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1. Introduction. Van der Poorten and Shallit’s paper [10] begins: “It is
notorious that it is damnably difficult to explicitly compute the continued
fraction of a quantity presented in some other form”. The quantity is usually
presented either as a power series or as the root of a specific equation.
There has been some success in the former case for continued fractions of
real numbers, such as Euler’s famous continued fraction for e [11] and more
recent work [10] on “folded” continued fractions; however, other than the
well-known results for quadratic real numbers, the only success with the
latter has been for continued fractions of Laurent series rather than real
numbers. In this paper we continue this line of investigation. We consider
families of continued fractions of Laurent series whose partial quotients all
lie in a given set. Following ideas of Baum and Sweet [2], we show that one
may describe the zeros of certain collections of equations in terms of such
families. The paragraphs that follow introduce the notation and definitions
necessary to give a fuller description of our results.

Let Fq be the finite field with q elements and Lq denote the field of formal
Laurent series in x−1 over Fq given by

Lq =
{∑

i≥n
αix
−i
∣∣∣ n ∈ Z, αi ∈ Fq

}
.

We have the inclusions Fq[x] ⊂ Fq(x) ⊂ Lq. Elements in Fq(x) are called
rational, and those which lie in Lq but not in Fq(x) are called irrational. We
define a norm on Lq as follows: If α ∈ Lq is non-zero then we may write
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α =
∑
i≥n αix

−i where αn 6= 0. In this case we define |α| = q−n. If α = 0
we define |α| = 0. Observe that if α = s/t is a rational Laurent series with
s, t ∈ Fq[x] then |α| = qdeg s−deg t. We define Pq to be the ring of all α ∈ Lq
with |α| < 1, and we will frequently abbreviate Lq and Pq to L and P .

It is easy to verify that a continued fraction theory exists for the field L
[1, 5]; in particular, any irrational Laurent series f in L has a unique infinite
continued fraction expansion

f = a0 + 1/(a1 + 1/(a2 + 1/(. . .)))

where aj ∈ Fq[x] with deg aj ≥ 1 for j ≥ 1. We write f = [a0; a1, a2, . . .].
We call the polynomials aj (j ≥ 0) the partial quotients of f , and a0 is also
referred to as the polynomial part of f . Any irrational Laurent series in P will
have a zero polynomial part. It is these elements of L with which we shall
be primarily concerned. The significance of the continued fraction expansion
of a Laurent series is that one may use it to define a sequence of rational
functions which are “best approximations” to that Laurent series. Laurent
series whose continued fractions have partial quotients of “small degree”
are of particular interest as these may be thought of as being “difficult to
approximate”. Such Laurent series arise naturally in applications relating to
the study of the linear complexity properties of sequences over finite fields
[8], and pseudorandom number generation [7].

Let S be a finite subset of Fq[x], and CF(S) ⊆ P be given by

CF(S) = {[0; a1, a2, . . .] | aj ∈ S, deg aj ≥ 1}.
So CF(S) is the set of all infinite continued fractions which have a zero poly-
nomial part and whose remaining partial quotients lie in S. We begin with
a result for arbitrary finite fields which describes the number of expressions
α1x

−1 + . . .+αmx
−m which occur as the initial segment of a Laurent series

in CF(S) in terms of a generating function. This result, Proposition 5, is not
only of some independent interest, but is a vital ingredient in the sections
which follow. We now describe the main theorem. For a fixed u ∈ Fq[x]
where charFq = 2, let Iu denote the set of all f ∈ P for which there exists
g ∈ L with

f2 + uf + (1 + xg2) = 0.
We first show, Lemma 7, that one may construct non-empty sets S so that
CF(S) ⊆ Iu. Moreover, an application of Proposition 5 allows us to prove
that for certain u there exists associated sets S such that CF(S) = Iu; more
precisely, we prove

Theorem 1. Let Fq be a finite field of characteristic 2 and u ∈ Fq[x].
Then Iu = CF(S) if and only if S is equivalent to a maximal solution group
for u. That is to say , deg u ≥ 1 and S is a set of polynomials which satisfies
the following criteria.



Continued fractions of Laurent series 253

1. For each v ∈ S of degree at least 1 there exists w ∈ Fq[x] with

v2 + uv = xw2.

2. The number sm of polynomials of degree m ≥ 1 in S is:
For deg u even

sm =





(q − 1)q(m−1)/2 for m odd and less than deg u,
0 for m even or m greater than deg u,
qm/2 for m = deg u.

For deg u odd

sm =





(q − 1)qm/2 for m even and less than deg u,
0 for m odd or m greater than deg u,
q(m+1)/2 for m = deg u.

We determine all u which satisfy the conditions of Theorem 1 in Propo-
sitions 13–15 and Table 1. The case u = x+ 1 over F2 is a well-known result
due to Baum and Sweet [2] which has an application in the study of binary
sequences. Our new results have similar applications which we discuss in
Section 5.2. We also show in Corollary 16 that for “many” values of d, there
exist Laurent series in L4 which are algebraic over F4(x) of degree d, and
which have partial quotients of bounded degree in their continued fraction
expansion.

The remainder of the paper is organised in the following way. We gather
some technical lemmas and a definition in Section 2. The first two lemmas
will be used in Section 3 to determine the cardinality of sets of the form
CF(S) up to a given rational approximation. The final one is used in the
proof of Theorem 1. Section 4 contains the proof of Theorem 1 as well as
several related propositions. Finally, we present two different applications of
Theorem 1 in Section 5.

2. Preliminaries. In this paper, we shall assume a familiarity with the
basic notions from the theory of continued fractions of Laurent series. These
can be gleaned from the detailed exposition of this theory given in [1] and [5].

2.1. Lemmas. This section does not contain any essential definitions, and
the reader may move directly onto Section 2.2 and refer back when required.
We begin with a technical lemma which will be used in the proof of the first
part of Proposition 5.

Lemma 2. Let f = [0; a1, a2, . . .] and f ′ = [0; a′1, a
′
2, . . .] where aj , a′j ∈

Fq[x] (j ≥ 1). Suppose that aj = a′j for 1 ≤ j ≤ s − 1 and as 6= a′s. Let∑
1≤j≤s−1 deg aj = σ. Then

|f − f ′| = |as − a′s|
q2σ|as| · |a′s|

.
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P r o o f. For j ≥ 1, let mj/nj denote the jth convergent to [0; a1, a2, . . .].
So mj/nj = [0; a1, a2, . . . , aj ] with gcd(mj , nj) = 1. Let

α = [as; as+1, as+2, . . .] and α′ = [a′s; a
′
s+1, a

′
s+2, . . .].

Then [11, p. 4]

f =
αms−1 +ms−2

αns−1 + ns−2
, f ′ =

α′ms−1 +ms−2

α′ns−1 + ns−2
.

Hence

f − f ′ =
(−1)s−2(α− α′)

(αns−1 + ns−2)(α′ns−1 + ns−2)
,

where we use the well-known relation ms−1ns−2 − ns−1ms−2 = (−1)s−2.
The result now follows since |α| = |as|, |α′| = |a′s| and |ns−1| = qσ.

