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1. Introduction. This paper gives first evidence for the Lifted Root
Number Conjecture [GRW1] which refines Chinburg’s Root Number Con-
jecture [Ct]. The general setting has also been described in [GRW2]. Here,
we observe that the root number conjecture in its lifted form makes predic-
tions about the relations between the global units and the ideal class group
which go beyond what Euler systems or the Main Conjecture of Iwasawa
theory are known to imply (1).

This is discussed in the simplest case, namely when K/Q is a cyclic
extension of odd prime degree [ and squarefree conductor n = p; ... p, with
all primes p; # [. Note that K C Q((,,) where, for a natural number m, ¢,
always denotes a primitive mth root of unity.

Let G = (go) be the Galois group of K/Q and cli the group of ideal
classes in K. Then there is a Z;G-module isomorphism

r—1
(1.1) Zy@g g~ @ LG/(1+go+...+95" (g0 — 1))
=1

with unique natural numbers h; (see the proof of Lemma 2.1). We fix classes
¢ inclg, 1 <i<r—1, of order a power of [, so that the image of €; in
Zy @ clg generates the ith component under this isomorphism. Let p; be the
prime of K above p; and write

r—1
b;i(go—1)hi 1 .
(1.2) ] = e ", 1<j<n
=1
in Z; ® clg. Define B to be (—1)"3Jrl times the determinant of the matrix
(b;j) with the kth column deleted (1 < k <r) (?) . These elements By, serve
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(1) At the same time, it fits into a more general setting (see [Bu]).
(3) If r = 1, we must set By = 1.

[313]
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as a bridge between clx and the cyclotomic unit group £x in the unit group
Ex of K. Indeed, set

¢ = I Nooye( =64,

1#d|n
Then
(1‘3) %0—1 _ Od(()goil)h+1

with a unique ao € K (up to rational factors) such that the norm Nk /g (coo)
of ao is not an Ith power. It is readily seen that B; and the p;-value vy (o)
of as, are proportional modulo [, independent of j. The Lifted Root Num-
ber Conjecture now predicts this ratio to equal a certain number ¢ defined
in Lemma 2.3 (and is, in this case, equivalent to that equality). In Sec-
tion 2 we also review the classical material that has been referred to here.
To get a clear picture of what is going on, note that the above h is such that
|Z; @ clg| = I" and that 5%—1 generates Z; ® £k in Z; ® Ex = (ad971).
The actual connection to the Lifted Root Number Conjecture is ex-
plained in Section 3. However, it would go beyond the scope of this paper to
go into detail here, so the reader is referred to [GRW1] (3). In this section

we characterize certain maps AS’ % Eg which when injective have coho-
mologically trivial cokernel. Here, K/Q may be replaced by an arbitrary
cyclic extension K/k of number fields, and S’ is a finite, sufficiently large
Gal(K/k)-set of primes of K, AS’ the augmentation submodule in the free
G-module ZS’ on the Z-basis p € S’, and finally Es/ the group of S’-units
in K. We close Section 3 by restating the Lifted Root Number Conjecture
in terms of the cokernel of an injective .

The next section recalls the notion of a Ramachandra map ¢ : ASs —
Ex, where S, is the set of all infinite primes of K. The Ramachandra ¢
has been used in [RW] to prove the so-called Strong Stark Conjecture for
absolutely abelian K (in which 2 is unramified). Here we now extend it to
a @ as in Section 3 and show that, for our purposes, it suffices to work with
a G-set S of primes which is large in the restricted sense that the order of
the S-class group of K is prime to |G]|.

Section 5 then gives the construction of an isomorphism ¢ : Z; ® AS —
Z; ® Eg in our example. This ¢ extends .., with S the set generated
by {oco,p1,--,Pryq1y---,9r—1,90}, Where oo is a fixed infinite prime, q; €
¢; (1 <i<r-—1)and qo a suitably chosen prime which is inert over Q. The
Lifted Root Number Conjecture amounts to certain [-adic congruences be-
tween the Tate-Stark numbers A, (), where x runs through the characters
of G.

(3) In fact, only the second part of the proof of Proposition 3.2 requires more than is
in [GRW2].
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We need to insert a short section, §6, on Euler systems before we can
complete the calculation in a restricted situation.

THEOREM. The Lifted Root Number Conjecture holds true for K/Q when
r<2.

Section 6 recalls some basic facts regarding the Euler system

Q€@ = N, o)/ K (o) (1 — Q)

with @ running through the squarefree products of rational primes ¢ splitting
in K. We employ it, in Section 7, to get a prime q; € €; for which the
corresponding Kolyvagin number k4, provides congruences modulo p; (j =
1,2) that lead to the proof of the theorem.

In the case r = 2 we can arrange that x4, has norm 1 and so a (go — 1)th
root of it is an ay, in the sense of Section 5. By means of local symbols we
relate the pj;-value of o, and the congruence class mod p; of xq,. For r > 3
it seems necessary to take repeated (go — 1)th roots and so such congruences
on k-values would not be decisive.

2. Conjecture (C). We maintain the notation of the introduction and
set
A~ -1
b G =go = Z]/:OQOJ
e Pr = group of principal ideals of K,
e [ = group of all ideals of K,

and correspondingly with K replaced by Q.

LEMMA 2.1 (4). (a) Z ® Ex ~ 7,G/G.

(b) The pj, 1 <j <r, constitute an F;-basis of I¢/Ig.
(c) PS¢ /Py has order 1.

(d) (1.1) holds.

For the proof observe that Z;G/ G~ 7, [¢i] is a discrete valuation ring
with prime element the image of go — 1. As [ # 2, K is totally real and G
annihilates Z; ® Ex. Thus (a) is a consequence of Dirichlet’s unit theorem.
Therefore H' (G, Ex) = F; and H*(G, Ex) = 0. Thus, from Fx — K* —
Pk, we see that H'(G, Px) = 0 and P{/Pgy has order [, proving (c); (b)
is obvious. For (d) use Px ~ Ix —» clg in order to arrive at PY¢ /Py —
IG /1o — cl¥, whence cl§ ~ F/ ™" by (b) and (c). Since G annihilates clg
there exist unique numbers s and hy > ... > hg > 1 such that Z; ® clg ~
b, 7,G/(G, (go — 1)h). Taking fixed points shows s = r — 1.

(*) The lemma collects well-known facts (see e.g. [Cc] or [La, XIII,4]), which also
follow from the theory of genus fields [Fr].
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)h+1

LEMMA 2.2 (°). There exists h > 0 so that £27" = alge! with

Qoo € K™ satisfying:

(i) oS ¢ Q.
(ii) supp(@eo) C {p1,---,pr} and (as) generates PS ) Py.
(iil) aoo is unique up to rational factors.

Above, supp(a) is the set of prime divisors of the principal ideal (o)
generated by aeo.

