) converges (diverges), for any number c > 0 the series∑∞

k=0 2kΨ(c2k) converges (diverges).

Lemma 5 follows from the corresponding property of the integral
∞\
1

2xΨ̃(c2x) dx =
1

c log 2

∞\
1

Ψ̃(y) dy,

where Ψ̃ is monotonic and continuous on {x : x ≥ 1} and coincides with Ψ
on N.

Now we are ready to prove Theorem 2. Fix any finite interval I ⊂ R
and set r = (1 + sup{|x| : x ∈ I})n. Define Ψ0(h) = min{Ψ(h), h−1/2}. By
Lemma 4, this sequence is monotonic and

∑∞
h=1 Ψ0(h) diverges. Moreover,

by the definition we have

(31) h−nΨ0(h) ≤ h−n−1/2 for all h ∈ N.
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Define Φ(h) = hΨ0(h)/rn+1. Then Lemma 5 implies

(32)
∞∑

k=0

Φ(r2k) =∞.

By Theorem 3, there exist positive constants C1 = C1(n) and k0 =
k0(n, I) such that for any k ≥ k0 there is a collection

Ak(I) = {α1 < . . . < αtk} ⊂ An ∩ I
satisfying the following conditions:

(33) H(α) ≤ r2k for all α ∈ Ak(I),

(34) |α− β| ≥ 2−k(n+1) for any numbers α, β ∈ Ak(I), with α 6= β,

(35) C12(n+1)k|I| ≤ tk ≤ 2(n+1)k|I|.
These conditions correspond to (7)–(9). Define

Ek(α) = {x ∈ R : |x− α| < (r2k)−nΨ0(r2k)} (α ∈ Ak(I)),

Ek =
⋃

α∈Ak(I)

Ek(α).

It is easy to verify that

(36) |Ek(α)| = 2(r2k)−nΨ0(r2k) = 2 · 2−k(n+1)Φ(r2k).

Set

E(I) =
∞⋂

N=k0

∞⋃

k=N

Ek.

Since Ψ is monotonic and Ψ0(h) ≤ Ψ(h) for all h ∈ N, by (33), we have
Ek(α) ⊂ σ(α). It follows that E(I) ⊂ An(Ψ). Since |Ek(α)| → 0 as k → ∞
and Ak(I) ⊂ I, we have E(I) ⊂ I, where I is the topological closure of I.
Then E(I) ⊂ An(Ψ)∩I. Since the boundary of I evidently has zero measure,
we conclude that

(37) |An(Ψ) ∩ I| ≥ |E(I)|.
By (31) and (34), Ek(α) ∩ Ek(β) = ∅ for all α, β ∈ Ak(I), α 6= β. Then

|Ek| = tk · |Ek(α)|, where α ∈ Ak(I). By (35) and (36), we have

(38) 2C1Φ(r2k)|I| ≤ |Ek| ≤ 2Φ(r2k)|I|.
It follows that

(39)
N∑

k=k0

|Ek| ≥ 2C1|I|
N∑

k=k0

Φ(r2k).
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Using (32) and (39), we get
∞∑

k=k0

|Ek| =∞.

We proceed to estimate the measures of the intersections. Fix, as we may
by (32), a number N0 > k0 such that

(40)
N0∑

k=k0

Φ(r2k) > 1.

Fix k and l such that k0 ≤ k < l ≤ N , where N > N0. For any α ∈ Ak(I)
we have

(41) El ∩ Ek(α) =
⋃

β∈Al(I)
Ek(β) ∩ Ek(α).

Given α ∈ Ak(I), the number of different β ∈ Al(I) satisfying El(β) ∩
Ek(α) 6= ∅ is less than

2 + |Ek(α)|/2−(n+1)l (36)
= 2 + 2 · 2(n+1)(l−k)Φ(r2k).

Using (36) and (41), we get

|El ∩ Ek(α)| ≤ max
β∈Al(I)

{|El(β)|}(2 + 2 · 2(n+1)(l−k)Φ(r2k))

≤ 4 · 2−(n+1)lΦ(r2l)(1 + 2(n+1)(l−k)Φ(r2k)).

This is used in the following calculations:

|El ∩ Ek| ≤ tk · max
α∈Ak(I)

{|El ∩ Ek(α)|}(42)

≤ 4tk2−(n+1)lΦ(r2l)(1 + 2(n+1)(l−k)Φ(r2k))
(35)
≤ 4|I|Φ(r2l)Φ(r2k) + 4|I|2−(n+1)(l−k)Φ(r2l).

