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Three two-dimensional Weyl steps in the circle problem
I. The Hessian determinant

by

Ulrike M. A. Vorhauer and Eduard Wirsing (Ulm)

1. Summary. In a sequence of three papers we study the circle problem
and its generalization involving the logarithmic mean. Most of the deeper
results in this area depend on estimates of exponential sums. For the circle
problem itself Chen has carried out such estimates using three two-dimensio-
nal Weyl steps with complicated techniques. We make the same Weyl steps
but our approach is simpler and clearer. Crucial is a good understanding
of the Hessian determinant that appears and a simple estimate of certain
exponential integrals.

In Part I we determine the order of magnitude of the Hessian as well as
that of the maximum of the second derivatives for the functions h, which
are third order differences of the two-dimensional Euclidean vector norm.

2. Introduction. A number of questions connected with the circle prob-
lem depend on estimates for exponential sums of the type∑

x

e(u‖x‖) with x = (x, y) ∈ R2,

u a real parameter, e(x) = e2πix and ‖x‖ =
√
x2 + y2, the Euclidean norm.

One of the tools that have been successfully applied to this problem is the
two-dimensional Weyl–van der Corput method, which originates with the
important papers of Titchmarsh ([7]–[9]) followed by papers of Hua [2], Min
[5], Richert [6], Chen Jingrun [1] and others. However, objections were raised
against certain critical steps in the complicated proof by Walfisz [10] and
Jarńık [3]. The situation has apparently been corrected by subsequent papers
of Min [5], Krätzel [4] etc. But even so, the paper of Chen, which is the one
giving the best result along this line for the circle problem, is difficult to
understand because of the enormous number of cases and subcases without
an apparent idea.
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The object of the present paper is two-fold. On the one hand we wish to
consider the logarithmic Riesz mean

Fκ(x) :=
1

Γ (κ+ 1)

∑
n<x

r2(n) logκ(x/n)

rather than the unweighted sum
∑
n<x r2(n). A representation of Fκ(x) that

involves a truncated Voronöı type sum will be developed in Part II.
On the other hand, given the situation described above, we simplify and

clarify the proof in two ways: Part I presents essentially a careful analysis
of the Hessian in question. In fact Theorem A gives the precise order of
its magnitude in simple terms. It turns out that the bad cases, where the
Hessian is small, are so rare that we can replace the difficult Titchmarsh–Min
estimate of the exponential integral by a somewhat weaker one, which has
the advantage of being much simpler to formulate and easier to prove. Part
III of our paper will present this theorem (Theorem 2) and the application
to the Riesz mean. In particular we shall confirm Chen’s exponent θ = 12/37
for κ = 0.

After applying three two-dimensional Weyl steps we are left with sums
of the type

(1)
∑
x

e(uh(x, p)),

where p = (p
1
, p

2
, p

3
), p

ν
= (hν , kν)T , hν , kν ∈ Z and

h(x, p) = ∆p
1
∆p

2
∆p

3
‖x‖

is the third order difference, using the definition ∆pf(x) = f(x+ p)− f(x).
Explicitly,

h(x, p) =
∑

ε1,ε2,ε3∈{0,1}
ε′1ε
′
2ε
′
3‖x+ ε1p 1

+ ε2p 2
+ ε3p 3

‖,

where ε′ν = 2εν − 1 are ±1, depending on whether εν = 1 or 0. Estimating
these sums effectively requires knowledge of the size of the Hessian deter-
minant (hxxhyy − h2

xy)(x, p). The main subject of the present investigation
is a careful analysis of the structure and size of this Hessian. Its basis is a
homogeneity relation for h, which carries over to the Hessian determinant,
and which is most easily expressed by replacing the vectors x and p

ν
by

complex numbers z = x+ iy and pν = hν + ikν respectively. Thus

(2) h(z, p1, p2, p3) =
∑

εν∈{0,1}
ε′1ε
′
2ε
′
3r(z + ε1p1 + ε2p2 + ε3p3),

where r(z) = |z|. Obviously,

h(cz, cp1, cp2, cp3) = |c|h(z, p1, p2, p3) for any c ∈ C.
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From this we derive in Lemma 1A a corresponding relation for the Hes-
sian H of h, namely