For any complex function h(z) which is analytic in some region, let
[zn]h(z) denote the coefficient of zn in the power series expansion of h(z).
The next result is well-known and can be found in [9, Theorem 10.2]. It will
be useful in the proof of the second part of Proposition 5.

Lemma 3. Let h(z) be a complex function which is analytic in the disk
‖z‖ < R, where ‖ ‖ denotes the complex modulus and R ∈ R. Then for any
r ∈ R with 0 < r < R and any n ∈ Z with n ≥ 0 we have

‖[zn]h(z)‖ ≤ r−n max
‖z‖=r

‖h(z)‖.

P r o o f. From the Cauchy integral formula we have

[zn]h(z) =
1

2πi

\
Γ

h(z)
zn+1 dz

where Γ is any closed contour in the disk {z ∈ C | ‖z‖ < R} that contains
the origin inside it and is positively oriented (traversed in a counter-clockwise
direction). Taking Γ to be the circle centred at the origin with radius r gives
us the result.

We conclude with a result which we shall appeal to in the proof of Lemma
10. For a polynomial f ∈ Fq[x] the coefficient of xn in f is denoted by [xn]f .

Lemma 4. Let W ⊆ Fq[x] and let a be an odd positive integer and b
an arbitrary integer with b ≥ a. Denote by nb(W ) the number of elements
c ∈ Fq such that c = [xb]f for some f ∈W . Suppose that

1. Each polynomial in W has degree not greater than b.
2. If v, v′ ∈W then the degree of v − v′ is an odd number at least a.

Then #(W ) ≤ nb(W )qd(b−a)/2e.

P r o o f. For each c ∈ Fq, let W (c) denote the set of all polynomials f
in W with [xb]f = c. If W (c) 6= ∅ then we may choose fc ∈ W (c). Let
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V (c) = fc −W (c). Then by property 2 of W , any two polynomials in V (c)
differ in some coefficient xd where d is odd and a ≤ d. Furthermore d < b by
property 1. There are d(b− a)/2e such odd numbers d. So the cardinality of
V (c) is not greater than qd(b−a)/2e. Thus #(W (c)) = #(V (c)) ≤ qd(b−a)/2e.
Hence #(W ) =

∑
c #(W (c)) ≤ nb(W )qd(b−a)/2e as required.

2.2. An equivalence relation on sets of polynomials. We define the fol-
lowing equivalence relation on finite subsets of Fq[x]: We say that S and T
are equivalent if {a ∈ S | deg a ≥ 1} = {a ∈ T | deg a ≥ 1}. So if S and T
are equivalent, then CF(S) = CF(T ) (the converse is also true). It will be
convenient for us to consider sets CF(S) where S contains polynomials of
degree zero and zero itself. Any set T which is equivalent to such a set S will
give us the same collection of continued fractions CF(T ) (= CF(S)), and we
will make frequent use of this simple equivalence relation in the statements
of the results which follow.

3. The cardinality of CF(S) up to a given rational approxima-
tion. Let S be a finite set of polynomials in Fq[x]. We wish to count the
number of elements in CF(S) up to a given rational approximation. To be
more precise, for each m ∈ N we define an equivalence relation ∼m on L by

f ∼m f ′ ⇔ |f − f ′| < q−m.

We consider the equivalence relation ∼m restricted to CF(S) and denote the
set of equivalence classes by CF(S)/∼m. So if f, f ′ ∈ CF(S) then f ∼m f ′ if
and only if the first m coefficients in the Laurent series expansions of f and
f ′ agree. Proposition 5 describes the number of equivalence classes mod∼m
(m ≥ 1) in CF(S) in terms of a generating function which we construct in
the paragraphs which follow. This result is not only of some interest in its
own right, but is also a crucial ingredient in the proof of Theorem 1.

We make the following definitions: for i ≥ 1 let vi denote the number of
polynomials in S of degree i and let the degree enumerator fS(z) of S be
given by

fS(z) =
∑

i≥1

viz
i ∈ C[z].

For i ≥ 1, define the equivalence relation ≈i on S in the following way.
Let v, v′ ∈ S. Define v ≈i v′ if

(1/v) ∼2i−1 (1/v′).

Observe that polynomials of degree less than i lie in equivalence classes
of size 1. We shall not be interested in those polynomials, but instead are
concerned with polynomials of degree greater than i in S. We define wi to
be the number of ≈i-equivalence classes of polynomials of degree greater
than i in S. Thus wi is the cardinality of the largest subset of polynomials
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of degree greater than i in S which lie in distinct ≈i-equivalence classes.
Defining w0 = 1 we let the deficiency polynomial gS(z) of S be given by

gS(z) =
∑

i≥0

wiz
i ∈ C[z].

Observe that if S and T are equivalent sets (according to Section 2.2) then
fS(z) = fT (z) and gS(z) = gT (z). We write f(z) and g(z) for fS(z) and
gS(z) when there is no risk of confusion.

Let dm/2e denote the least integer which is not less than m/2; so dm/2e
= (m+ 1)/2 when m is odd, and m/2 when m is even. Also, recall that the
coefficient of zn in g(z)/(1 − f(z)) is denoted by [zn]g(z)/(1 − f(z)). We
may now state the main result of this section.

Proposition 5. Let m be an odd positive integer. Then the cardinality
of CF(S)/∼m is [zdm/2e]g(z)/(1− f(z)). If the root [roots] of 1− f(z) with
the smallest complex modulus has [have] modulus R, then for any ε > 0 there
exists a constant c ∈ R such that the cardinality of CF(S)/∼m is bounded
above by c(1/(R− ε))dm/2e.

P r o o f. We begin by proving the first statement of the proposition. Let
m be an odd positive integer. For any f = [0; a1, a2, . . .] define the mth defi-
ciency of f to be the unique integer k such that dm/2e−k =

∑
1≤j≤l deg aj ≤

dm/2e <∑1≤j≤l+1 deg aj .
We first claim that any two elements f, f ′ in CF(S) with mth deficien-

cies k and k′ respectively, where k 6= k′, must lie in different equivalence
classes mod ∼m. For suppose f = [0; a1, a2, . . .] and f ′ = [0; a′1, a

′
2, . . .] lie

in CF(S), with
∑

1≤j≤l deg aj = dm/2e − k,∑1≤j≤l′ deg a′j = dm/2e − k′
where deg al+1 > k, deg a′l′+1 > k′ and k 6= k′. Let j = s be the minimum
integer for which aj 6= a′j . Then certainly s ≤ min{l, l′}+ 1, and by Lemma
2 we have

|f − f ′| = |as − a′s|
q2σ|as| · |a′s|

where σ =
∑

1≤j≤s−1 deg aj . Since f and f ′ have different mth deficien-
cies, at least one of deg as and deg a′s is strictly less than dm/2e − σ. So
suppose deg as ≤ deg a′s with deg as < dm/2e − σ. If deg as = deg a′s then
both are less than dm/2e − σ and so |f − f ′| > q−2dm/2e ≥ q−m−1. Oth-
erwise deg as < deg a′s and |f − f ′| = q−2σ−deg as > q−σ−dm/2e. But cer-
tainly σ < dm/2e and so |f − f ′| > q−2dm/2e ≥ q−m−1. This proves the
claim.