The proof of the lemma is based on the fact that 5%071 # 1, which is
due to Ramachandra [Wa, Theorem 8.3]. Since 5%0_1 € FEg, there is, by
Lemma 2.1(a), a maximal h > 0 with 227" = v@-1" and v € Eg. As

?(0—1 has norm 1 and [ is odd, we may assume that v has norm 1. Hence
there exists as € K* with af0™! = v. In particular (o) € P$. Suppose
that (as) is in the image of Py in Pg, i.e., oo = a-v; with a € Q% and
a unit v1. Then v = vi’ofl contradicts the maximality of h. Consequently,
(o) generates PY/Po and is a product of the p; times a rational number.

Modifying i by the inverse of this rational number proves (i) and (ii).

If h = 0, then (iii) is obvious. If A > 0, then aggofl)hﬂ = aé%“”h“

(go—D" _  (go—D1)" X : :
leads to oy = Qo - a for some a € Q*, and taking norms yields

a'! =1, hence a = 1. This argument can be repeated.
(go—1) i1
As in the introduction (see (1.2)), we write [p;] = []/—, (’:(;” (90-1)
in Z; ® clg with integers b;;. The proof of Lemma 2.1 shows that the ma-

trix (bij)1<i<r—1 has rank r — 1 over F;, whence the row vector Bj =
1<j<r

(—1)k*1 det(b;;) is non-zero modulo I (®). It satisfies (b;;) - (B1,...,B,)T =
(0,...,0). Since, by (1.2), (b;;) is the matrix of the F;-linear map IS /Ig —
cl%, the ideal pfl ...pBr is principal. By Lemma 2.2(ii) we see that there is
ac € Z, ¢c#Z0mod I such that

—Vp, (o) =¢- Bj mod [
for 1 < j <r, where vy(x), for a prime ideal p of K and an z € K, denotes

the p-value of z.

LEMMA 2.3. Let q; € €;, 1 <i <r—1, be primes of prime absolute norm
q; which are different from p1,...,p.. Furthermore, let qo be a rational prime
with Artin symbol (qo, K/Q) = go. Form the matriz (c;;) by means of the
local norm residue symbols

(°) Compare (1.3) in Section 1.
() Recall that By = 1 if r = 1.
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(4, Kp; /Qp,) = 957, 0<i<r—1,1<j<r(").
Define ¢ = det c¢;j. Then ¢ # 0 mod [.

Note that due to Chebotarev’s density theorem such prime ideals g; exist.
Note also that the c;;, and equally well the b;; and the B;, depend on the
choice of the ¢;.

Before turning to the proof of Lemma 2.3 we specify the conjecture that
has been indicated in the introduction:

(C) ¢=cmodl.

Proof (of Lemma 2.3). Define K to be the Hilbert i-class field of K
and let K /Q be the maximal abelian subextension of K/Q (8). The Artin
symbol (, K/K) : Z;®clg — Gal(K/K) is an isomorphism and so provides
the exact sequence Z; @ clx — Gal(K /Q) — G. Since G is cyclic, it follows
that also Z; ® clg [l — Gal(K/Q) — G is exact, whence ( , K/K) :
Zy @ clg )™ 5 Gal(K /K).

Set o; = (qi,f?/Q),O < i < r — 1. The choice of the g; guarantees
that o; = (qi,IA(/K),l <4 <r—1,is an F;-basis of Gal(IA(/K). Observe
here that [ annihilates Z; ® clg /cl92 " because the ideals (go — 1,G) and

(go — 1,1) coincide. In particular, Gal([? /Q) has order [". Since K contains
the composite of the subextensions of degree I of all Q((p,), 1 < j <7, it

therefore coincides with it and Gal(K /Q) is I-elementary. As a consequence,

00,01, -..,0-_1 is an [F;-basis of Gal(l?/(@) because o restricts to gg on K,
and the map

H Upj/UIl?j - Gal([?/Q)v (uj) = H(uja[?ﬁj/@pj)

j=1 Jj=1
is an isomorphism. Here, Uy, is the unit group in Q,, and p; a prime of K
above p;. Note that the 1-units in Q,, are all Ith powers, so [U),,; : Uzl,j] =1.
The isomorphism takes g;, viewed in H;:1 Up,/ UIl)j on the diagonal, to

T

H(qi7‘[/€aj/@pj):(qi’kai/qu)_l20-7:_17 OSiST—l,

j=1

by reciprocity. This shows that qq,...,q.-_1 is an F;-basis of H;Zl Up,/ Uzl)],.

(7) For a number field L and a prime p of L, Lp denotes the completion of L at p.
(8) K is the genus field of K/Q.
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Since [T, (, Kp;/Qp,) = [T, Upj/UIl,j — G" is an isomorphism, the

standard basis of G" is the image of certain Hz;(l] qri, e,

r—1
©is _Jgo ifi=y,
<SHOqS ’K*’f/@pf)_{lo it i j.

This implies
r—1 Erfl s
H(QSquj /ij)a:is = g5 s=0 TisCsj _ 90“
s=0

and finishes the proof (°).

3. The Lifted Root Number Conjecture for K. In this section
K/k is a cyclic extension of number fields with group G = (go) where go
is the Frobenius automorphism of some fixed prime qg of K which is inert
over k. We let S’ denote a finite G-set of primes of K containing qo, all
infinite primes, all ramified primes for the extension K/k, and enough primes
to generate the class group clg. Our aim is to characterize certain maps
AS’ % Eg | which whenever injective have cohomologically trivial cokernel,
and to restate the Lifted Root Number Conjecture in terms of them.

LEMMA 3.1. Let p be a prime of K, g, a generator of its decomposition
group G, (with respect to k) and a, € ky so that (ap, Ky /ky) = gp (with ky
denoting the completion of k in K,). Then the extension class of the bottom
row sequence in the push-out diagram

ép gp—1
| ! | with respect to the map 1+ ay,

corresponds to the local fundamental class of K,/k, under the canonical
isomorphisms

Exte (AGy, K)) ~ H'(Gy, Hom(AGy, KY)) ~ H*(Gy, K)).
For a proof see [Sn, pp. 52-53].

G -1
The exact sequence Z — ZG %257 AG tensored with AS’ yields the new
exact sequence

(A) AS' — AS' @ ZG — AS' ® AG.

Let S, be a set of G-representatives for S" and set g, = g([)G:G”} forp e S,
50 (gp) = Ghp.

) di; is the Kronecker symbol.
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PROPOSITION 3.2. Assume that for each p € S., p # qo, we are given
an element oy, € K% N Eg satisfying

L fory #9p,4q0,

where p’ runs through the primes of K. Then the G-map ¢ : AS" — FEg
defined by p — qo — «p for p € S, p # qo, takes the extension class in
Exty (AS'® AG, AS') of (A) to the Tate class Tg: € Exts(AS'® AG, Es/).

