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A note on the generalized 3n + 1 problem
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Introduction. We will study here some features of the generalized Col-
latz problem, i.e., given two natural numbers d, m with m > d > 2 and
ged(d,m) = 1, let Ry be a complete system of non-zero residues modulo d
and ¢ : N — Ry the canonical projection of N in R;. Then we define the
Hasse function H : N — N by (1)

(1) H(z) = {x/d if z =40,

(mx — p(mz))/d otherwise,
and we investigate the dynamics of the orbits of x by H.

We will consider here the case m < d¥(¢=1). An old conjecture states
that, in this situation, for all x € N the orbit of x is bounded.

We remember that if d = 2 and Rq = {0, — 1} then we have the classical
Collatz problem, also called the Syracuse problem, or 3n+1 problem. In this
case we call H the Collatz function and denote it by T

A very good recent review of the state of art in this problem can be
found in Chapter 1 of Wirsching’s book [Wir98]. We will present here only
a brief discussion of some questions related to our work.

Two natural problems arise:

(i) How “large” can the set of all “different” orbits of H be?
(ii) If the conjecture is false, how can an unbounded trajectory of H grow?

In a classical 1985 paper, Lagarias [Lag85] shows that (for the 3n + 1
case) there exist ¢; > 0 and 1 € (0, 1) such that

#{neN:n<z TF(n)>n, Vk>1} <zl ™"

From this result, it is reasonable to claim that if there exists an un-
bounded trajectory for this case then it cannot grow too slowly. In fact, in
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(1) In this note we use N to denote the set of non-negative integers (including 0) and
N* =N\ {0}.
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Corollary 1 of Section 2, we show that this is true, in the sense of Banach
density (for the definitions of density and Banach density of a subset of N
see Section 1).

In another work related to the second question, Korec [Kor94] proved,
also for the Collatz function, that the set

M.={yeN:3IneN, T"(y) < y°}

has density one for all ¢ > log, 3.

For the Hasse function H, when m < d%(¢=1) the important result of
Heppner [Hep78], which we will state in Section 1, shows that Korec’s result
is true in this situation for some ¢y € (0, 1). However, unlike Korec’s result,
we do not have an estimate for ¢g in this case.

As to the first question, Korec and Znédm in [KZ87] defined an equivalence
relation in N by

a~1 b iff there are integers n and m such that 7" (a) = T™(b),

and showed that a complete set of representatives of N/~ has density zero.
Although this was proved for the 3n + 1 context, it is not difficult to extend
it to the general situation of the Hasse function H, when m < d%/(4=1),

In our work we shall consider this general situation, i.e., the function
H when m < d%(4=1 and we will improve the result of Korec and Znam:;
precisely, we consider a stronger relation in N,

a~b iff thereis an integer k such that H*(a) = H*(b),

and we prove that a complete set of representatives of N/~ has density zero.
Moreover, we show (Theorem 1) that such a set has Banach density zero.

A direct consequence is that any orbit O(n) under H has Banach density
zero (Corollary 1). This gives a more precise answer to question (ii) above
as we give here a direct measure of the orbits of H.

This paper comprises this introduction and 2 more sections. In Section 1
we shall state the basic definitions and state some fundamental results that
we will need later in the text. In Section 2 we will develop the necessary
tools to prove Theorem 1.

1. Basic results. Consider, as in the introduction, integers m, d with
m > d > 2. Suppose that ged(m,d) = 1 and m < d¥(@=D. Let R, be
a complete system of non-zero residues modulo d and ¢ : N — Ry the
canonical projection of N in Ry.

We will study the dynamics induced in the set N* of positive integers by
Hasse’s function H : N* — N* defined by (1).

Since we are interested in studying “how large some subsets of N are”
(or “how small they are”), we introduce the concept of Banach density of a
subset of N. First, consider the simpler (and more usual) concept of density.
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DEFINITION 1. A subset B C N has density p if

i #BOLL b

n—oo n
When this limit exists it will be denoted by o(B). Although this concept
is very “natural”, we will use in this article a more subtle concept, which
gives a more uniform measure of the “size” of B.

DEFINITION 2. The Banach density of a subset B C N is

( #(Bﬂ{a,...,a—i—n—l})).

lim sup
n—oo

The Banach density of B will be denoted by oy,(B).

Of course, the Banach density of B always exists and if o(B) and g,(B)
exist then o(B) < gy(B). Therefore, in order to show that B is “small” the
information g,(B) = 0 is more significant than o(B) = 0.

We now start the study of the dynamics of H.

The following function ¢ : N x N* — N will play an important role in
this note:

(2) ln,k)=#{0<s<k—-1:H%(n)=0 (mod d)}.

LEMMA 1. Ifn, k and r are positive integers then

H*(n + rd") = H*(n) 4+ rm*=4k)

P roof. We proceed by induction in k. The case & = 0 is obvious. Assume
the result for £k — 1. Then
(3) H*(n + sd*) = HH* Y (n + dsd*™1))

_ H(kal(n) + dsmkflff(n,kfl))'

Now we note that H*~(n) = H*~'(n) + dsm*~1=¢(k=1) (mod d), so
we have:

(i) If H*"'(n) = 0 (mod d) then H*(n) = H*"'(n)/d and {(n,k) =
l(n,k — 1)+ 1, and, by the definition of H,

k—1
Hk<n+ Sdk) _ H - (n) 1 gmbmltnk=1) Hk(n> 1 gmktnk)
(i) If H*=1(n) # 0 (mod d) then £(n,k) = £(n,k — 1) and a simple
calculation shows that
H*(n + sd*) = H*(n) + sm* =tk g
As a direct consequence we have
LEMMA 2. If H*(n) = H*(r) and £(n, k) = £(r, k) then for all s
H*(n + sd*) = H*(r + sd¥).

max
aeN* n
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Now we state an important result of Heppner.