H(z, p1, p2, p3) =
1
|z|2H

(
1,
p1

z
,
p2

z
,
p3

z

)
,

and then study the Taylor expansion of H(1, q1, q2, q3). The main result will
be

Theorem A. There is an absolute constant δ > 0 such that

−H(1, q1, q2, q3) � |q1q2q3|2 max
ν=1,2,3

∣∣∣∣
=(qν)
qν

∣∣∣∣
2

for any qν ∈ C \ {0}, |qν | ≤ δ, for ν = 1, 2, 3.

Since =(qν)/|qν | = sinϕν , where ϕν is the angle between z and pν ,
pν = qνz, we may rewrite the theorem as

−H(z, p1, p2, p3) � |z|−8|p1p2p3|2 max
ν=1,2,3

sin2 ϕν .

In particular the above Hessian vanishes if and only if each of the three
complex numbers pν is a real multiple of z.

For our application, where in (1) we have to sum or integrate over x and
to sum over p

1
, p

2
, p

3
, the theorem tells us that for any given x there are

few values p
1
, p

2
, p

3
that cause difficulties by making the Hessian small.

Also important for the treatment of the circle problem by the authors
quoted above are lower estimates for the second partial derivatives of h.
A good simultaneous measure for a lower as well as for an upper bound is

Q(z, p1, p2, p3) := (h2
xx + 2h2

xy + h2
yy)(z, p1, p2, p3).

This expression can be treated in a way that is remarkably similar to H,
though somewhat easier. We prove

Theorem B. There is an absolute constant δ > 0 such that

Q(1, q1, q2, q3) � |q1q2q3|2
for any qν ∈ C \ {0}, |qν | ≤ δ (ν = 1, 2, 3). In particular,

max(|hxx|, |hxy|, |hyy|) � |p1p2p3|
|z|4 .

Actually we found that our treatment of the circle problem is also sim-
pler in that it no longer needs a lower bound for these second derivatives.
Nevertheless, we believe that in view of possible later improvements and as
a result of independent interest Theorem B, which comes along in a very
natural way with the proof of Theorem A, should be included here.

A feature of Theorem A that contributes substantially to its value as
well as to the difficulties of its proof is the following: If we develop H(z, p)
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in its Taylor series with respect to the real and imaginary parts of the pν ,
then the leading form, actually the one of order six, is only semidefinite but
nevertheless it determines the absolute size and sign of H(z, p) uniformly for
all pν that are small compared to z. In Q(z, p), by contrast, the leading sixth
order form is positive definite and the proof of Theorem B correspondingly
easier.

In retrospect the background of the papers of Titchmarsh, Hua and Min
becomes clear. Each of them uses three Weyl steps. In Titchmarsh’s paper
[8] only one is two-dimensional; the two one-dimensional steps are taken
along the x-axis. By the obvious symmetry of the circle problem, he can
restrict summation to an octant adjacent to the y-axis and therefore has
maxν ϕν ≥ π/4 and

−H(x, p)� ‖x‖−8‖(h1, 0)‖2‖(h2, 0)‖2‖(h3, k3)‖2

(see §11(4) of that paper). We may add that the restriction to the above
octant would have been unnecessary if he had taken the one-dimensional
Weyl steps in different directions. On the other hand this restriction has the
effect that maxϕν ≥ π/4 already if only one Weyl step is taken along the
x-axis. This then is the basis of Hua’s paper, who thereby is able to use two
two-dimensional Weyl steps. His lower bound for the Hessian

−H(x, p)� ‖x‖−8(X2
1 +X2

2 +X2
3 )

is easily seen to be

� ‖x‖−8‖(h1, 0)‖2‖(h2, k2)‖2‖(h3, k3)‖2,
which corresponds to Theorem A in this case. If one employs all three Weyl
steps in the two-dimensional form, as Chen does, it is no longer possible
to avoid small values of the Hessian by an appeal to symmetry. Further-
more Chen’s estimate of the Hessian (Lemma 1) is not comparable to our
Theorem A. Both aspects contribute substantially to the extreme technical
difficulties of his paper.