Let CFk(S) (0 ≤ k ≤ dm/2e) be the set of all elements in CF(S) with
mth deficiency k. We have shown that the number of equivalence classes
of CF(S)/∼m is equal to the summation over k (0 ≤ k ≤ dm/2e) of the
number of equivalence classes of CFk(S)/∼m.
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Consider now the set of continued fractions CFk(S) for some 0 ≤ k ≤
dm/2e. Let f, f ′ ∈ CFk(S) with f = [0; a1, a2, . . .] and f ′ = [0; a′1, a

′
2, . . .]

where
∑

1≤j≤l deg aj =
∑

1≤j≤l′ deg a′j = dm/2e − k and deg al+1, deg a′l′+1
> k. If aj 6= a′j for some j (1 ≤ j ≤ min{l, l′}) then a similar argument to the
one in the second paragraph of the proof shows that f 6∼m f ′. Otherwise l =
l′ and aj = a′j (1 ≤ j ≤ l). In this case by Lemma 2, f and f ′ are in different
∼m-classes if and only if |al+1 − a′l+1|/(|al+1| · |a′l+1|) ≥ q−2k+1. But this
latter condition is equivalent to |(1/al+1)−(1/a′l+1)| ≥ q−2k+1, that is to say,
al+1 6≈k a′l+1. (Here we need the fact thatm is odd. We refer the reader to the
paragraphs following this proof for a brief discussion of slight modification
we need to make in the case m even.) So the cardinality of CFk(S)/∼m is the
number of ways of selecting polynomials aj in S of degree at least 1 whose
degrees sum to dm/2e−k, multiplied by the number of≈k-equivalence classes
in S of polynomials of degree greater than k. (There are two exceptions to
this: in the case k = 0 we actually “multiply” the number of ways of selecting
non-constant polynomials in S whose degrees sum to dm/2e by 1; when
k = dm/2e we take the number of ways of selecting no polynomials whose
degrees sum to zero to be 1.) The latter is simply wk, the coefficient of zk in
g(z). The former is the coefficient of zdm/2e−k in

∑
i≥0 f(z)i = 1/(1−f(z)).

Thus the cardinality of CF(S)/∼m is the summation of this product over
k, which is the coefficient of zdm/2e in g(z)/(1 − f(z)). (See [13, p. 36] for
a description of the “arithmetic” of generating functions.) This proves the
first part of the proposition.

To prove the second part, let h(z) = g(z)/(1− f(z)). Then h is certainly
analytic in the disk centred at the origin with radius R, where R is the
modulus of the “smallest” root [roots] of 1− f(z). By Lemma 3, we have

‖[zdm/2e](g(z)/(1− f(z)))‖ = [zdm/2e](g(z)/(1− f(z))) ≤ c(1/(R− ε))dm/2e
where ε > 0 and c = max‖z‖=R−ε h(z).

To determine the cardinality of CF(S)/∼m wherem is even we must work
with a slightly different generating function ĝ(z)/(1−f(z)). The polynomial
ĝ(z) (= ĝS(z)) =

∑
i≥0 ŵiz

i, which we call the new deficiency polynomial,
is defined as follows. Let ŵ0 = 1. For i ≥ 1 and v, v′ ∈ S let v 'i v′ if

(1/v) ∼2i (1/v′).

Let ŵi denote the number of 'i-equivalence classes of polynomials of degree
greater than i in S. One may show that #(CF(S)/∼m) for m even is the
coefficient of zm/2 in ĝ(z)/(1 − f(z)). Thus the statement of Proposition
5 remains true if we replace “m an odd positive integer” by “m an even
positive integer”. The proof in the even case is almost identical to that
given for the odd case, except we must replace g(z) by ĝ(z) wherever it
occurs, and make other appropriate minor changes. We shall only need the
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case m odd in the proof of the case of Theorem 1 which we explicitly give
in Section 4.2, but in the outlined proof of the other case in Section 4.3 we
use the new deficiency polynomial ĝ(z).

4. Proof of Theorem 1 and related propositions

4.1. Preliminary results. Let charFq = 2 and u ∈ Fq[x]. Abbreviate Lq
to L and Pq to P . We shall be concerned with the set of roots Iu which lie
in P of equations of the form

X2 + uX + (1 + xg2) = 0

where g is a suitably chosen element in L. Let deg u = t. Suppose that for
some g there exists f ∈ P with f2 +uf + 1 = xg2. Then taking the norm of
both sides we have |g|2 ≤ qt−2. Conversely

Lemma 6. For any g ∈ L with |g|2 ≤ qt−2 where deg u = t there exists a
unique f ∈ P with f2 + uf + (1 + xg2) = 0.

P r o o f. Let g ∈ L with |g|2 ≤ qt−2. Let u =
∑

0≤j≤t ujx
j and xg2 =∑

i≥−(t−1) hix
−i. Observe that hi = 0 for i even. We wish to show that there

exists a unique f =
∑
i≥1 fix

−i ∈ P with f2 +uf + (1 +xg2) = 0. Consider
the Laurent series

∑
i fix

−i defined in the following way: Let fi = 0 for i ≤ 0
and determine fi for i ≥ 1 from the following recurrences (here s ≥ −(t−1)).





∑
0≤j≤t ujfs+j + f2

s/2 = 0 for s even, s 6= 0,∑
0≤j≤t ujfs+j + 1 = 0 for s = 0,∑
0≤j≤t ujfs+j + hs = 0 for s odd.

(The sequence fi is consistently and uniquely defined because for each s ≥
−(t − 1) the associated recurrence relation defines fs+t uniquely in terms
of the fi with i < s + t.) The Laurent series f =

∑
i≥1 fix

−i then satisfies
f2 + uf + (1 + xg2) = 0 by construction. This proves existence. Uniqueness
follows from the observation that the sequence of coefficients of any f ∈ P
with f2 + uf + (1 + xg2) = 0 satisfies the above recurrences.

Define Du = {g ∈ L | |g|2 ≤ qt−2} = {g ∈ L | |g| ≤ qbt/2c−1}. Let
the map φ : Du → P be defined as follows: for g ∈ Du let φ : g 7→ f
where f is the unique Laurent series in P with f2 + uf + (1 + xg2) = 0.
Denote the image of the map φ by Iu. Observe that the map φ is an injec-
tion since charFq = 2 and so φ is a bijection from Du to Iu. An equivalent
description of Iu is the set of all f ∈ P for which there exists g ∈ L with
f2 + uf + (1 + xg2) = 0.

The proof of the implication (⇐) in the following lemma, is based upon
the proof of the first part of “Theorem 1” in Baum and Sweet [2].
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Lemma 7. Let u ∈ Fq[x] with charFq = 2. Let S be a finite set of
polynomials in Fq[x]. Then CF(S) ⊆ Iu if and only if for each polynomial
v ∈ S of degree at least 1 there exists w ∈ Fq[x] with v2 + uv = xw2.

P r o o f. In this proof we use the equivalent description of Iu as the set
of f ∈ P for which there exists g ∈ L such that f2 + uf + 1 = xg2.