(o /(KE)y) = {40 ST B 2P

REMARK. More precisely, tensoring the augmentation sequence AG —
7.G — 7 with AS’ induces an isomorphism

EXté;(AS/ ® AG, Eg/) — Eth;(AS/’ Eg)
sending Tg to what is usually regarded as the Tate class [GRW1].

Proof (of Proposition 3.2). We begin by picking for each p € S’ an
element a, in (K%»), so that (ay, K,/(K%"),) = gy. To a, we then assign
the idele a(y) in the S’-idele group Jyc, s of K%» which has component 1
everywhere except at the prime p N K&» where the component shall be ayp.
The element «, viewed as principal idele will be denoted by ).

We claim:

A(p) = G(qp)(p) MOd Ny¢/peay Jic.
This is checked for each prime p’ N KC» at a time. Note that p and qo are
non-split in K/KG%.
At p’ # p,qo the two ideles a(,) and a(q,) are 1, and « ) is a local norm.
At p’ = p the two ideles a(p) and oy, differ by a local norm and a(q,) is 1.

At p’ = g the reciprocity law implies (ap, Kq, /(K% )q,) = gp_l, agpy is 1,
G:G .

and (ag,, Koo /(K510)g,) = go becomes gy ™! = g, in Gal(Ky, /(K5)g,)

as follows from the commutativity of

( 7KQO/kq0)

————

k;o Gal(KQO/k%)

! | [G:Gy)=t

b (Kag/(K%)qq) G
(K%)q —— Gal(Kq, /(K% )q,)

with ¢ denoting the transfer map [Se, VII,8].

Since outside of S’ the extension K /k is unramified and since local units
are norms in local unramified extensions, we will even find ;) € Jk s+ such
that

a(p) N/ or (B(p)) = A(a0)(p)-
Recall that here p € S.,p # qo. We temporarily set coq,) = B(qe) = 1-
The rest of the proof of the proposition consists of combining these data
with the construction of a Tate sequence (see e.g. [We, Chapter 5)).
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For each p € S, we take the diagram of Lemma 3.1 with the middle
vertical map denoted by u,. Inducing these up to G' and building the direct
sum over S, we get

ZS' — @ indg ZG, — @ indg, AG,
l ! |
Jr.s 1% - @y indg AG,
where we have glued on the unit ideles outside S’ in J and V. We modify the
left vertical map by sending p € S’ to ap) Nk /kcr B(p), and the middle one

by sending the free G-module generator ind(1,) of indgp ZGy to (1) By,
where now f3(,) € Jk s/ is read in V. Then the new diagram still commutes.
It is the top face in

ZS — @indZG, — @ ind AG,
a Y /=
Jrs — V — @ ind AG, !
(D) [ | |
1 7 — 7G — AG
/ 7 ! /=
Ck — 9 — AG

The bottom face of (D) is the diagram of Lemma 3.1 for p = ¢¢ composed
with the push-out diagram along the natural map from K into the idele
class group Ck of K:

Remember that Gy, = G.
By the compatibility of local and global fundamental classes the bottom
row has extension class corresponding to the global fundamental class.
The commutative diagram

Gy gp—1

Z — 71G, — AG,

| l |
é 90_1

7Z — 7ZG T— AG

with middle arrow z — x(1+go+ ...+ g([)G:G"]_l) induces the back face in
(D). The right face of (D) clearly commutes. The left face commutes because
the idele class of a(y) Ny xcv B(p), for p € S, p # qo, is the same as that of
A(qo)-

On observing that the left half of the top face in (D) is a push-out square
for V' we obtain a unique map V — U making the whole diagram commute.
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As S’ is sufficiently large, Jx s+ — Ck is surjective; since qo € S,
D indgp AG, — AG is surjective. The kernels of the vertical arrows in
(D) fit into

AS" — B — L
e L
Es — A — L
and ¢ takes p—qo to am) N k6o Bp)/a(qo) Which is the principal idele a ).
We now compare this with the kernels of the vertical maps in

By, indg 2  — B, indgG, 2G, B, indg, AG,
/ | / | /
7S’ — 75" @ .G —» 75" @ AG !
N\ ! N\ l N\
Z — 7G —» AG
with outer southwest arrows g ®g, 1 +— gp and middle one g ®g, © +—
gp ® gry, where y, =1+go+ ...+ g([)G:G‘“]_l.
This is
AS" — B —» L
| | l

AST — AS'RZG — AS ® AG
and we regard the two vertical isomorphisms as identifications. Then

AS" — AS'®ZG —» AS @ AG

(T) Le l |
Egy — A - AS'® AG

and the bottom row is the 75 of the proposition.

REMARK. 1. There always exist such ¢ which are injective. We omit the
proof.

2. If G, = 1, then the only restriction on «y is to belong to Eg/.

If the ¢ in Proposition 3.2 is injective, we can build the {2, as in
[GRW1,2] and express the Lifted Root Number Conjecture in terms of a
conjectural representing homomorphism for the finite cohomologically triv-
ial module coker ¢.

This is carried out next. Observe that coker ¢ then coincides with the
cokernel of the middle map in diagram (T), in which AS” ® ZG and A are
cohomologically trivial, so it is so itself as well.

The map ¢ induces ¢ : BgL@AS’ﬂL@ES/ 2 A. Now B and L

are just abbreviations for AS’ ® ZG and AS’ ® AG. The auxiliary maps [
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and « can be any maps resulting from commuting diagrams

L — B VAN Es — L®Eg — L
Ll Lo | I la Llal
L — LaAS — AY Eg — A - L

(2, is defined as the element [coker @] — 20(L,|G|) in the Grothendieck
group KoT(ZG) of finite cohomologically trivial ZG-modules (see [GRW1
or GRW2]).

Analogously we obtain a map 1 : B iy o AS 2 L AS % B and
define

U7 = [coker 1] — 20(L, |G|),

i.e., we have replaced ¢ : AS” — FEs/ by the identity map 1 : AS" = AS’
and the Tate sequence Eg» — A — B —» AS’ by AS" — AS' ® 2ZG —

G _
AS' @ ZG — AS’, which, as before, is Z — ZG 9971 7.G — 7 tensored with
AS'.

LEMMA 3.3. £2, — U1 = [coker ¢].
This follows from the commutativity of a diagram

B A Leoasy 2L rLaaAy 2 B
|| || Lee  Lw

B L Loay 22 LeEs & 4

with suitably chosen (1, a1, 8, «, and in which g is the middle map of
diagram (T). For it implies

1 -
B — B — cokerl

H 1900 I

B 5 A4 - coker ¢

so the snake lemma proves the assertion because coker ¢y = coker ¢.