Since Ek ∩ El = El ∩ Ek we have

(43)
N∑

l=k0

N∑

k=k0

|El ∩ Ek| =
N∑

k=k0

|Ek|+ 2
N∑

l=k0+1

l−1∑

k=k0

|El ∩ Ek|.

By (38), we get

(44)
N∑

k=k0

|Ek| ≤ 2|I|
N∑

k=k0

Φ(r2k).

The second summand from (43) is estimated with the help of (42):
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2
N∑

l=k0+1

l−1∑

k=k0

|El ∩ Ek| ≤ 8|I|
N∑

l=k0+1

l−1∑

k=k0

Φ(r2l)Φ(r2k)(45)

+ 8|I|
N∑

l=k0+1

l−1∑

k=k0

2−(n+1)(l−k)Φ(r2l).

We transform the last term as follows:

(46) 8|I|
N∑

l=k0+1

l−1∑

k=k0

2−(n+1)(l−k)Φ(r2l)

= 8|I|
N∑

l=k0+1

Φ(r2l)
l−1∑

k=k0

2−(n+1)(l−k) ≤ 2|I|
N∑

l=k0+1

Φ(r2l).

By (40) and (43)–(46), we conclude that
N∑

l=k0

N∑

k=k0

|El ∩ Ek| ≤ 4|I|
N∑

k=k0

Φ(r2k) + 8|I|
N∑

l=k0+1

l−1∑

k=k0

Φ(r2l)Φ(r2k)

≤ 4|I|
( N∑

k=k0

Φ(r2k)
)2

+ 4|I|
N∑

l=k0

N∑

k=k0

Φ(r2l)Φ(r2k)

= 8|I|
( N∑

k=k0

Φ(r2k)
)2
.

This estimate and (39) give

(
∑N
k=k0

|Ek|)2

(
∑N
k=k0

∑N
l=k0
|Ek ∩ El|)

≥ (2C1|I|)2(
∑N
k=k0

Φ(r2k))2

8|I|(∑N
k=k0

Φ(r2k))2
= C2

1 |I|/2,

for any N > N0. The conditions of Lemma 3 are satisfied. It follows that
|E(I)| ≥ C2

1 |I|/2. By (37), we get |A(Ψ) ∩ I| ≥ C2
1 |I|/2. This holds for any

finite interval I. Lemma 2 completes the proof of Theorem 2.

5. Proof of Theorem 1. Now we are ready to give the proof of The-
orem 1. Let Pn(Ψ) denote the set of real numbers x satisfying the inequal-
ity (3) for infinitely many polynomials P ∈ Pn. Fix a constant r > 0.
Given d > 0, define Ψd(h) = Ψ(h)/d. It is clear that Ψd(h) is mono-
tonic and

∑∞
h=1 Ψd(h) diverges. By Theorem 2, the set An(Ψd) has full

measure. It follows that µ(An(Ψd) ∩ [−r, r]) = 2r. Given α ∈ An, define
σr,d(α) = {x ∈ [−r, r] : |x− α| < H(α)−nΨd(H(α))}. Then

An(Ψd) ∩ [−r, r] =
∞⋂

k=1

⋃

α:H(α)>k

σr,d(α).
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Given α ∈ An, denote the minimal polynomial of α by Pα. It can be written
in the form

Pα(t) = (t− α)
n∑

k=1

1
k!
P (k)
α (α)(t− α)k−1.

Fix x ∈ σr,d(α). Since x ∈ [−r, r] and |α− x| < H(α)−nΨd(H(α)), we get
∣∣∣∣
n∑

k=1

1
k!
P (k)
α (α)(x− α)k−1

∣∣∣∣ ≤ C3H(α),

where C3 = C3(r) is a constant. Now we readily get the estimate

|Pα(x)| ≤ C3|x− α|H(α).

Let d = C3. Then for any α ∈ An such that σr,C3(α) 6= ∅ and any
x ∈ σr,C3(α) we have

|Pα(x)| ≤ C3H(α)|x− α| < C3H(α)H(α)−nΨC3(H(α))

= H(Pα)−n+1Ψ(H(Pα)).

Thus, if x ∈ σr,C3(α) then Pα is a solution of (3). It follows that if x ∈
An(ΨC3) then (3) has infinitely many solutions, and x ∈ Pn(Ψ). Thus,

An(ΨC3) ∩ [−r, r] ⊂ Pn(Ψ) ∩ [−r, r].
It follows that |Pn(Ψ) ∩ [−r, r]| = 2r for any r > 0. This means that Pn(Ψ)
has full measure. The proof is complete.
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