3. Sketch of proofs. Both proofs proceed essentially in four steps:

1. Formulation of homogeneity relations for the functions H(z, p1, p2, p3)
and Q(z, p1, p2, p3). This reduces further analysis to the study of

H(1, q1, q2, q3), pν = qνz, qν = ην + iκν , ην , κν ∈ R.
2. Taylor expansion of H(1, q1, q2, q3) and Q(1, q1, q2, q3) in terms of the

ην , κν . Both functions vanish at the origin with order six. Thus, collecting
all terms of order n in Hn, Qn respectively, we have

H(1, q1, q2, q3) =
∞∑
n=6

Hn and Q(1, q1, q2, q3) =
∞∑
n=6

Qn.
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Since H(1, q1, q2, q3) and Q(1, q1, q2, q3) are symmetric in q1, q2, q3, the forms
H6, Q6 are symmetric functions of the pairs (ην , κν). Thus they can be
expanded in terms of the homogenized elementary symmetric functions, i.e.
of the coefficients Xi of

3∏
ν=1

(ηνu+ κνv) =
3∑

i=0

Xiu
iv3−i.

3. Due to the fact that this ternary form has only real zeros, the variables
Xν do not behave independently. Therefore between functions of X0, . . . , X3

there may hold inequalities that are not obvious. Thus, sacrificing some ac-
curacy, we can simplify H6, Q6 into the more convenient expressions H̃ � H6

and Q̃ � Q6 which form the right hand sides in Theorem A and Theorem B.
4. Proving that H̃ and Q̃ dominate the two remainders

∑∞
n=7Hn and∑∞

n=7Qn respectively, thereby globalizing the estimates that so far were
only infinitesimal.

4. Homogeneity relations. If we denote by Hz (z = x+ iy) the oper-
ator which generates the Hessian Hzf = fxxfyy − f2

xy with respect to x and
y, the following chain rule holds:

Lemma 1A. Let w(z) = u(z) + iv(z) and assume that ux, uy, vx, vy are
constant. Then

(3) Hzf(w(z)) =
∣∣∣∣
ux uy
vx vy

∣∣∣∣
2

Hwf(w).

In particular for any c ∈ C,

Hzf(cz) = |c|4Hwf(w)|w=cz.

P r o o f. To simplify the proof we write x1, x2 and u1, u2 for x, y and u,
v respectively. The chain rule

∂

∂xi
=
∑

k

∂uk
∂xi

∂

∂uk

yields, since ∂ul/∂xi are constant,

∂2f

∂xi∂xj
=
(∑

k

∂uk
∂xi

∂

∂uk

)(∑

l

∂ul
∂xj

∂

∂ul

)
f(4)

=
∑

k,l

∂uk
∂xi

∂ul
∂xj

∂2f

∂uk∂ul
.

The multiplication theorem for determinants gives (3). In the special case
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w = cz we have ∣∣∣∣
ux uy
vx vy

∣∣∣∣ =
∣∣∣∣
a −b
b a

∣∣∣∣ = a2 + b2 = |c|2.

Lemma 2A. If f is a function of z and some parameters p1, . . . , pr ∈ C,
that with p = (p1, . . . , pr) satisfies a relation

(5) f(cz, cp) = |c|f(z, p) for any c ∈ C,
and if we put H(z, p) := Hzf(z, p), then

H(cz, cp) =
1
|c|2H(z, p).

In particular

H(z, p) =
1
|z|2H

(
1,
p

z

)
.

P r o o f. IfHz is applied to (5), then on the one hand according to Lemma
1A we have

Hzf(cz, cp) = |c|4H(cz, cp),

and on the other

Hz(|c|f(z, p)) = |c|2Hzf(z, p) = |c|2H(z, p).