In order to see the above claimed commutativity we now define particular
maps =31 :B—=L®AS . a: LdOFEgy — Aand a1 : L H AS" — B. To
this end, we label, as shown, our maps in the diagrams

H1 K2 H1 H2

AS" — B — L AS" — B — L
le 1 %o | L1 ! |
By 2 4 5 L As 2 B B oL

and in the right end of the Tate sequence L 2 B% Ag.
Choose Z-maps b, py with pouf, = id, = pjp1 and build the G-maps
2 = Gy, p1 = Gpy.
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The left diagram then gives pypousy = idy. We set iy = popiz and
B) = (p1(b), p2(b)),  aly.e) = pa(y) +psle),  ar(y,d) = pi2(y) + p1(d)
forbe B, ye L, e € Eg/, d € AS’. Then

poar(y, d) = pofia(y) + pop (d) = fia(y) + psp(d) = a(1 & ©)(y, d).

Passing to the Hom description of K(T(ZG) (see Appendix A in [GRW1)),
we now have

LEMMA 3.4. U1 s represented by
ag (x) = |G T] (W(g0) = 1)~ 9 (1)
p#1

with ¥ running through the irreducible characters of G and 0 denoting the
character of AS'.

The proof starts out from the two diagrams

7 — AGOZ — AG AG  — 7.G — 7
I Lo el Ligl 1 Bo I
7 — 7.G -  AG AG — AGeZ — Z
in which
|G|-1

ao(d,z) =d Y igy+2G (A€ AG,z€Z) and (1) = (|G| - G,1).
=1
The identity
|G|-1

(go—1) > igh=1G| -G
=1

shows the commutativity.
Now,
|Gl-1

(@0Bo)(1) = (1G] = G) D igy+ G ==, say.

i=1
Before proceeding, we note that

z \ _ J1/IG], v =1,
¢(6%>_{waw—n,w¢L
The following computations (including notation) are based on Appendix A
in [GRW1]. Tensor the diagrams with AS’. Then we have
U1 = [AS' @ ZGJAS' @ ZG - 2] — 20(AS’ @ AG, |G|)
= 0(AS' ® ZG, x) — 20(AS’ ® ZG, |G|) + 20(AS’, |G])
= 0(AS' ® ZG,z/|G|*) +20(AS',|G)).

(10) (x1,x2) denotes the scalar product of the characters x1, x2 of G.
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The first term has representing homomorphism

x — det(z/|G|* | Hompg(Vy, F @ (AS' ® Z@)))
= det(x/|G|* | Hompg(V, ® (F @ AS")Y, FG))
=det(z/|G|* |V, @ (F @ AS")Y)
by Lemma A.1 in [GRW1]. The equality = holds because of the isomorphism
Homp(V,W ® Z) ~ Homp(V@ WY, Z), t— v@w— (0t)v],

where w € WY = Homp(W, F) induces @ : W R Z — Z,w ® z— w(w)- 2.
This isomorphism respects the G-structure and composition by a G-endo-
morphism of Z.

Now,

det(z/|G]* | Vy @ (F ® AS")Y) = [[ det(a/|G[? | Vi) X0 )
Y

2\ (000
~1Iv(z7)

= G170 T (w(g0) = )=,
P71

The second term is represented by
X — det(|G| | Hompg (Vy, F © AS"))? = |G|2x0),
Multiplying the two gives the result.

COROLLARY. The Lifted Root Number Conjecture holds for K/k if, and

only if, [Z; ® coker @] is represented by x — Ag)(j()/ag/) (x) for all (finite)

primes .

The Lifted Root Number Conjecture asserts that yx — A, (X) represents
{2, which by Lemmas 3.3 and 3.4 is equivalent to x — A,(X)/as (x) repre-
senting [coker ¢]. This is then restated one prime [ at a time by considering
the idelic component above [ in the representing homomorphisms [GRW1,
Appendix A].

4. Adapting S to the local nature of the Lifted Root Number
Conjecture. In the previous section we required S’ to be sufficiently large
in order to have the Tate class 7s: € Ext&(AS’ ® AG, Es/) at our disposal.
In this section we restrict K to be absolutely abelian and real, but work
with a finite G-set S of primes of K containing the set S, of infinite primes
as well as all ramified primes of the extension K/k and just enough primes
to generate the [-part of clx for the given prime I.
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Let n denote the conductor of K, so K C Q(¢,)™", and let co be a distin-
guished infinite prime of K. We use the letter ¢ to denote automorphisms
of K/Q, so each infinite prime of K is some 00?.

Recall from the introduction the Ramachandra number

{x = H Noeny/x (1= ¢/,
1#£d||n
with d || n meaning d|n & (d,n/d) =1, and define an S-unit o, in K* by

go—1 _ _(go—1)"T!
K = O

with some h > 0 (as in Lemma 2.2). Moreover, define ¢, : ASoc — Ex by
Voo(007 — 00) = a9 L. The comparison of the notation here and in [RW,
§10] is done by means of the dictionary below.

[RW] is here

1939 €% .
Yoo 2(g0 — 1)" oo

Having thus taken care of all infinite primes of K we get from elements
ap (p €Sy (M), p & Sx, p#qo), as appearing in Proposition 3.2 with S’
replaced by S, a map ¢ : AS — Fg making the left square of the diagram
ASew — AS — LSy
| #ee Lo 1
Fx — Es — FIg/FEk

commute by sending p — qo to o and co — qp to as. In the diagram,
Sy =5\ S, AS — ZSy is given by

r p’, p’ finite,
L {0, p’ infinite,
and the right vertical map ¢ is the induced one, whence
P(p) = ¢(p —00)Ex = p(p —qo + 90 — 00)Ex = o/ - B¢

for p € Su,p & Soc, b # do. Similarly, &(qo) = az) Ex.
We define the Dirichlet map A as in [GRW1]: A\g : C® Eg — C® AS
sends u € Eg to — 37, cglogulyp ('?). Recall that, for a character x of G,

. det(As o ¢ | Homgg(Vy, C® AS))
ASO(X) = CS()V() X

is the Tate-Stark number [Ta, p. 27]. We compute it by exploiting our

(11) The * indicates again that S is replaced by a set Sx of G-representatives.
(12) Observe that this is —Ag in [RW].
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diagram above which induces

C®ASe — C®AS —  CS

L om Lo 15
P L As IX

CrASe — CoAS — CSy
This implies the factorization

det(Aocpoo | Homee (Vy, C @ AS4))

- de s (X)
cs.. (X) dets (X)

(12) 4,0 = =

with det ¢ (x) short for det(AZ | Homceg (Vy, CSy)).

The first and third factor have been studied in [RW].

To compute the middle one we use the non-zero elements in {e,p |
p €S, p ¢ S} as a basis of Homeg(Vy, CSy) = e,CSy. Here e, is the
primitive idempotent corresponding to x. We have

Oép /

(4.3) oleyp) = Z log

p’eSy

ExP
p’

and will evaluate such determinants in Section 5 by applying the

LEMMA 4.1. If Sy, is a set of G-representatives in Sy, and if (o) =
Hpesf* p®r with x, € ZG, then

- Z log |afpexp = Z X(zp) log(Np)eyp.

