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1. Introduction and definitions. Recall that an algebraic integer α >
1 is a Pisot number if all of its conjugates lie in the open unit disk. Let S1

be the set of all Pisot numbers. In 1944 Salem proved the surprising result
that the set S1 is closed [4]. Let S2 denote the set of algebraic integers which
are greater than 1 in absolute value and have exactly one other conjugate
outside the unit circle, with the rest inside. S2 can be written as a disjoint
union of S′2, the set of real numbers in S2, and S′′2 , the set of complex
numbers in S2. In 1950, J. B. Kelley proved that the set S1 ∪ S′′2 is closed
[3]. In [1], D. G. Cantor studied certain k-tuples of algebraic integers which
generalize these ideas. Specifically, let (α1, . . . , αk) be a k-tuple of distinct
algebraic integers, each with absolute value strictly greater than 1, and let
P (z) be the monic polynomial of least degree with integer coefficients which
α1, . . . , αk all satisfy. If the remaining roots of P (z) lie in the open unit disk,
then (α1, . . . , αk) is called a PV k-tuple, and P (z) is its defining polynomial .
Moreover, if P (z) is irreducible, then (α1, . . . , αk) is said to be an irreducible
PV k-tuple.

Two PV k-tuples are said to be equal if they are equal as sets. Suppose
that (α(n)

1 , . . . , α
(n)
k ) is a sequence of PV k-tuples. Suppose also that each of

these k-tuples can be ordered in such a way that limn→∞ α
(n)
i = αi, and that

α
(n)
i 6= αi for 1 ≤ i ≤ k and for n ≥ 1. Then (α(n)

1 , . . . , α
(n)
k ) is said to have

a limit , and this limit is the j-tuple (α1, . . . , αj) of distinct elements among
the αi’s. This definition was given in [1]. The restriction that α(n)

i 6= αi for
1 ≤ i ≤ k and n ≥ 1 is made so that each αi in the limit j-tuple is actually
a limit point of the sequence {α(n)

i }.
A great deal of work has been done on the study of limit points of the set

S1, and to a lesser extent S2. Several of the results have analogs for the PV
k-tuples. For instance, it was shown in [2] that totally real Pisot numbers
are limit points of S1. Theorem 5.8 of [1] shows that if (α1, . . . , αk) is an
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irreducible, totally real PV k-tuple, that is, a PV k-tuple whose defining
polynomial has all real roots, then (α1, . . . , αk) is a limit of PV k-tuples. It
was also shown in [2] that if α ∈ S1, then αn is a limit point of S1 for every
n ≥ 2. Virtually the same proof can be used to prove that if (α1, . . . , αk)
is an irreducible PV k-tuple, then (αn1 , . . . , α

n
k ) is a limit of PV k-tuples for

every n ≥ 2. It is conjectured that the limit of a sequence of PV k-tuples is
a PV j-tuple, where j ≤ k. However, this question remains open.

In this note we will be concerned with PV k-tuples whose defining poly-
nomials are reciprocal. Recall that a polynomial P (z) of degree d is recip-
rocal if P (z) = zdP (1/z). We will say that a PV k-tuple is reciprocal if
its defining polynomial is reciprocal. Vijayaraghavan showed that every re-
ciprocal quadratic unit is a limit point of S1 [7]. Samet showed that every
reciprocal biquadratic unit in S2, that is, every reciprocal unit of degree 4 in
S2, is a limit point of S2 ([5] and [6]). A natural question to ask is whether
reciprocal PV k-tuples are limits of PV k-tuples. While we cannot answer
this question in general, we will prove the following theorem, which gives
conditions under which it is true.

Theorem 1. Let ϑ = (α1, . . . , αk) be an irreducible PV k-tuple, with
defining polynomial P (z). Suppose P (z) is reciprocal. If |αi| > (3 +

√
5)/2

for each complex αi in ϑ, then ϑ is a limit of PV k-tuples.