The lemma applies in particular to the function h given in (2) and its
Hessian H(z, p).

In comparison to Lemma 1A the following lemma is somewhat narrower.
In contrast to Lemma 1A it cannot be proved for general affine mappings
w, but only for similarities w = cz.

Lemma 1B. Let Qz, z = x+ iy, denote the operator defined by

Qzf := f2
xx + 2f2

xy + f2
yy.

Then for c ∈ C,

Qzf(cz) = |c|4Qwf(w)|w=cz.

P r o o f. With the notation of Lemma 1A, putting c = a + ib, we have
ui =

∑
j tijxj with the matrix T = (tij) =

(
a −b
b a

)
. Consequently, by (4),

∂2f

∂xi∂xj
=
∑

k,l

tkitlj
∂2f

∂uk∂ul
.

From the orthogonality of T,
∑
i tkitmi = (a2 + b2)δkm, we obtain

∑

i,j

(
∂2f

∂xi∂xj

)2

=
∑

i,j

{∑

k,l

tkitlj
∂2f

∂uk∂ul

}{∑
m,n

tmitnj
∂2f

∂um∂un

}
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=
∑

k,l,m,n

{∑

i

tkitmi

}{∑

j

tljtnj

} ∂2f

∂uk∂ul

∂2f

∂um∂un

= (a2 + b2)2
∑

k,l

(
∂2f

∂uk∂ul

)2

.

From this the next lemma follows in the same way as Lemma 2A from
Lemma 1A.

Lemma 2B. Let f satisfy a relation (5) as in Lemma 2A and define
Q(z, p) := Qzf(z, p). Then for any c ∈ C,

Q(cz, cp) =
1
|c|2Q(z, p).

In particular

Q(z, p) =
1
|z|2Q

(
1,
p

z

)
.

5. Taylor expansions. Next we study the Taylor expansion of the
function

(6) h(z, p) = ∆p1∆p2∆p3r(z) =
∑

εν∈{0,1}
ε′1ε
′
2ε
′
3r(z + ε1p1 + ε2p2 + ε3p3),

more precisely those of its derivatives hxx, hxy and hyy at z = 1. Here
z = x + iy, r(z) = |z| =

√
x2 + y2 and p = (p1, p2, p3), pν = zqν with

qν = ην+iκν (ην , κν ∈ R). In this connection we denote byOn any remainder
terms of order ≥ n in η1, . . . , κ3. Further we write

X0 = κ1κ2κ3, X1 = κ1κ2η3 + κ1η2κ3 + η1κ2κ3,

X2 = κ1η2η3 + η1κ2η3 + η1η2κ3, X3 = η1η2η3

for the elementary symmetric functions of (ην , κν), ν = 1, 2, 3.

Lemma 3. The second partial derivatives have representations

hxx(1, q) = −6X1 +O4,

hxy(1, q) = 9X0 − 6X2 +O4,

hyy(1, q) = 9X1 − 6X3 +O4.

P r o o f. In (6) let us abbreviate
∑3
ν=1 ενpν by εp, an inner product. Thus

h(1, q) =
∑
εν

ε′1ε
′
2ε
′
3r(1 + εq)

and therefore

(7) hxx(1, q) =
∑
εν

ε′1ε
′
2ε
′
3rxx(1 + εq)
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etc. Since rxx = y2/r3, rxy = −xy/r3 and ryy = x2/r3, we obtain

(8)

hxx(1, q) =
∑
εν

ε′1ε
′
2ε
′
3

(εκ)2

|1 + εq|3 ,

hxy(1, q) = −
∑
εν

ε′1ε
′
2ε
′
3

(1 + εη)εκ
|1 + εq|3 ,

hyy(1, q) =
∑
εν

ε′1ε
′
2ε
′
3

(1 + εη)2

|1 + εq|3 .