For the proof pick a p € Sy, and consider the orbit sum

1 —1
- Z log |a|preyp’ = —WZIOgmg lpx(g)exp.

p'EGp Plgea

With k : CG — C denoting the C-linear map taking g to 1 or 0 according
as g € Gy or g ¢ G, we deduce from vy(a9 ) = k(g 'x,) that the above
orbit sum equals

‘Z k(g™ wp) log(Np))x(g)exp

Gl =

log(wp) 1 IOg(Np)
= K Exgg Ty eyp = ————k(|Gleyxp)eyp
|Gp’ (gEG ( ) p) X ‘Gp| (| ‘ X p) X
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_ log(Np)
= WH(X(%”G‘QX)QXP

= B (X ) enp

geGy

_ log(Np)
|Gyl

. . G . o .
since ey p = 0 whenever resg X is non-trivial.

X(@p)|Gplexp,

LEMMA 4.2. Fven though S does not satisfy the hypothesis of Proposi-
tion 3.2, the Corollary at the end of Section 3 remains true for S with respect
to the given prime l.

To see this, let S’ be a finite G-set containing S and G-orbits of split
primes t (over k) so that the S’-class group of K vanishes. The existence of
an S’ follows from the Chebotarev density theorem.

Assume now that we have a map ¢ : AS — Eg satisfying ¢(p—qo) = oy
for p € Sy, p # qo, where the o, are as above (p = oo included). With A’
denoting the [-prime part of |cl k|, we pick generators o, € K of the principal
ideals t"" and extend ¢ to ¢’ : AS’ — Eg by mapping t — qo to ar. Then
¢’ is a map as described in Proposition 3.2, because the t split over k and
since the a, are S’-units.

We first compare coker ¢ and coker ¢’. To do so build

AS — AS - Z[S'\ S

Le L !
Es — FEg —» ES’/ES
!
Z[S"\ 5]

analogous to the earlier diagram (with S, S instead of S,S5’) and with
Es//Es — Z[S"\ S] taking u € Eg to ), v(u)t. The composite right
vertical map is then multiplication by h’ : t — «, — h't. Hence Z; ®
coker p = Z; ® coker ¢’.

We next turn to the numerators of the A-numbers. We tensor the above
diagram with C and get a diagram similar to (4.1) with maps ¢, ¢’, ¢” and
A, N, N, say. Thus

det(Ap) = det(N¢)/ det(\'¢") = det(X'¢')/ [ [ (1 log Nx)

by A" (v) = h'(log Nt)t.
Now,

ALP’ (5() CS(X) / /
4,00 es (0 H () H
by [RW, Lemma 7 with G, = I, =1, f. =1].
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Finally we look at ag/(x)/as(x). As the character of Z[S’ \ S] is a mul-
tiple of the regular character g, we get from Lemma 3.4, for irreducible y;,

as' (x) _ H <’G|(x,9) H (¥(go) — 1)—(xw*1,9)) - H<_1)|G|—1’

as(x) o .

because the multiplicity in g of every irreducible character is 1.

Putting things together, we see that A,/ (x)/as(x) and A,(x)/as(X)
differ by a constant b € Z;* which is independent of the irreducible character
x. Since x — bX(1) € Det(Z;G) represents the trivial element in KoT(Z;G),
the lemma is proved.

5. Calculation of A,. We go back to our initial situation in which K
is as in the introduction.
With a choice of qqg,...,q-—1 as in Lemma 2.3, suppose that a;, 1 <
hi—1
i <r —1, are ideals supported in {py,...,p,} such that a; - ql(»go_l) are
principal. Let g, be the corresponding generators.

LEMMA 5.1. The r X r matrix

—Up, (Qoe) ... —Up, (o)
—Up, (alh) s _Upr(am)
_’Upl (aqr—l) cte _Up'r‘ (aqr—l)

is non-singular modulo . Moreover, its determinant ¢’ satisfies —vp, (Qtoo) =
d'Bjmod for1<j <. In other words, ¢ =¢mod .

hi— v Qg .
In fact, (aq,) = qz(go*l) ! I, ps"s( ") and (1.2) imply

Z(_Ups(aqi))bjs =0d;;modl, 1<i,j<r-—1.

s=1
Since the B; and vy, (aw) are proportional modulo I, we also have

Z(—vpj(aoo))bjs =0modl forl<j<r-—1.

s=1

With [bz_ ] denoting the matrix
ij

Z1 «.. Zp
bij 1< <r

1<i<r—1

where (z1,..., 2,) is any row vector, we see that the matrix in the statement
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of the lemma times the transpose of [b’;] is

Z;Zl(—vpj (00))zj 0 ... 0
* 1
* 1

Taking determinants yields ¢ - (2;21 zjBj) = Z;Zl(—vpj (o)) z; mod [
by the definition of the B;. The second assertion of Lemma 5.1 follows by
varying z and then the first assertion from Lemma 2.2.

In the vacuous case r = 1 we see that we had to set B; = 1.

COROLLARY. For each 1 < j <, p; is in the Z;G-span of the q; and
the agq,, Qoo.

vpy (aq,)

For quéi = qf"’p1 T (@a0) i Z; ® Fg, with §; = 0 or 1 according
as h; > 1 or h; = 1, and similarly for ag..

We use the a4, and oo together with an integer matrix (z;;) con-
gruent modulo ! to the inverse of the matrix (c¢;;) of Lemma 2.3 in or-
der to define a G-map ¢ : AS — FEg, where S is the G-set generated
by {o0,p1,.-.,Pr,q0,---,qr—1}. Here, oo is the infinite prime defined by
K C Q(Cﬂ) —=C, (ur e2mi/m,

AS is spanned over ZG by

pj—dqo, 1<j<7, qi—qo, 1<i<r-—1, o0—qo.
G acts trivially on the p; — qo; the other generators are free over ZG. The
map ¢ is defined by
r—1
Pj—CIOHHQ?ﬂ = Qpy,s q; — qo > Qy,, 00 — (o > Qoo-
i=0

LEMMA 5.2. ¢ satisfies the conditions of Proposition 3.2 and induces an
Z,G-isomorphism Z; @ AS — Z; @ Eg.

Proof. Because q1,...,q,_1,00 are split over Q there is no condition
on the aq, and on a. in Proposition 3.2. Concerning the ;. we have

r—1 > s
.. i TjiCygr .y
(apﬁKp;/Qp;) = H(q%Kp;/Qp;)wﬁ = g T = g’
i=0
Moreover, (ay,, K,/Qp) = 1 for all p # qo,p1, . .., pr, since either p splits or
yp; is a unit in the unramified extension K /Q,.

To see that ¢ is an [-adic isomorphism we show first that qo, q1, ..., ¢-—1,
Oloo, gy s -+ -, O, generate Z; ® Bg as Z;G-module. Pick v € Eg. Then, by
definition of S,

(u) = plil .. .pffqgo ceq
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with b; € Z and ¢; € ZG. Because qq is inert and ¢ € Fg, we may assume
co = 0. Reading then the above equation in clx shows €{*... ¢ € cl$
and so ¢; = ¢}(go — 1)~ + /G with ¢} € ZG and ¢/ € Z.