(⇐) Let f = [0; a1, a2, . . .] where aj ∈ S (j ≥ 1) with deg aj ≥ 1. For
each l ≥ 0 define fl = [0; a1, a2, . . . , al, u, u, . . .] where we use the obvious
convention for l = 0. We prove by induction on l that there exists gl ∈ L
with f2

l +ufl+1 = xg2
l . If l = 0 then f0 = [0;u, u, . . .] and so (1/f0)+u = f0

and f2
0 + uf0 + 1 = 0. We may therefore take g0 = 0. Now suppose that

l = n > 0. Then (1/fn)+a1 = [0; a2, . . . , an, u, u, . . .]. So by induction, there
exists g′ such that

{(1/fn) + a1}2 + u{(1/fn) + a1}+ 1 = x(g′)2.

Hence

f2
n + ufn + 1 = x{fn(g′ + w)}2

where a2
1 + ua1 = xw2.

Since f = [0; a1, a2, . . .], we have f = liml→∞ fl where fl = [0; a1, . . . , al,
u, u, . . .]. To each fl there corresponds a unique gl with f2

l + ufl + 1 = xg2
l .

Taking limits we find that f2 +uf +1 = xg2 where g = liml→∞ gl. The field
L is complete with respect to | | and so g ∈ L as required.

(⇒) To prove the converse suppose that f = [0; a1, a2, . . .] where aj ∈ S
(j ≥ 1) with deg aj ≥ 1, and f2 + uf + 1 = xg2 for some g ∈ L. Since
CF(S) ⊆ Iu there exists g′ ∈ L such that f ′ = [0; a2, a3, . . .] satisfies (f ′)2 +
uf ′ + 1 = x(g′)2. Now f ′ = (1/f) + a1 and so (a2

1 + ua1) = x(g′f + (g/f))2.
The right-hand side contains only odd powers of x and so there must exist
w ∈ Fq[x] with a2

1 + ua1 = xw2. Since a1 was an arbitrary non-constant
polynomial of S this completes the proof.

(Observe that if deg u = 0 or u = 0 then if v2 + uv contains no even
powers of x we must have deg v = 0 or v = 0. But if S is a set which does
not contain any polynomials of degree greater than zero then CF(S) = ∅.
Thus the cases deg u = 0 and u = 0 are of no interest and we assume for
the remainder of the paper that deg u ≥ 1.)

Lemma 7 motivates Section 4.2 in which we study the pairs of polyno-
mials v and w in Fq[x] which satisfy v2 +uv = xw2 for some fixed u ∈ Fq[x].
We show that there is a bound on the number of pairs which can occur,
and when and only when this bound is met we have CF(S) = Iu for some
suitably chosen S ⊆ Fq[x]. We prove this by considering the cardinality of
the set of equivalence classes CF(S)/∼m (where S is the appropriate set)
and so must first determine the forms of fS(z) and gS(z) to make use of
Proposition 5.
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4.2. The case deg u even. It is easier to treat the cases deg u even and
deg u odd separately, although the analysis in each case is essentially the
same. In this section, we consider the former case, and briefly discuss the
latter in the next section.

Let deg u = t be a positive even number. We are interested in determining
the solutions in Fq[x] × Fq[x] of the equation X2 + uX + xY 2 = 0 where
charFq = 2. Observe that if (v, w) is such a solution, then w is uniquely
determined by v (since squaring is an automorphism in Fq). We therefore
define G(u) to be the set of all v ∈ Fq[x] for which there exists w ∈ Fq[x]
with v2 +uv = xw2. (It is convenient to include polynomials of degree 0 and
0 itself in G(u), although these polynomials do not occur as partial quotients
of continued fractions in CF(G(u)).) For the sake of notational simplicity,
we occasionally abbreviate G(u) to G. For m ≥ 0, let Gm denote the set of
all polynomials in G of degree less than or equal to m, and Vm the set of
polynomials in G with degree exactly m. Define G−1 = {0}.

Lemma 8. The set G is an elementary abelian 2-group under addition
and the sets Gm are subgroups with G = Gt. Furthermore, #(Gm/Gm−2)≤q
for 1 ≤ m ≤ t− 1 and #(Gt/Gt−1) = 2.

P r o o f. It is easy to see that the set G is an elementary abelian 2-group
with the sets Gm as subgroups. We claim that G does not contain any el-
ements of even degree except those elements of degree t. For if v has even
degree not equal to t then the leading term of v2 + uv has even degree, and
so no polynomial w can exist with v2 + uv = xw2. Thus Gm = Gm−1 for m
even. Similarly G does not contain any polynomials of odd degree greater
than t. Thus G = Gt. To prove the remaining remarks, it suffices to con-
sider the case m odd with m less than t. Suppose that #(Gm/Gm−2) > q
where m is odd with 1 ≤ m ≤ t − 1. Then Gm/Gm−2 must contain ele-
ments of the form γxm+γ′xm−1 +Gm−2 and γxm+γ′′xm−1 +Gm−2 where
γ, γ′, γ′′ ∈ Fq with γ′ 6= γ′′. But then (γ′ − γ′′)xm−1 + Gm−2 ∈ Gm/Gm−2

and so Gm contains a polynomial of even degree. This is a contradiction
since m ≤ t− 1.

To prove the final claim, we first observe that 0, u∈G and so #(Gt/Gt−1)
≥ 2. Suppose that #(Gt/Gt−1) > 2. Then Gt contains an element v whose
leading coefficient l(v) differs from the leading coefficient l(u) of u. But
since v2 + uv contains only odd powers of x, we have l(u)2 + l(u)l(v) = 0,
which implies l(u) = l(v). This contradiction establishes the final claim and
completes the proof.

We call the set G = G(u) the full solution group for u, and a subset of
G a solution set for u. If G meets the bounds imposed by the above lemma
then we say that G is a maximal solution group.
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Lemma 9. Let u ∈ Fq[x] have even degree t ≥ 2 where charFq = 2,
and suppose that G(u) is a maximal solution group for u. Then the degree
enumerator f(z) of G(u) is given by

f(z) =
∑

1≤i≤t−1
i odd

(q − 1)q(i−1)/2zi + qt/2zt

and we have the factorisation

1− f(z) = (1− qz)
∑

0≤i≤t−2
i even

qi/2(zi + zi+1).

P r o o f. Recall that Vm = {v ∈ G | deg v = m}. So the mth coeffi-
cient (m ≥ 1) of f(z) is vm = #(Vm). As we observed in the proof of
the preceding lemma, for m even and not equal to t, and for m odd and
greater than t, we have #(Vm) = 0. For m odd and less than t, #(Vm) =
#(Gm)−#(Gm−1) = #(Gm)−#(Gm−2) since #(Gm−1) = #(Gm−2). Now
#(G−1) = 1 and since G meets the bounds imposed by the previous lemma
we have #(Gm/Gm−2) = q for m odd with 1 ≤ m ≤ t − 1. An easy induc-
tion argument establishes that #(Gm) = q(m+1)/2 and furthermore since
#(Gt/Gt−1) = 2 we have #(Gt) = 2qt/2. So #(Vm) = (q−1)q(m−1)/2 for m
odd and less than t. Similarly #(Vt) = #(Gt) −#(Gt−1) = 2qt/2 − qt/2 =
qt/2. The factorisation is easy to verify.