Expanding |1 + εq|−3 as follows:

1
|1 + εq|3 = ((1 + εη)2 + (εκ)2)−3/2

= (1 + εη)−3
(

1 +
(εκ)2

(1 + εη)2

)−3/2

=
∑

m∈N0

(−3/2
m

)
(εκ)2m(1 + εη)−2m−3,

we get

(9)

rxx(1 + εq) =
∑

m∈N0

(−3/2
m

)
(εκ)2m+2(1 + εη)−2m−3

=
∑

m,n∈N0

(−3/2
m

)(−2m− 3
n

)
(εκ)2m+2(εη)n,

rxy(1 + εq) = −
∑

m,n∈N0

(−3/2
m

)(−2m− 2
n

)
(εκ)2m+1(εη)n,

ryy(1 + εq) =
∑

m,n∈N0

(−3/2
m

)(−2m− 1
n

)
(εκ)2m(εη)n.

The Taylor expansions of hxx(1, q) etc. follow by summation over εν
according to formula (7). As will be seen, the terms of order ≤ 2 vanish:

∑
εν

ε′1ε
′
2ε
′
3(εη)k(εκ)l = 0 if k + l ≤ 2.

The reason is that, after multiplying out (εη)k and (εκ)l, in each of the
terms that arise, one of the variables εν is missing and summation over this
εν gives

∑
εν
ε′ν = 1 − 1 = 0. The terms of order three (k + l = 3) lead

to the symmetric functions X0, . . . , X3. As before summation over the εν
eliminates all terms in which at least one εν is missing, and in the rest only
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the value 1 for each variable εν contributes. What remains is∑
εν

ε′1ε
′
2ε
′
3(εκ)3 = 6κ1κ2κ3 = 6X0,

∑
εν

ε′1ε
′
2ε
′
3(εκ)2(εη) = 2(κ1κ2η3 + κ1κ3η2 + κ2κ3η1) = 2X1

and symmetrically
∑
εν

ε′1ε
′
2ε
′
3(εκ)(εη)2 = 2X2,

∑
εν

ε′1ε
′
2ε
′
3(εη)3 = 6X3.

Thus we find the term of order three in the expansion of hxx from (7)
and (9) with 2m+ 2 + n = 3, that is, with m = 0 and n = 1, as

(−3/2
0

)(−3
1

)∑
εν

ε′1ε
′
2ε
′
3(εκ)2εη = −6X1.

Similarly for hxy we have to evaluate the contributions from the terms
with 2m+ 1 + n = 3, that is, from m = 0, n = 2 and m = 1, n = 0:

−
((−3/2

0

)(−2
2

)∑
εν

ε′1ε
′
2ε
′
3(εκ)(εη)2 +

(−3/2
1

)(−4
0

)∑
εν

ε′1ε
′
2ε
′
3(εκ)3

)

= −6X2 + 9X0,

and finally for hyy it is 2m+ n = 3, that is, m = 0, n = 3 and m = n = 1:
(−3/2

0

)(−1
3

)∑
εν

ε′1ε
′
2ε
′
3(εη)3 +

(−3/2
1

)(−3
1

)∑
εν

ε′1ε
′
2ε
′
3(εκ)2εη

= −6X3 + 9X1.

Lemma 4. We have H(1, q) = H6 +O7, where

H6 = −9(9X2
0 + 6X2

1 + 4X2
2 − 12X0X2 − 4X1X3),

and Q(1, q) = Q6 +O7, where

Q6 = 9(18X2
0 + 13X2

1 + 8X2
2 + 4X2

3 − 24X0X2 − 12X1X3).

P r o o f. This follows by inserting the result of Lemma 3 into H(1, q) =(
hxxhyy − h2

xy

)
(1, q) and Q(1, q) =

(
h2
xx + 2h2

xy + h2
yy

)
(1, q) respectively.

In the next step we show how the quadratic forms H6 and Q6 can be
estimated from below and above by simpler and more informative expres-
sions.