PROPOSITION 1 (Heppner). Let m,d, Rq and H be as above, with m <
d¥ =1 " There exist 6, = 0, (m,d) and d2 = d2(m,d) in (0,1) such that, if
N(k) = [log, (k)] and g(k) = #{n <k : HN®)(n) > nk=%}, then g(k) is
O(k%).

The reader can find the proof of this proposition in [Hep78§].

We will use this result on several occasions in this paper, the first time
to obtain

PROPOSITION 2. Let B be a subset of {1,...,k} such that #B > k'~ +
g(k) where 61 and g are given by Heppner’s result. Then there are r1 and ro
in B, r1 # 1o, such that HU8aF)] () = Frloga(R)](y,),

Proof. By Proposition 1, there is By C B such that #B; > k'~% and
HUesa®] () < sk~ < 1701 Vs e B.

Then, it follows from the pigeonhole principle that there are r; and ry in
B1 with 7 # 79 and HUoga(k)] (r1) = HUogaK)l (1)), m

Note that if A is a subset of N which does not have zero Banach density
then there is a k € N such that, for all z € N*, #(An{z,..., 2+ k—1}) >
k'=% + g(k), because g(k) is O(k%) and §; and &, lay in (0,1).

We will use this observation in the next section.

2. Main results

LEMMA 3 (Fundamental Lemma). Let A be a subset of N* and let x and
k in N* be such that

(4) #AN{z,z+1,...,04+k—1}) > 2([logy (k)] + 1) (k172 4+ g(k))

where 01 and g(k) are given by Heppner’s result ( Proposition 1). Then there
exist 11 # ro in AN{x,x+1,...,x+k—1} such that HI8a*)l(r)) =
HUoga(k)] (1y),

Proof Put g = dloga(®)] Tet z; € N* be such that 210 <z < (z1+1)p.
Theny € {x,...,z + k — 1} clearly implies that either y—z,8 or y—(2z1+1)53
belongs to {1,...,k}.

Therefore, it follows from (4) and the pigeonhole principle that we can
choose z € {z1,21 + 1} such that if

B=Bk,2)={1<s<k:3gec A, q— zd!s®] =5}
then

#B > ([logy(k)] + 1) (k' + g(k)).
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Since /(-, |log,(k)|) € {0,...,|logy(k)|}, we can apply once again the
pigeonhole principle to find a subset B; of B with strictly more than k'~ +
g(k) elements such that if u and v are in B; then

E(u, [logy(k)]) = €(v, [logy(k)]).

Now, apply Proposition 2 in order to obtain s; # s, in Bj such that
HUosa(k)] (5)) = Flloga(k)] (5,). Then, since £(s1, |log,(k)])=£(s2, [logy(k)]),
it follows from Lemma 2 that

i loga (k)] (s1+283) = H loga(k)] (52 + 213).

By the definition of B it is obvious that r; = s; + 26 € A for i = 1,2,

and this concludes the demonstration. m

Now we are ready to state and prove our main result.
Consider in N* the equivalence relation
(5) a~be Ik eN, H(a) = H* (D).

Let P be a complete set of representatives of N*/~.
It seems natural to consider P as a set of all the different orbits of H.
Now we show that this set is “small”.

THEOREM 1. The Banach density of P is zero.

Proof. It is obvious that if u; and uy are distinct elements of P then
H*(uy) # H*(uy) for all k € N. Thus, by the Fundamental Lemma, for all
a and k in N*, we have
6)  #(Pn{a,....a+k—1}) <2(|logy(k)] + 1)(k' " + g(k)).

Since, by Proposition 1, g(k) is O(k°) and &; and d5 belong to (0,1) the
result follows when we take the limit £ — oo in (6). m

An important, now trivial, consequence is

COROLLARY 1. The Banach density of the orbit O(n) under H is zero.

Proof. If O(n) is finite the result is obvious. If O(n) is infinite then, for
all u; and ug in O(n), with u; # ug, and for all k € N, H*(uy) # H*(ug)
(otherwise, O(n) would be periodic). Then we can choose a complete set of

representatives P of N*/~ such that O(n) C P. Since gp(P) = 0 the result
follows. m

References

[Hep78] E. Heppner, Eine Bemerkung zum Hasse—Syracuse Algorithmus, Arch. Math.
(Basel) 31 (1978), 317-320.

[Kor94] 1. Korec, A density estimate for the 3z + 1 problem, Math. Slovaca 44 (1994),
85-89.



250 M. V. P. Garcia and F. A. Tal

[KZ87] 1. Korec and S. Zndm, A note on the 3z + 1 problem, Amer. Math. Monthly
94 (1987), 771-772.

[Lag85] J. Lagarias, The 3z + 1 problem and its generalizations, ibid. 92 (1985), 1-23.

[Wir98] G. Wirsching, The Dynamical System Generated by the 3n + 1 Function,
Lecture Notes in Math. 1681, Springer, 1998.

Manuel V. P. Garcia Fabio A. Tal
Inst. Mat. e Est. -USP C. de C. Moleculares - USP
CP 66281 CEP 05315-970 CP 66281 CEP 05315-970
Sao Paulo, SP - Brazil Sao Paulo, SP - Brazil
E-mail: mane@ime.usp.br E-mail: fabiotal@ime.usp.br

Received on 9.11.1998
and in revised form on 19.3.1999 (3503)