(We in fact have the fuller factorisation

1− f(z) = (1− qz)(1 + z)
∏

1≤s≤t/2−1

(qz2 − exp 2πis/(t/2)).

It is somewhat curious that the roots of 1 − f have complex modulus
1/q, 1/

√
q and 1, although this observation plays little part in what follows.)

Having determined the form of the degree enumerator polynomial f(z)
in the case where G is a maximal solution group, we now wish to find the
form of the deficiency polynomial g(z). We show in Lemma 10 that g(z) is
actually equal to the cofactor of 1−qz in the factorisation of 1−f(z), and so
g(z)/(1− f(z)) = (1− qz)−1. Using Proposition 5 we then see in Lemma 11
that the cardinality of CF(G)/∼2n−1 when G is a maximal solution group is
qn. This allows us to prove Lemma 12, which is the main result of Section 4.2.

Lemma 10. Let u ∈ Fq[x] have positive even degree t where charFq = 2,
and suppose that G(u) is maximal. Then the deficiency polynomial g(z) of
G(u) is given by

g(z) =
∑

0≤i≤t−2
i even

qi/2(zi + zi+1).

P r o o f. Let g(z) denote the deficiency polynomial of G = G(u) and wi
(i ≥ 0) the coefficient of zi in g(z). Certainly wi = 0 for i ≥ t and by
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definition w0 = 1. For 1 ≤ i ≤ t− 1 we must establish that

wi =
{
qi/2 when i is even,
q(i−1)/2 when i is odd.

We first show that wi ≤ qbi/2c (1 ≤ i ≤ t− 1) by considering the number of
polynomials of each degree in a subset W (i) ⊆ G of polynomials of degree
greater than i which lie in distinct ≈i-equivalence classes. We then argue
that this bound can be met by considering the structure of the maximal
solution group G.

Suppose that W (i) ⊆ G is a set of polynomials of degree greater than i

which lie in distinct ≈i-equivalence classes. Let W (i)
s denote the subset of

polynomials in W (i) which have degree s. Then #(W (i)) =
∑
s>i #(W (i)

s ).

Since W (i) ⊆ G, #(W (i)
s ) = 0 if s > t, or s < t with s even. It remains to

bound the cardinality of W (i)
s for s = t, and i < s < t with s odd.

We consider two cases: Suppose first that 2i ≤ t. Let i < s < 2i with
s odd (and so s < t). Let v, v′ ∈ W (i)

s with v 6= v′. Since v 6≈i v′ we have
that |(1/v) − (1/v′)| ≥ q−2i+1 and so |v − v′| ≥ q2(s−i)+1. Furthermore,
since v, v′ ∈ G and G is a group which contains only polynomials of odd
degree (excluding those of degree t) we have that deg (v − v′) is odd. We
now apply Lemma 4 with b = s and a = 2(s − i) + 1 to deduce that
#(W (i)

s ) ≤ (q − 1)q(2i−s−1)/2. Writing W≥2i for
⋃
s≥2iW

(i)
s we see that if

W≥2i contains two distinct members v and v′ of degrees m and n respectively
with m ≥ n ≥ 2i then qm ≥ |v − v′| ≥ q−2i+m+n+1 ≥ qm+1, which is
a contradiction. Thus #(W≥2i) ≤ 1. It is a simple exercise in summing
geometric series to then show that

#(W (i)) =
∑

s>i

#(W (i)
s ) =

∑

i<s<2i, s odd

#(W (i)
s ) + #(W≥2i)

≤
∑

i<s<2i, s odd

(q − 1)q(2i−s−1)/2 + 1 = qbi/2c.

Suppose now that 2i > t. For i < s ≤ t−1 < 2i and s odd one may show
as before that #(W (i)

s ) ≤ (q − 1)q(2i−s−1)/2. Similarly we may appeal to
Lemma 4 to show that #(W (i)

t ) ≤ q(2i−t)/2. (Recall that #(Gt/Gt−1) = 2
and so nt(W

(i)
t ) = 1 in Lemma 4 in this case.) Once again summing over s

one concludes that

#(W (i)) =
∑

i<s≤t−1

#(W (i)
s ) + #(W (i)

t )

≤
∑

i<s≤t−1, s odd

(q − 1)q(2i−s−1)/2 + q(2i−t)/2 = qbi/2c.
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To show that wi = qbi/2c one must first prove that the bounds on the
cardinalities of the sets W (i)

s discussed above can actually be met. For each
i (1 ≤ i ≤ t− 1), and each suitable s, we show that one may construct a set
W

(i)
s , of polynomials of degree s in G which lie in distinct ≈i-equivalence

classes, whose cardinality meets the appropriate bound. (For each i, we also
define a set W≥2i which we need in the case 2i ≤ t.) We then take suitable
unions of these sets to give for each required i a set W (i), of polynomials of
degree greater than i which lie in distinct ≈i-equivalence classes, such that
#(W (i)) = qbi/2c.

For s even or s greater than t, we define W (i)
s = ∅. In the case 2i ≤ t

we define W≥2i = {f} where f is any polynomial in G with degree at least
2i. The main cases to consider are s odd with i < s < t, and s = t. In the
former case, one must show that for each i (1 ≤ i ≤ t− 1) there exists a set
W

(i)
s (i < s ≤ min{2i − 1, t}, s odd) of (q − 1)q(2i−s−1)/2 polynomials in G

which have degree s such that distinct elements lie in different≈i-equivalence
classes. That is to say: v, v′ ∈ W (i)

s with v 6= v′ ⇒ |v − v′| ≥ q2(s−i)+1. We
construct such a set as follows: For each positive m which is odd and less
than t, choose polynomials fm0 , fm1 , . . . , fmq−1 such that the images of the
fmi under the natural homomorphism Gm → Gm/Gm−2 are distinct. (One
may do this since G is a maximal solution group.) We may assume that
deg fmi = m for 1 ≤ i ≤ q − 1. Let the set W (i)

s be
{
fsi +

∑

2(s−i)+1≤m≤s−2
m odd

fmjm

∣∣∣ 1 ≤ i ≤ q − 1; for each m, 0 ≤ jm ≤ q − 1
}
.

It is easy to verify that W (i)
s meets our requirements.

The case s = t is similar. It is easily verified that for each i (1 ≤ i ≤
t − 1) the set W (i)

t constructed as follows has cardinality q(2i−t)/2, and if
v, v′ ∈ W (i)

t with v 6= v′ then |v − v′| ≥ q2(t−i)+1, and so distinct members
lie in different ≈i-equivalence classes: Let ft0 and ft1 be elements in Gt
with distinct images under the natural homomorphism Gt → Gt/Gt−1, and
fm0 , fm1 , . . . , fmq−1 (m odd and less than t) be as in the preceding para-
graph. (Such elements exist since G is maximal.) We may assume deg ft1 = t.
Let W (i)

t be given by

W
(i)
t =

{
ft1 +

∑

2(t−i)+1≤m≤t−1
m odd

fmjm

∣∣∣ for each m, 0 ≤ jm ≤ q − 1
}
.