It follows from the definition of the o, that

T.il ’ ’ ’ Til 1’
—c;\ b)Y b;. c;
(s TLea) = ot T
i=1 i=1

So p?; ...pffr is principal, whence (p(ill...pfz;)N = (ala) with d € Z, a
a product of the p; and with a suitable N # 0 mod [. Therefore u? and
ala H::_ll (aé\ifc; qZTNC;I) differ by a unit. Read in Z; ® Eg, this unit becomes
a Z;G-power of a99~! by Lemma 2.2. Because of the above corollary and
since [N, our generation claim is proved.

The non-degeneracy of the matrix (z;;) modulo [ then implies that ¢ is
surjective modulo [, so [-adically as well. This finishes the proof by Dirichlet’s
unit theorem:.

We now turn to the computation of A, (x). Because of (4.2) this amounts
to computing the three quantities

¢s.. (X)

det( Moo | H Vy, AS
AP | OmVG( X )), dets(x) and Soo )
¢s. (X) cs(X)
where ¢ is decomposed according to the diagram
ASe — AS — 7Sy

| o L Lo
EK —_ ES —» Es/EK

with ¢eo (009 — 00) = a5t (g € G), and where dets(x) is the determinant
of the map e, CSy — €, CS; taking:

oexpj (1§]§T)t0

— Z <log

peES)

Qp
(07

>exp = =3 vy, (o0 (0875 )ex;
p

j=1
r—1 R
+ ZX(G)xji(log qi)exdi
i=0
by Lemma 4.1, since ay; = H::_(} 4", ¢ = q? (1<i<r—1), N(q) = ¢,
and e, qo = 0 if x # 1, and since o is supported in {p1,...,p,};
® e, (o to

= > (oglay!lp)exp = =Y vp; (o) (log pj)exhy;

pPESY j=1
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eeyq; (1<i<r—1)to

vp, (g, 5. ) (log pj)exdj + (x(g0) — 1) (log ¢;)exai,

Jj=1

. —1)hi—t
since (ag,) = qggo "

Regarding the first quantity we have

dety (Aoopoo) _ { —2 if x =1,
cs.. () 1 2/(x(go) =) if x # 1.

This follows from e; ASs = 0,cs. (1) = —1/2 and from Proposition 12
of [RW] adjusted appropriately (see §4); in particular, the Ay, there is here
—Aoo-

The quantity cs__(X)/cs(x) is given by [RW, Lemma 7] on observing

(5.1)

Vi =0=Vlr (1<j<r), Véui=V=V0@Q<i<r-1),
VGqO e 07 V‘[qo = V7

where V is a CG-module affording the character x # 1, and where I,, for a
prime p, is the inertia group of p. Thus

cs.. (X)
(5.2) cs(X)
[ Gogp;)~* [](logq:)~* for x = 1,
) =1 i=0
((TLtozas) 1~ xtao)) = 2900 TToga) ™ for 2 1.

We are left with computing det (). Assume first x # 1. Then e,p; =
0 =eyq0,1 <j <r,and our map e, CS; — e, CSy is diagonal with diagonal
entries (x(go) — 1)*~!(log ¢;), so

r—1
det(x) = (x(g0) — 1)==1 "= =D T (log ¢0)

i=1

Assume next that y = 1. We label the row and columns of the matrix
of eiCSy — e1CSy by e1p; (1 < j < r),e1q; (0 < i < r —1) starting at
the top and on the left, respectively. Then we view it as having the form
(ﬁ; 2;2) with r x r matrices A,,. Subtracting row e;qo from all the other
rows changes Aj; into the zero matrix but does not affect Ao as follows
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from the description of the map e, CS; — ¢, CSy. However, Ay becomes

—vp, (o) logpr ... —vp, (o) log py
, Upy (aﬂh) lngl s Up,. (aql) long
A21 = . .
Upl(al]r—l)logpl Upr(aqrfl)logpr

Hence

dets(1) = (—=1)" det Ao det A},

= (—1)"det A2 - (Hlogp]) ) - det(vy, (ag,)),

where in accordance with our usual numbering we better read oo as ayq,.

As for det Aq2, we remember that
lriologge ... lx1,-1loggr—1
A = : : ;
lrrglogqo ... lzpr—1logq,—1

SO
r—1

det 415 = V( H log qi) det(xji).
i=0

Taking everything into account we arrive at

(5.3)  dety(x)

r—1

_1)lr(ﬁ logpj> ( H log qi) det(—vp, (aq,)) det(zj;) if x =1,

=0

( H log ql> 1)23;11 hi=(r—1) if x # 1.

(5.1)—(5.3) together yield
A,(X)
21" det(—wp, (o, )) det(xj;) if y =1,

— 2 ~ x(g0) sl h e
(x(go) —1)n X(go)_l(X(go) 1) /(x(g0) — 1) fy+#1.

Using the decomposition C ® AS = C" & (CG)" we quickly evaluate the
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representing homomorphism a(x) from Lemma 3.4:

ZQTH (¥(g0) — 1)_(¢71’AS) = Hw;& (wl(;o) — 1) =", x=1
P#1 1
a0 =4 e ) =1
I"(x(g0) — 1) ng(w(go) 1) oo (b(0) — 1)
= (x(g90) =177, x # 1.
Therefore,
A,(%) 2det(—vy, (aq,)) det(x;;) if y =1,
a0 | Trgm) 1y (Xl90) = DE - xlgo) i x £ L.

As has been pointed out at the end of Section 3, x — Ag)(j()/a(l)(x) is to
represent Z; @ coker ¢ = 0 by the Lifted Root Number Conjecture. The main
result in [RW] confirms this modulo DT'(Z;G), i.e., all A,(x)/a(x) generate
the same ideal in Z;[(;]. In particular,

r—1
(8) > hi=h,
i=1

since det(—vy,(ayg,)) - det(zj;) # 0 mod [ by Lemmas 2.3 and 5.1. Conse-
quently, the Lifted Root Number Conjecture amounts to

Ao(%)/a(x) = Ap(1)/a(1) mod x(go) — 1
(for all x # 1), by [GRW1, Proposition 8(iii)], that is

(LC) det(—vp, (aq,)) = det(c;;) mod [

by Lemma 2.3. This is indeed conjecture (C), by Lemma 5.1.

We quickly dispose of the case r = 1, whence h = 0 by (f). First of all,
co1 = —1 by the reciprocity law. In fact, (go, Kp, /Qp,) = 96°*, (g0, Kq0/Qqp)
= go, and (qo, K, /Qp) = 1 for all other primes p, since these are unramified.
Moreover, K is the subfield of Q((p, ) of degree [ over Q and so {k is a prime
element for p;. By Lemma 2.2 we can take as, = {x. Hence, (C) and (LC)
both say —1 = —1 mod [.