We can say more if we restrict our attention to reciprocal PV 3-tuples.
It will be convenient to define S3 as the set of algebraic integers which
are greater than 1 in absolute value and have exactly two other conjugates
outside the unit circle, with the rest inside. Notice that S3 also divides
naturally into 2 subsets. Let S′3 be the set of elements of S3 whose minimal
polynomials have 3 real zeros outside the unit circle, and S′′3 the set of
elements of S3 whose minimal polynomials have one real and two complex
zeros outside the unit circle. Thus, S3 = S′3 ∪ S′′3 . Notice that if α ∈ S′′3
with minimal polynomial P (z), then by considering P (−z) we may assume
without loss of generality that the real zero of P (z) outside the unit circle is
positive. If α ∈ S3 has a reciprocal minimal polynomial, then α is necessarily
a triquadratic unit, that is, a unit of degree 6. We will prove the following
two theorems.

Theorem 2. The reciprocal triquadratic units in S′3 are limit points
of S′3.

Theorem 3. Suppose α ∈ S′′3 , with minimal polynomial

(1.1) P (z) = z6 + az5 + bz4 + cz3 + bz2 + az + 1.

If either (i) a ≥ 0, (ii) a < 0 and b ≤ 4a− 9, or (iii) a < 0 and b ≥ a2/3 + 3
hold , then α is a limit point of S′′3 .



Limits of PV k-tuples 293

We were unable to determine if Theorem 3 holds for all a < 0. However,
we conjecture that it does. Notice that for each a < 0, there are only finitely
many values of b for which the conclusion of Theorem 3 may not hold. It
will follow from Lemmas 2.2 and 2.3 below that if a < 0 and b are fixed in
(1.1), then there is at most one value of c for which α may not be a limit
point of S′′3 . Based on this fact, we have performed numerical calculations
for several values of a < 0 and have been unable to find a counterexample.

2. Preliminary lemmas. Our main tool will be the following theorem
of Cantor [1], which gives us a necessary and sufficient condition for an
irreducible PV k-tuple to be a limit of PV k-tuples.

Cantor’s Theorem. Let ϑ = (α1, . . . , αk) be an irreducible PV k-tuple
with defining polynomial P (z). Then ϑ is a limit of PV k-tuples if and
only if there exists a polynomial A(z), with integer coefficients, such that
|A(z)| ≤ |P (z)| whenever |z| = 1, with equality at only a finite number of
points.

In order to show that a certain number α ∈ S3 is a limit point of S3, our
strategy will be to use Cantor’s Theorem applied to the irreducible PV 3-
tuple to which α belongs. Specifically, let α ∈ S3, with minimal polynomial
P (z). Let α = α1, α2, α3 be the conjugates of α outside the unit circle.
Thus, ϑ = (α1, α2, α3) is an irreducible PV 3-tuple with defining polynomial
P (z). Suppose we can find a polynomial A(z) with integer coefficients which
satisfies the conditions of Cantor’s Theorem. We then get a sequence of PV 3-
tuples ϑn = (α(n)

1 , α
(n)
2 , α

(n)
3 ) which approaches ϑ. This implies in particular

that α is a limit point of the sequence {α(n)
1 }. If α(n)

1 is in S3 for infinitely
many n, it then follows that α is a limit point of S3. Cantor’s Theorem does
not guarantee this, however, since ϑn need not be irreducible for infinitely
many n. We need the following lemma which shows that in the case of PV
3-tuples, the ϑn are irreducible for n large enough.

Lemma 2.1. Let ϑn = (α(n)
1 , α

(n)
2 , α

(n)
3 ) be a sequence of PV 3-tuples,

with defining polynomials Pn(z). Let ϑ = (α1, α2, α3) be an irreducible PV
3-tuple with defining polynomial P (z). If ϑ is the limit of the sequence, then
for n large enough, ϑn is an irreducible PV 3-tuple.

P r o o f. Assume that there exists a subsequence Pnk(z) of polynomials,
each of which factors into two polynomials, say fnk(z) and gnk(z), both
of positive degree. Note that each fnk(z) and gnk(z) is monic with integer
coefficients, by Gauss’s Lemma. Also note that for each k, one of the two
polynomials, say fnk , possesses exactly 1 root outside the unit circle, and
the other, gnk , has exactly two roots outside the unit circle. If this were
not the case, then one of the polynomials would be forced to have all of its
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roots strictly inside the unit circle. However, this is impossible for a monic
polynomial with integer coefficients, since the product of the roots must be
an integer.