Finally, for each i (1 ≤ i ≤ t − 1) we define a set W (i), of polynomials
of degree greater than i which lie in distinct ≈i-equivalence classes, with
#(W (i)) = qbi/2c: For 2i ≤ t let W (i) =

⋃
i<s<2iW

(i)
s ∪W≥2i and for 2i > t
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let W (i) =
⋃
i<s≤t−1W

(i)
s ∪W (i)

t . From the construction of the sets W (i)
s we

know that W (i) will in both cases have the appropriate cardinality. We need
to show that distinct polynomials in W (i) lie in different ≈i-equivalence
classes. Let v, v′ ∈ W (i) with deg v = s, deg v′ = s′, and v 6= v′. Now
W (i) can contain at most one polynomial of degree greater than 2i, and
this lies in an equivalence class of size 1. So we may assume s, s′ ≤ 2i and
v ∈ W (i)

s , v′ ∈ W (i)
s′ . If s = s′ then v 6≈i v′ by our previous observations on

the set W (i)
s (= W

(i)
s′ ). If s 6= s′ then |(1/v)− (1/v′)| = q−min{s,s′} ≥ q−2i+1

since min{s, s′} is odd. Hence v 6≈i v′ in this case. Thus wi = #(W (i)) =
qbi/2c, which completes the proof.

Recall that we say that two sets of polynomials are equivalent if any
polynomial of degree at least 1 which lies in one, lies in the other.

Lemma 11. Let u ∈ Fq[x] have positive even degree and charFq = 2. If
H is a solution set for u which is equivalent to a maximal solution group for
u then the cardinality of CF(H)/∼2n−1 is qn. If H is a solution set for u
which is not equivalent to a maximal solution group then the cardinality of
CF(H)/∼2n−1 is strictly less than qn for sufficiently large n.

P r o o f. Let G = G(u) denote the full solution group for u and let H be a
solution set for u. Denote the degree enumerator and deficiency polynomials
for G and H by fG(z), gG(z) and fH(z), gH(z) respectively. Suppose that H
is equivalent to a maximal solution group for u. Then in this case G must be
maximal and from Lemmas 9 and 10, the rational function gG(z)/(1−fG(z))
is (1−qz)−1. ButH is equivalent toG and so gH(z)/(1−fH(z)) = gG(z)/(1−
fG(z)). So by Proposition 5, the cardinality of CF(H)/∼2n−1 is qn.

We now consider the second case in which H is not equivalent to a
maximal solution group. The coefficients of fH(z) are positive numbers and
are bounded by those of fG(z); thus fH(r) ≤ fG(r) for all positive r. We
claim that fH(1/q) < 1: In the case where G is maximal we have fG(1/q) = 1
and so fH(1/q) < 1 since at least one coefficient of fH(z) is strictly smaller
than the corresponding coefficient of fG(z) (here H is not equivalent to G).
If G is not maximal then it is not difficult to see that fG(1/q) < 1. Since
fH(1/q) ≤ fG(1/q) our claim is also true in this case.

Now let β be the root of 1 − fH(z) with smallest complex modulus.
If ‖β‖ ≤ 1/q then ‖1 − fH(β)‖ ≥ 1 − fH(‖β‖) ≥ 1 − fH(1/q) > 0 (the
penultimate inequality holds because fH is an increasing function on the
positive reals). Hence ‖β‖ > 1/q. Letting S = H in Proposition 5 and
choosing ε in the second part of the proposition so that ‖β‖−ε > 1/q yields
the second statement.

We may now state the main result of this section.
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Lemma 12. Let u ∈ Fq[x] have positive even degree and charFq = 2.
Then Iu = CF(S) if and only if S is equivalent to a maximal solution group
for u.

P r o o f. (⇐) Suppose that S is equivalent to a maximal solution group
for u. Let g, g′ ∈ Du with φ(g) = f and φ(g′) = f ′ where f, f ′ ∈ Iu.
Subtracting the relevant equations we find that

(f − f ′)2 + u(f − f ′) = x(g − g′)2

and so |g − g′|2 = qt−1|f − f ′|. From this it follows that
(1) g ∼n−(t/2) g

′ ⇔ f ∼2n−1 f
′

where deg u = t.
Thus #(Iu/∼2n−1) = #(Du/∼n−(t/2)) = qn (the first equality holds be-

cause of (1) and the final one comes directly from the definition of Du). From
Lemma 11, #(CF(S)/∼2n−1) = qn since S is equivalent to a maximal so-
lution group, and so #(CF(S)/∼2n−1) = #(Iu/∼2n−1) for each n. Further-
more CF(S) ⊆ Iu by Lemma 7. Suppose that CF(S) 6= Iu. Let f ∈ Iu with
f 6∈ CF(S). In particular, for some m we have f 6∼2m−1 f

′ for all f ′ ∈ CF(S).
Since CF(S) ⊆ Iu it follows that #(Iu/∼2m−1) > #(CF(S)/∼2m−1), which
is a contradiction. Thus CF(S) = Iu.

(⇒) Suppose that S is not equivalent to a maximal solution group for u.
If S is not equivalent to a solution set for u then the contrapositive of (⇒)
in Lemma 7 shows that CF(S) 6⊆ Iu. So suppose that S is equivalent to a
solution set for u but is not equivalent to a maximal solution group. Then
by Lemma 11 the cardinality of CF(S)/∼2n−1 is strictly less than qn for suf-
ficiently large n. But if CF(S) = Iu then we must have #(CF(S)/∼2n−1) =
#(Iu/∼2n−1) = qn for all n. Therefore CF(S) 6= Iu as required.

4.3. The case deg u odd. The case deg u odd can be treated in a similar
way to deg u even, modulo a few changes which we describe in this section.

The full solution group G(u) of a polynomial u of odd degree t is defined
in exactly the same way and any subset of this group is called a solution
set for u. The full solution group G(u) is said to be maximal if its degree
enumerator f(z) is of the form

f(z) =
∑

1≤i≤t−1
i even

(q − 1)qi/2zi + q(t+1)/2zt.

In this case we have the factorisation
1− f(z) = (1− qz)

(
1 +

∑

1≤i≤t−2
i odd

q(i+1)/2(zi + zi+1)
)
.

For any finite subset S of Fq[x], recall (from the discussion following
Proposition 5) that one may define the new deficiency polynomial ĝS(z) =∑
i≥0 ŵiz

i. Then the cardinality of CF(S)/∼2n equals the coefficient of zn
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in ĝS(z)/(1− fS(z)), where fS(z) is the degree enumerator of S. Examining
the proof of Lemma 12, we see that to establish an odd case version of the
lemma we need to show the following: if G(u) is a maximal solution group
for u then #(CF(G(u))/∼2n) = qn, and if H is any solution set which is not
equivalent to a maximal solution group then #(CF(H)/∼2n) < qn for suf-
ficiently large n. Once again, the latter is straightforward and follows from
the fact that the complex modulus of the smallest root of 1− fH(z) in the
case where H is a solution set for u which is not equivalent to a maximal
solution group is strictly greater than 1/q.