From now on, we assume that r > 2.

We close this section with an observation concerning the p;-value of an
element o € K* and the congruence class of a9 ~! modulo p;. To do so, we
first define
pj—1

l 9 — — )
and recall that (go, Ky, /Qp,) = g5” -

m]-:
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LEMMA 5.3. The pj-value a;j of an element o € K* is determined modulo
[ by the congruence

aCoj(go—l) = qo_mj‘lj mod p;.

For the proof we view all occurring quantities as elements of the com-
pletion K, , which is a totally, tamely ramified extension of Q,,. Thus
Ky, = Qp,(/pjv;) with a unit v; € Qp,. Abbreviate m; = /p;v;, so ;

. . . . a; . .
is a prime element in K, and write « = m;” - v with a unit v. Then

go—1\coj; — (~go—1\1+go+...4gc% " 9% -1 aj Ngo® =1 _ (_ajy\gg
(@07 7)% = (a°77) o =a = (m;7v)% = (m;”)%

a;((q0,Kp; /Qp;)—1) (1) a
— ﬂ_j] 0 Pj j : (p]vquo)Qj

pjl

(;) qamjaj ! 17

with the equality (1) and congruence (2) coming from [Se, pp. 215-217].

6. Euler systems. The purpose of this section is to recall some basic
properties of Euler systems. The general reference is [Ru].

Let K C Q(¢,)™, with n denoting the conductor of K, and let @) abbre-
viate squarefree products of rational primes ¢ splitting in K. For each such
q we fix a generator o, of Gal(Q((,)/Q) which whenever convenient is also
regarded as a generator of the Galois group G, of the extension K((,)/K.
With this notation we have

q—1
(6.1)  Dy:=) io, € Z[G,] satisfying (04— 1)Dg=q—1-75,.
=1

Set Dg = [1,o Dq € Z[Gq] where Gq = Gal(K((g)/K) is identified with
[1, o Gq in the usual way.

Our Euler system is Q +— &g = No(¢,,.co)/K(co) (1 —Cnlq)- It satisfies ES
1-4 in [Ru]. We now fix an odd prime [ t n and a high power L of it and use
the notation b; =, by for ideals by, by of K in order to indicate that by b;l
is an Lth power of an ideal in K. In what follows the primes g not only split
in K but also satisfy ¢ = 1 mod L.

Assume that o € K* is prime to ¢. Then there is a 8 € K((;)* such
that a = 179 mod Q for all prime ideals Qg of K(¢;). We define the
ideal ¢4 () by

(6.2) pqla) =¢ [Ta=@ ().
alg
So g is a Gal(K/Q)-homomorphism taking values in the ideals of K sup-

() vq(B) is the Q-value of § for the unique prime 9 | q in K(q).
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ported in ¢, modulo Lth powers of ideals; it is in fact the precise analogue
of the ¢, in the situation of [Ru].
The following holds:

(6.3) ng(U_l) is an Lth power in K((qg) for all o € Gg.

(6.4) o — ¥ {gQ(U_l) is a split 1-cocycle, so yields a unique kg €

K*/K*E with kg = ggQ mod K ({g)*~.
As in [Ru], we set k1 = &;.
(6.5)  The g-part (kq), in the principal ideal (kg) is
AW e
‘Pq(“Q/q> if ¢]Q.

(6.6) Set G = Gal(K/Q). Let W be a finite G-submodule of K*/K*¥
and ¢ : W — Z/L[G] a G-homomorphism. Then, to a given ideal
class € of K, there exist a unit v € (Z/L)* and infinitely many

primes g of K such that q € €, the rational prime g € g splits in K
and is = 1 mod L, (w), =1 1 and ¢, (w) = q*¥™) for all w € W.

The following lemma concentrates on the unit w in (6.6). Again, G =

Gal(K/Q).

LEMMA 6.1. Let qo be a rational prime which is unramified in K. Assume
that we are given a triple L, W, 1 as in (6.6) with qo € W, ¥(q0) = G and
that in accordance with these data and a given ideal class € in K a prime q
has been picked. Then

(1) (q0,Q(¢y)/Q) generates Gal(Q(¢,)/Q) modulo Lth powers.

(ii) If the restriction of o, to Q((,) and (qo, Q(¢,)/Q) ™1 differ by an Lth
power, then the corresponding ¢, satisfies pq(w) =1, g% for allw € W.

(iii) Assuming o4 chosen as in (ii) and ¢ (a) = tG for a rational a € W,
the automorphisms ol|g.c,) and (a,Q(¢q)/Q)™" differ by an Lth power.

Proof. For the chosen generator o, of G define s € Z/(q — 1) by
(90, QC)/Q ™" = o5l
Then y(q0) =1 4"V1%) = 4" = (") and 50, by (6.2),

IT a@ =1 (¢*) for any 8 € K(¢y)*
allqlg
with go = 177« mod Q for all Q|q. Now,

N _
(1 — ¢,)(20Q)/ D1 ﬁ =1+4+C+...+¢P =g mod (1-¢,)
q
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implies
[(1 o Cq)s]l—aq = (1 - Cq)(l—oq)(l—i-aq—i-...—i-o;* ) — (1 _ <q)1_02
(1 = ¢,)@QC)/D1) @0/ D™ = g0 mod (1= ¢,).

Hence we may take 8 = (1 — (;)® and obtain

V=TI a0 =1 (¢)

allqlg

and then s = v mod L. Thus s is a unit mod L and (i) is proved.
Letting 5" € (Z/(q —1))* satisfy s' = smod L, we arrive at a new

generator o, = o, of G, and at a corresponding ¢, Wlth @y (a ) = pq(a)

for all @« € K* plrlme to ¢. Indeed, 8177 = a mod Q implies 51_":1 =
(BL=oa)Hoattos ™ = (g1=04)s" = 05 mod Q. Thus, for w € W, gog(w)s/
=p q“W) = q5"¥(®) which gives (ii).

In order to see (iii) we go back to the beginning of our proof and replace
qo by a, s by t' and assume u = 1. Then ¢,(a) =1 q'¢ = (¢') and we
conclude that ¢ = ¢ mod L. Observe that (iii) implies that, modulo ¢, a and
qé only differ by an Lth power.

7. The case r = 2. In this section we turn to the special case

KCQ(gTL)a n = pip2, [KQ] :lJf’I’L

and prove conjecture (LC) as stated in Section 5 (and thus, at the same
time, (C)). The notation is the one of the previous sections with

e (o chosen to simultaneously generate the Sylow [-subgroups of the
multiplicative residue groups modulo p; and ps, and to be inert in K (14),
e [ a power of [ which is greater than the power of [ in p; —1 and py — 1.

Set W = (a0, o, P1, pg)KXLl and let ¢ : W — Z/LI"[G] be the G-map
assigning a, to 1, gg to G and pj to t; G (7 = 1,2) where the integers t; are
chosen to satisfy

t10p, (o) + t20p, (@eo) = 1 mod Lim.