Thus, each fnk(z) has a Pisot number as one of its roots. Therefore, for
each k, (α(nk)

1 , α
(nk)
2 , α

(nk)
3 ) contains a Pisot number. Thus, there is an i such

that α(nk)
i contains a subsequence of Pisot numbers. However, this subse-

quence of Pisot numbers approaches a root of P (z). Since the Pisot numbers
are closed, this root must also be a Pisot number. This is a contradiction,
since P (z) is the minimal polynomial of an S3 number. Therefore Pn(z) is
irreducible for n large enough.

The following two lemmas will be used in the proof of Theorem 3. The
first is a technical lemma. The second illustrates how Cantor’s Theorem will
be used to show that an element of S′′3 is a limit point of S′′3 .

Lemma 2.2. Let α ∈ S′′3 , with minimal polynomial

P (z) = z6 + az5 + bz4 + cz3 + bz2 + az + 1.

Let x = z + 1/z, and define

Q(x) = z−3P (z) = x3 + ax2 + (b− 3)x+ c− 2a.

Then Q(x) < 0 whenever x ≤ 2. Also, c < −2|a|. Moreover , if a = 0, then
c < −2. Therefore c < −2 always holds.

P r o o f. Since P (z) has exactly two positive roots, and no roots on the
unit circle, it follows from its definition that Q(x) has one real root in the
interval (2,∞), and two complex roots. Since Q(x) → ∞ as x → ∞ and
Q(x)→ −∞ as x→ −∞, it is easy to see that

Q(x) < 0 for x ≤ 2.

In particular, this gives the following three inequalities:

c− 2a = Q(0) < 0,(2.1)

8 + 2a+ 2(b− 3) + c = Q(2) < 0,(2.2)

−8 + 2a− 2(b− 3) + c = Q(−2) < 0.(2.3)

Adding (2.2) and (2.3) gives

(2.4) 2a+ c < 0.

By (2.1) and (2.4), it follows that

(2.5) c < −2|a|.
If a 6= 0, it follows from (2.5) that c < −2. Suppose a = 0. By (2.5), we have
c < 0. Then, since Q(x) has 1 real and 2 complex roots, its discriminant is
negative, so

(2.6) −4(b− 3)3 < 27c2.
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Suppose c = −1. Then (2.6) gives −4(b−3)3 < 27, which implies that b > 1.
But (2.2) implies

0 > 8 + 2(b− 3)− 1 > 7 + 2(1− 3) = 3 > 0,

a contradiction. Thus c 6= −1. Suppose c = −2. Then (2.6) gives −4(b−3)3 <
108, which implies that b > 0. However, by (2.2), we would then have

0 > 8 + 2(b− 3)− 2 > 6 + 2(0− 3) = 0,

another contradiction, and so c 6= −2. Therefore, c < −2.

Lemma 2.3. Let α ∈ S′′3 , with minimal polynomial

P (z) = z6 + az5 + bz4 + cz3 + bz2 + az + 1.

Let x = z + 1/z, and define

Q(x) = z−3P (z) = x3 + ax2 + (b− 3)x+ c− 2a.

If

(2.7) Q(x) < −1/2 for all x ∈ [−2, 2]

then α is a limit point of S′′3 .

P r o o f. Let ϑ = (α, α2, α3) be the irreducible PV 3-tuple to which α
belongs. Let A(z) = z6 +az5 +bz4 +(c+1)z3 +bz2 +az+1. Let x = z+1/z,
and let R(x) = z−3A(z) = Q(x) + 1. For |z| = 1, if Q(x) ≤ −1 then

|A(z)| = |R(x)| = |Q(x) + 1| < |Q(x)| = |P (z)|,
and if −1 < Q(x) < −1/2, then

|A(z)| = |R(x)| = Q(x) + 1 < 1/2 < −Q(x) = |Q(x)| = |P (z)|.
Thus, by Cantor’s Theorem, ϑ is the limit of a sequence ϑn = (α(n)

1 , α
(n)
2 ,

α
(n)
3 ) of PV 3-tuples. By Lemma 2.1 these PV 3-tuples are irreducible for n

large enough. Also, since ϑ contains one real and two complex numbers, and
since α(n)

i → αi as n→∞ for 1 ≤ i ≤ 3, it follows that ϑn contains one real
and two complex numbers for n large enough. Therefore α is a limit point
of S′′3 .