To prove the former we must establish the form of the new deficiency
polynomial ĝ(z) of a maximal solution group G(u). We must show that it
is equal to the cofactor of 1 − qz in the above factorisation of 1 − f(z).
Fortunately, we can use Lemma 10 to do this: Observe first that if G(u)
is a maximal solution group for u where deg u is odd, then xG(u) is a
maximal solution group for xu, which has even degree. Now suppose that
W ⊆ G(u) is a set of polynomials of degree greater than i which lie in distinct
'i-equivalence classes. Then it is easily seen that xW ⊆ xG(u) is a set of
polynomials of degree greater than i+1 which lie in distinct≈i+1-equivalence
classes. One may deduce (with a little work) from this observation and
Lemma 10 that for i with 1 ≤ i ≤ t−1 the coefficient of zi in ĝ(z) is q(i+1)/2

if i is odd, and qi/2 if i is even. Thus ĝ(z) has the required form.
Lemma 12 together with the odd case version of the lemma whose proof

we have just outlined together establish Theorem 1.

4.4. Polynomials with maximal solution groups. In this section, we will
be concerned with finding all polynomials whose full solution groups are
maximal. We shall see that they do not exist for fields with more than 4
elements; however, we are able to give a complete description in the case
where the field has 2 or 4 elements.

We begin with a result which implies that in the search for polynomials
with maximal solution groups we may restrict our attention to the fields
with two elements and four elements.

Proposition 13. Let u ∈ Fq[x] with deg u ≥ 1, where charFq = 2 and
q 6= 2 or 4. The full solution group for u is not maximal.

P r o o f. Let u ∈ Fq[x] with deg u ≥ 1 and charFq = 2. Observe that if
G(u) is a maximal solution group for u where deg u is odd, then xG(u) =
{xv | v ∈ G(u)} is a maximal solution group for xu. We may therefore
assume that u has even degree at least 2. Suppose that G(u) is maxi-
mal; so it meets the bounds imposed by Lemma 8. In particular #(V1) =
#(G1)−#(G−1) = q − 1. Let u =

∑
0≤i≤t uix

i and v = a+ bx ∈ V1. Then
the polynomial v2 +uv contains only odd powers of x. Thus the coefficients
of x0 and x2 in v2 + uv, which are a2 + au0 and b2 + bu1 + au2 respectively,
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are both 0. We conclude that a = 0 or u0. If a = 0 then b = u1, since we
must assume that b 6= 0. When a = u0, b can take at most 2 values. Hence
#(V1) ≤ 3. Thus q − 1 = #(V1) ≤ 3, which completes the proof.

We now determine all polynomials over the field with four elements which
have maximal solution groups.

Proposition 14. Let u ∈ F4[x] with deg u ≥ 1. Then the full solution
group for u is maximal if and only if u = u0 + u1x + u2x

2 where u0u2 =
u2

1 6= 0.

P r o o f. We first consider the case deg u = 2 and so u = u0 +u1x+u2x
2.

Then G(u) is maximal if and only if #(V1) = 4 − 1 = 3 and #(V2) = 4. If
#(V1) = 3 then since u ∈ V2 and u + V1 ⊆ V2 we have #(V2) = 4. Thus
G(u) is maximal if and only if #(V1) = 3. We have seen from the proof of
Proposition 13 that this is true precisely when u0 6= 0 (this ensures that the
a in Proposition 13 can take two distinct values) and there are two elements
b1 and b2 in F4 such that b2i + u1bi + u0u2 = 0 (i = 1, 2) (this ensures the
non-zero value of a will yield two distinct choices for b). Observe that u1 6= 0
in this case. Making the substitution bi = u1ci ∈ F4 and dividing by u2

1 we
see that Tr(ci) := c2i + ci = u0u2/u

2
1. If u0u2/u

2
1 ∈ F2 there are two distinct

such ci, and otherwise there are none. We have therefore shown that any
polynomial of degree 2 with a maximal solution group must be of the form
described in the proposition. If deg u = 1 and G(u) is maximal then xu has
a maximal solution group G(xu) = xG(u). But xu has a zero constant term.
This contradicts our description of polynomials of degree 2 with maximal
solution groups. Thus there are no polynomials of degree 1 with maximal
solution groups.

Suppose now that deg u > 2 with u =
∑

0≤i≤t uix
i. Once again, we

may assume that deg u is even. Let G(u) be a maximal solution group for
u. Then G(u) must contain (q − 1)q = 12 polynomials of degree 3. Let
v0 +v1x+v2x

2 +v3x
3 ∈ V3. So v3 6= 0. Then the coefficients of x0, x2, x4, x6

in v2 + uv are 0. Therefore
v2

0 + u0v0 = 0,
v2

1 + u0v2 + u1v1 + u2v0 = 0,
v2

2 + u1v3 + u2v2 + u3v1 + u4v0 = 0,
v2

3 + u3v3 + u4v2 = 0.
One may use ad hoc arguments to show that the above system of equa-
tions has at most 8 solutions (v0, v1, v2, v3) with v3 6= 0, for any choice
of ui (0 ≤ i ≤ 4). Therefore G(u) cannot be maximal. This contradiction
completes the proof.

The above lemma gives a family of 9 polynomials u of degree 2 over F4

with Iu = CF(G(u)). More explicitly, if u = u0 + u1x+ u2x
2 ∈ F4[x] where
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u0u2 = u2
1 6= 0, then G(u) is the additive group generated by the polynomi-

als u1x, u0 + αu1x, u0 + (1 + α)u1x, and u. Here α ∈ F4 with α 6= 0, 1.
We conclude by considering the F2 case.

Proposition 15. Let u ∈ F2[x] with deg u > 6. The full solution group
of u is not maximal.

P r o o f. Once again it is enough to prove the proposition for u a poly-
nomial of even degree t with t ≥ 8. So suppose that u is such a polynomial
and G(u) is maximal. Then either x or x + 1 lies in G(u) and also one of
x3, x3 + 1, x3 + x2 or x3 + x2 + 1 must lie in G(u).

Suppose that x ∈ G(u). Then u = x +
∑
i∈M xi + xt where M ⊆

{2, 4, . . . , t − 2}. Now x3 6∈ G(u) as x6 + ux3 contains the even power x4.
Also x3 + 1 6∈ G(u) as x6 + 1 + (x3 + 1)u contains the term xt (since t > 6).
Similarly, if v = x3 +x2 or x3 +x2 + 1 then v 6∈ G(u) since v2 +uv contains
the even power xt+2 (since t+ 2 > 6).

Hence x+ 1 ∈ G(u). So u must include the term xt−1. Also observe that
(x + 1)u consists of 1, x2 and odd powers of x. If v = x3 or x3 + 1 then
v 6∈ G(u) since v2 + uv contains the even power xt+2. If v = x3 + x2 then
x6 +x4 +x2(x+1)u contains the term x6 by our previous observation and so
v 6∈ G(u). Finally, x3 +x2 +1 6∈ G(u) as x6 +x4 +1+x2(x+1)u+u contains
the even power xt (since t > 6). This contradiction completes the proof.

We list all polynomials u ∈ F2[x] whose full solution groups are maximal
in Table 1 along with (the generators of) their full solution groups.