This congruence ensures that ¢ respects every relation o ¢;°p7'p5® € K x LI

with x € ZG and integers zg, 21, 22. In fact, first of all agoo D i an Li"th

power in K* and, being a unit, therefore in Fi. Read in Z; ® Ex, the proof

h
of Lemma 2.2 yields an z; € Z;G such that algoVT — olgo=Dar Ll , 1.e.,

(**) The compositum K of the extensions K; C Q(¢j) of degree [ over Q contains a
field K¢ of degree [ which is different from K;, K ,AKQ as [ # 2, and we choose gg so that
the Frobenius automorphism at gg generates Gal(K /Kjp).
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x —xq LI = xgé,wg € 7;G. It follows that

Gao 20, 21 % T2Vp (Coo) 21 T2Vp, (o) +22 2 x LI X x LI
a? e’y =py py 9’ € K NQR*=Q )

so L™ | zg, LI"|x2vp,(tes) + z; and the above relation is a consequence of

ép_vbl(aoo)pgvb2(aoo) c K><Llh7

AoP1

which is respected by .
In accordance with the data LI", W and 1 we employ (6.6) and choose a
prime q; € €; so that Ng,gq1 = ¢1 = 1 mod LI" splits in K and (kq,) =p;»

©q, (K1) =pin qqlp(nl), by (6.5) and Lemma 6.1 with an appropriate choice of

Tg-
N =& = al% V" This i follows. First, €001 = 9o
ow, k1 = & = ax . is is seen as follows. First, &7 =&y

because

Ex = &1 Noeny/r (1 —CE)(1—¢h?))
with

No(e,y/x (1= ¢87) = N,y /x (1= G, )
= Nic(¢y, /K No /K G, ) (1= Gy) = Py

where {j, j'} = {1,2} and m; = (p; — 1)/I. Second, by Lemma 2.2, ffofl =

(go—1)"+1 . . . (go—1)"
Qo , which gives the assertion as £; and aco both have norm 1.

h
We therefore get (rq,) = q§g°‘” L for some ideal t. Since v is

principal, " s principal, = (p) say. Replacing kg, by g, p % we may
assume

_1\h
(Fgy) = i

It is important to note that this x,, is obtained as a splitting of a cocycle
as in (6.4), although with L and no longer with Li".

The element x4, has norm 1 in Q (after multiplying it with —1 = (—1)
if necessary), so there exists an og, € K* such that ag(j_l = Kgq,- Then

L

h—1
(aq,) = qggo_l) a; with a; (after multiplying a4, by a rational number)
supported on pq,p2. The notation a, can now be interpreted in the sense

of Section 5.

PROPOSITION 7.1. kg, = q;njtj/ mod p;, where j' # j.

Recall that m; = (p; — 1)/l. The proof of the proposition is delayed to
the end of this section.

Because (q1, Ky, /Qp, ) = (qo, Kp,/Qp,)?, ¢;” and ¢;" differ by a
norm, so by an /th power modulo p;, and we deduce ¢;"*“” = g mod p;.
Substituting this in Proposition 7.1 we have

coj(go—1) _ mjtjrely A
gy =q, mod p;.
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We compare this congruence with the one given in Lemma 5.3:

coj(go—1) __ —M;jVp; (O‘ql)
Qg =

mod p;.
By the choice of o, ¢y % 1 mod p;, whence
—vp, (agq,) = tjc1; mod I

The reciprocity law gives
ZZ:C" _ {1, i=0,
" 70,  i#0,
j=1

thus

_ Co1 Co2 |\ _
—c12 = det = ¢11 mod [
C11  C12

and

det <_”"1(O‘°°) _”“(a“’)) = det (‘”m(%o) —’Upz(aoo)>

—Up, (am) —Up, (O‘lh) tZCll t1012

= ey ()l

2 —l
= c11(t1vp, (o) + tavp, (o))

c c
=11 = det 0L 02 ) mod l,
€11 Ci2

which proves (LC).

Proof (of Proposition 7.1). Fix a generator o, of G, as in Lem-

ma 6.1(ii). Then afﬁ' |Q(Cq1) = (pj,Q(qu)/Q)*l for a unique ?J mod (q; — 1)

and we have ¢; = t; mod L by Lemma 6.1(iii). The Euler system in Section 6
has

€a1 = No(¢n o) /K (¢0) (1= Gnlar)
= No(Cu o) /K (Cqy) (1= Cpyy Ggy) mod (1= G))
= NK (6o, €a) /K o) NQGn Gy ) /5 Gy 60) (L= Gy )
= NG, o)/ K (Cay) (1= Gy Ca)™

-G \™ . B
1_C‘11

= (1= Gymln” D
and thus

., —1

(71) &g = (1= ()™ a " D0Fouteton” ) nod (1-¢, ).
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On applying D, this implies, by (6.1),

(72) fgql = (]_ — qu)mj(l-Hqu+...+o;1tj,71)(q1_1_3q1)

i, f.—1

—f,-1 —t
m;(qr—1)(1+og, +...4+0q; ° —mj(14+oq) +...40qy ? )
(1 _ qu) 3 (g1 —=1)( a1 q1 )ql 1 1

t.,—1

(1- qu)mj(Q1_1)(l+Uql+"'+Uq_lJ ) qznjtj, mod (1 — (p,)-

By (6.4), with §,, € K((,,) satisfying 87" = L (ﬁ‘ﬂ(o—l) we have
Dq
(7.3) kg = €™ /By,

h
Because of (kq,) = qggo_l) and since &, is a unit, it follows that (3, is

supported in the orbit of q; (in K(¢,,)). And we have £,/ =gs3 5?013((11)71

=1, as ¢; splits in K.
Thus £L0 70 ™1 = ¢ 1700 €01 and so Bt~ = £V which,
by (7.1), gives

-1

:17111171 = (1 - qu) Q1£1mj(1+UQ1+'~~+”;1tj, ) og —1) mod (1 - ij).

Since f,, and 1 — (,, are in K((,,) this congruence can be read modulo the
product p; of the primes of K ((,,) above p;, which implies

t.—1

(74) /Bql = (]. — qu) ql; mj(l"l‘a'ql +..‘+a'q1'7 )’qu mod ,ﬁ]

with y,, in K(C,,) so that v, ' =1 mod p;. As p; is unramified in K (¢, )
this means that v,, may be taken to be in K, hence

(7.5) vPi~! =1 mod p;.
Therefore, by (7.3), (7.2), (7.4),
mjt ;s —
Kgy =4 . yqlL mod p;.

Since k4, has norm 1, its I[th power is congruent to 1 modulo p;, as is the
Ith power of qutj/. So qull = 1 mod p;. By (7.5) and the choice of L thus
'qul = 1 mod p;. This finishes the proof.
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