3. Proof of Theorem 1. This theorem is actually a simple corollary of
Theorem 5.8 of [1], but we will give the full details for the convenience of the
reader. Let β1, . . . , βr be the positive real roots of P (z), and let %1, . . . , %s be
the negative real roots. Let γ1, . . . , γt, 1/γ1, . . . , 1/γt be the complex roots,
where |γi| > 1 for 1 ≤ i ≤ t. Then, for |z| = 1, we have

|z − βi|
|z − 1| ≥

1 + βi
2

>
√
βi and

|z − %i|
|z + 1| ≥

1 + %i
2

>
√
|%i|.
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Also, if |z| = 1, we have

|z − γi| ·
∣∣∣∣z −

1
γi

∣∣∣∣ ≥ (|γi| − 1)
(

1− 1
|γi|
)

=
(|γi| − 1)2

|γi| .

Since |γi| > (3 +
√

5)/2, it follows that |γi|2 − 3|γi| + 1 > 0, and hence
(|γi| − 1)2 > |γi|. Therefore, we have

|P (z)|
|z − 1|r|z + 1|s =

r∏

i=1

|z − βi|
|z − 1|

s∏

i=1

|z − %i|
|z + 1|

t∏

i=1

|z − γi| ·
∣∣∣∣z −

1
γi

∣∣∣∣

>

r∏

i=1

√
βi

s∏

i=1

√
%i = 1.

Thus, |P (z)| > |z−1|r|z+1|s whenever |z| = 1. Therefore Theorem 1 follows
from Cantor’s Theorem, with A(z) = (z − 1)r(z + 1)s.

4. Proofs of Theorems 2 and 3. Let α ∈ S3 be a reciprocal tri-
quadratic unit with minimal polynomial P (z). Let α = α1, α2, α3 be the
conjugates of α which lie outside the unit circle. Then (α1, α2, α3) is an
irreducible PV 3-tuple.

If α ∈ S′3, then all the roots of P (z) are real. Since totally real PV
k-tuples are limits of PV k-tuples, (α1, α2, α3) is the limit of a sequence
(α(n)

1 , α
(n)
2 , α

(n)
3 ) of PV 3-tuples. By Lemma 2.1, (α(n)

1 , α
(n)
2 , α

(n)
3 ) is irre-

ducible for n large enough. It is clear from the definition of a limit of PV
k-tuples that, for n large enough, α(n)

i is real for 1 ≤ i ≤ 3. Thus, α is a
limit point of S′3. This proves Theorem 2.

Suppose now that α ∈ S′′3 . Let x = z + 1/z, and define

Q(x) = z−3P (z) = x3 + ax2 + (b− 3)x+ c− 2a.

To prove case (i) of Theorem 3, we will consider the following six cases
separately:

1. a ≥ 0 and b ≥ 0.
2. a ≥ 2 and b < 0.
3. a = 0 and b ≤ −9.
4. a = 1 and b ≤ −5.
5. a = 0 and −9 ≤ b ≤ −1.
6. a = 1 and −5 ≤ b ≤ −1.

For the first four cases we will show that (2.7) holds. It will then follow
from Lemma 2.3 that α is a limit point of S′′3 . The last two cases will require
a little more care.
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Suppose that case 1 holds. By (2.2) we have, for x ∈ [−2, 2],

Q(x) ≤ x3 + ax2 + (b− 3)x− 8− 2a− 2(b− 3)− 2a− 1(4.1)

= (x3 − 3x− 2) + a(x2 − 4) + b(x− 2)− 1

= (x− 2)(x+ 1)2 + a(x2 − 4) + b(x− 2)− 1.

Since a ≥ 0 and b ≥ 0, the maximum value of (4.1) on [−2, 2] is −1, which
occurs when x = 2. Therefore (2.7) holds for case 1.

We now turn to cases 2, 3, and 4. Notice that

(4.2) Q′(x) = 3x2 + 2ax+ (b− 3).

Thus the critical points of Q(x) occur at

x =
−a±

√
a2 − 3(b− 3)

3
.