Table 1. Polynomials with maximal full solution groups in F2[x]

The polynomial u The maximal solution group G(u)

x+ 1 〈1, u〉
x2 + x 〈x, u〉
x2 + 1 〈x+ 1, u〉
x2 + x+ 1 〈x, u〉
x3 + 1 〈1, x2 + x+ 1, u〉
x4 + x 〈x, x3 + x2 + x, u〉
x4 + x3 + x+ 1 〈x+ 1, x3 + 1, u〉
x4 + x3 + x2 + 1 〈x+ 1, x3 + x+ 1, u〉
x4 + x2 + x+ 1 〈x, x3 + x2 + 1, u〉
x6 + x5 + x2 + 1 〈x+ 1, x3 + x2 + 1, x5 + x+ 1, u〉
x6 + x4 + x+ 1 〈x, x3 + 1, x5 + x4 + 1, u〉

5. Corollaries to Theorem 1. In this section, we discuss some ap-
plications of Theorem 1 and the results which follow it. The first is to the
problem of constructing algebraic Laurent series with partial quotients of
bounded degree, and the second to the study of sequences over fields.
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5.1. Algebraic Laurent series with bounded partial quotients. There is a
well-known conjecture in number theory which asserts that the partial quo-
tients of the continued fraction expansion of an algebraic real number of
degree at least 3 are unbounded; however, almost nothing is known about
the continued fractions of such numbers. The situation over fields of Laurent
series in positive characteristic is somewhat different; in particular, in re-
cent years several explicit expansions of algebraic Laurent series which have
bounded partial quotients have been given. The first and simplest result
along these lines is that over the binary field, there exist algebraic Laurent
series of every even degree, whose partial quotients are all linear polynomials
[2]. We prove a similar result for the field of four elements.

Corollary 16. Let d ∈ N. There exists an element of L4 with linear or
quadratic partial quotients which is algebraic of degree d or 2d over F4(x).

P r o o f. Let u be a polynomial over F4 of degree 2 whose full solution
group G(u) is maximal (such polynomials exist by Proposition 14). Let g ∈
L4 be algebraic of degree d over F4(x) with |g| ≤ 1 = qb2/2c−1. Now g2 has
either degree d or possibly, if d is even, degree d/2 over F4(x). We show that
the latter cannot occur. For suppose g2 has degree d/2 with minimum poly-
nomial h(X) where degX h = d/2. Then g is a repeated root of h(X2) and
degX h(X2) = d. Since g has degree d, h(X2) must be the minimum polyno-
mial of g, and so g is not separable. But every finite extension of F4(x) in L4

is separable (see the proof of “Theorem 8” in [1]). Hence g2 is algebraic of
degree d. So the unique element f ∈ CF(G(u)) ⊆ P4 for which f2 +uf+(1+
xg2) = 0 has degree d or 2d. The partial quotients of the continued fraction
of f belong to G(u) and so have degree 1 or 2. This completes the proof.

5.2. An application to sequences. Let s = {si}i≥1 be a sequence over the
field Fq. One measure of the predictability of a sequence which is of interest
in stream cipher theory, a part of cryptography, is its linear complexity
profile. In this section, we discuss sequences which have prescribed linear
complexity profiles, and mention how this relates to rational functions whose
continued fractions have partial quotients of prescribed degrees.

The linear complexity profile of a sequence s = {si}i≥1 over Fq may be
defined as follows: For n ≥ 1 let ln(s) denote the length of the shortest
linear recurrence satisfied by the truncated sequence {si}1≤i≤n. (The least
m such that there exists fi ∈ Fq (0 ≤ i ≤ m) which are not all zero, with∑

0≤i≤m fisk+i = 0 for all 1 ≤ k ≤ n −m.) The linear complexity profile
of s is the sequence {ln(s)}n≥1. Observing that ln(s) ≤ ln+1(s) (n ≥ 1),
we define the jumps profile of s to be the subsequence of non-zero terms in
the (non-negative) sequence l1(s), l2(s)− l1(s), l3(s)− l2(s), . . . The positive
integers which appear in the jumps profile are called the jumps of s, and a
linear complexity profile with jumps of size 1 is called perfect. Wang’s mod-
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ification [12] of Niederreiter’s result [8] on the relation between continued
fractions of Laurent series and sequences asserts that the jumps profile of a
sequence {si}i≥1 is {deg ai}i≥1 where

∑
i≥1 six

−i = [0; a1, a2, . . .].
Each polynomial in Table 1 gives us a different family of binary sequences

with particular linear complexity profiles which satisfy simple linear recur-
rences. For example, taking u = x+ 1 gives us the well-known result that a
binary sequence {si}i≥1 has a perfect linear complexity profile if and only
if it satisfies

s1 = 1, si + s2i + s2i+1 = 0 for i ≥ 1.
It is remarkable that one may characterise these sequences in such a simple
way, and this characterisation has been applied to the following problem on
rational functions over F2 whose continued fractions have partial quotients
of small degree [3, 4, 6, 7]: Determine for which polynomials g over F2, there
exists a coprime polynomial f over F2 of degree less than g, such that all
the partial quotients of the continued fraction of f/g have degree 1. If a
suitable polynomial f exists for some g, how many such f are there? The
latter question has been settled although the former remains open.

For u = x3 + 1 we find that a binary sequence which satisfies
s1 = 0, s3 = 1, si + s2i + s2i+3 = 0 for i ≥ 1,

has a linear complexity profile with jumps of size 2 and 3. The converse is
not true in that there exist sequences whose linear complexity profiles have
jumps of size 2 and 3 but which do not satisfy the above recurrence. How-
ever, it is easy to classify exactly which sequences do (namely those whose
associated continued fraction has partial quotients which are from the full
solution group of x3 + 1). We obtain similar information for every other
polynomial in the table.

We do not get such neat linear recurrences for sequences over F4; how-
ever, we have the following “F2-linear” result.

Corollary 17. Let u0, u1, u2 ∈ F4 with u0u2 = u2
1 6= 0. Then a sequence

{si}i≥1 over F4 which satisfies
u2s2 + u1s1 + 1 = 0,

u2s2i+2 + u1s2i+1 + u0s2i + s2
i = 0 for i ≥ 1,

has a linear complexity profile with jumps of size 1 and 2.

P r o o f. It is easily seen that if {si}i≥1 satisfies the recurrence relations
then the Laurent series f =

∑
i≥1 six

−i will satisfy f2 + uf + (1 + xg2) = 0
for some g ∈ L4. Here u = u0 + u1x+ u2x

2. (Compare the recurrence rela-
tions with those in the proof of Lemma 6.) The conditions on the coefficients
of u ensure that Iu = CF(G(u)) (by Theorem 1 and Proposition 14) and
so f ∈ CF(G(u)). Thus the partial quotients in the continued fraction of f
have degree 1 or 2 and so by the theorem of Niederreiter and Wang we know
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that the sequence {si}i≥1 must have a jumps profile which consists solely of
ones and twos.

It is conceivable that this corollary could be used to prove results for
rational functions over the field F4 whose continued fractions have partial
quotients of small degree.
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