For a and b satisfying the conditions in cases 2, 3, or 4, we see that Q(x)
has two critical points, one in (−∞,−2] and one in [−2,∞). Since Q(x) < 0
for x ∈ (−∞, 2], and since Q(x)→∞ as x→∞, it follows that the critical
point in [−2,∞) cannot be a local maximum. Hence, for a, b satisfying the
conditions in cases 2, 3, or 4, we see that Q(x) attains its maximum on
[−2, 2] at one of the endpoints. Since Q(−2) and Q(2) are both integers, we
have, for x ∈ [−2, 2], Q(x) ≤ −1. Therefore (2.7) holds for cases 2, 3, and 4.

We now turn our attention to the last two cases. Suppose that a and b
satisfy either 5 or 6. Let c0 be the largest integer for which the polynomial

Pc0(z) = z6 + az5 + bz4 + c0z
3 + bz2 + az + 1

is the minimal polynomial of an element of S′′3 . c0 exists by Lemma 2.2,
and is less than −2. Define Qc0(x) = z−3Pc0(z). By Lemma 2.2, Qc0(x) < 0
whenever x ≤ 2. If c < c0, then Q(x) ≤ Qc0(x) − 1 < −1 whenever x ≤ 2,
and so by Lemma 2.3, α is a limit point of S′′3 . Therefore, we need only
consider the case c = c0.

There are only 14 pairs of a and b which satisfy conditions 5 and 6.
We need to find the value of c0 for each pair. This can be accomplished
by routine computation. Once these values are found, it is again a routine
computation to determine which of the polynomials Qc0(x) satisfy condi-
tion (2.7) of Lemma 2.3. It turns out that of the 14 polynomials, only the
polynomials

z6 − 3z4 − 6z3 − 3z2 + 1 and z6 − 5z4 − 9z3 − 5z2 + 1

yield polynomials Qc0(x) which do not satisfy this condition. For these two
polynomials we appeal to Cantor’s Theorem directly. Let

A(z) = z6 + z5 − z4 − 3z3 − z2 + z + 1.
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It is not hard to show that for both of the above polynomials, |A(z)| ≤ |P (z)|
whenever |z| = 1, with equality for exactly two values of z. We will demon-
strate this for the first polynomial only. The proof for the other polyno-
mial is similar. If P (z) = z6 − 3z4 − 6z3 − 3z2 + 1, then for x = z + 1/z,
Q(x) = x3−6x−6. If R(x) = z−3A(z), then R(x) = x3 +x2−4x−5. Notice
that R(x) − Q(x) = (x + 1)2. This difference is positive unless x = −1.
Thus, for x ∈ [−2, 2], we have Q(x) ≤ R(x), with equality only at x = −1.
Moreover, it is not hard to see that R(x) < 0 for x ∈ [−2, 2]. Therefore, if
|z| = 1, then we have

|P (z)| = |Q(x)| ≥ |R(x)| = |A(z)|,
with equality only if z = −1/2 ± √3 i/2. Thus, by Cantor’s Theorem the
irreducible PV 3-tuple to which α belongs is a limit of PV 3-tuples. Using
a similar argument as in the end of the proof of Lemma 2.3 we see that α is
in fact a limit point of S′′3 . This completes the proof of Theorem 3, part (i).

To prove part (ii), suppose that a < 0 and b ≤ 4a− 9. Then
√
a2 − 3(b− 3) ≥

√
a2 − 12a+ 36 = |a− 6| = 6− a.

Hence,

−a−
√
a2 − 3(b− 3)

3
≤ −a− (6− a)

3
= −2.

Therefore the local maximum of Q(x) occurs when x ≤ −2. Since there are
no other local maximums of Q(x), it follows that the maximum of Q(x) on
the interval [−2, 2] occurs at one of the endpoints. Now Q(−2) and Q(2)
are negative integers, by Lemma 2.2. Thus, Q(x) satisfies (2.7), and so by
Lemma 2.3, α is a limit point of S′′3 .

Finally, suppose a < 0 and b ≥ a2/3 + 3. Then a2 ≤ 3(b − 3), and so
the discriminant of Q′(x) is negative or zero. Thus, Q(x) is increasing, and
so it achieves its maximum on the interval [−2, 2] when x = 2. Therefore
Q(x) ≤ Q(2) ≤ −1 for all x ∈ [−2, 2] and it follows from Lemma 2.3 that α
is a limit point of S′′3 . This completes the proof of the theorem.
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