Lemma 5. Let

H̃ = H̃(q) =
3∑

ν=1

(=qν)2
∏

µ 6=ν
|qµ|2 and Q̃ = Q̃(q) = |q1q2q3|2.
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Then

2H̃ ≤ − 1
9H6 ≤ 8H̃ and 4Q̃ ≤ 1

9Q6 ≤ 18Q̃.

P r o o f. We note that the Xi/X0 are the elementary symmetric functions
of the αν = ην/κν :

Xi = σi(α)X0 for i = 1, 2, 3, X0 = κ1κ2κ3, α = (α1, α2, α3).

Thus by Lemma 4,

−1
9X2

0
H6 = 9 + 6σ2

1 + 4σ2
2 − 12σ2 − 4σ1σ3.

We use the simple identities

σ2
1 = σ1(α2

ν) + 2σ2,(10)

σ2
2 = σ2(α2

ν) + 2σ1σ3,(11)

that follow from squaring the defining equations σ1 = α1 + α2 + α3 and
σ2 = α1α2 + α2α3 + α3α1, and we obtain

−1
9X2

0
H6 = 9 + 6σ1(α2

ν) + 4σ2(α2
ν) + 4σ1σ3.

Since 2σ1σ3 ≥ −σ2(α2
ν) by (11) and obviously σ1(α2

ν) ≥ 0, σ2(α2
ν) ≥ 0, we

may continue with

−1
9X2

0
H6 ≥ 9 + 6σ1(α2

ν) + 2σ2(α2
ν)

≥ 2(3 + 2σ1(α2
ν) + σ2(α2

ν))

= 2((1 + α2
1)(1 + α2

2) + (1 + α2
1)(1 + α2

3) + (1 + α2
2)(1 + α2

3)),

which is

− 1
9H6 ≥ 2(κ2

1|q2q3|2 + κ2
2|q1q3|2 + κ2

3|q1q2|2) = 2H̃(q).

For the opposite inequality we use

2σ1σ3 = α2
1(2α2α3) + α2

2(2α3α1) + α2
3(2α1α2)

≤ α2
1(α2

2 + α2
3) + α2

2(α2
3 + α2

1) + α2
3(α2

1 + α2
2)

= 2(α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1),

2σ1σ3 ≤ 2σ2(α2
ν),(12)

and find
−1

9X2
0
H6 ≤ 9 + 6σ1(α2

ν) + 8σ2(α2
ν) ≤ 8(3 + 2σ1(α2

ν) + σ2(α2
ν));

hence

− 1
9H6 ≤ 8H̃(q).
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We turn to Q(1, q). Here Lemma 4 gives
1

9X2
0
Q6 = 18 + 13σ2

1 + 8σ2
2 + 4σ2

3 − 24σ2 − 12σ1σ3(13)

= 18 + 13σ1(α2
ν) + 8σ2(α2

ν) + 4σ3(α2
ν) + 2σ2 + 4σ1σ3.

Concerning the lower bound, we get 2σ2 ≥ −σ1(α2
ν) and 2σ1σ3 ≥ −σ2(α2

ν)
by (10) and (11) and therefore

1
9X2

0
Q6 ≥ 18 + 12σ1(α2

ν) + 6σ2(α2
ν) + 4σ3(α2

ν)

≥ 4(1 + α2
1)(1 + α2

2)(1 + α2
3).

The upper bound follows with σ2 ≤ σ1(α2
ν) and (12) from (13):

1
9X2

0
Q6 ≤ 18 + 15σ1(α2

ν) + 12σ2(α2
ν) + 4σ3(α2

ν)

≤ 18(1 + α2
1)(1 + α2

2)(1 + α2
3).

6. Globalizing the estimates

Lemma 6. We have

H(1, q) = H6 +O(H̃(|q1|+ |q2|+ |q3|)),(A)

Q(1, q) = Q6 +O(Q̃(|q1|+ |q2|+ |q3|)).(B)

P r o o f. Writing hxx(1, q) as ∆q1(∆q2∆q3rxx) makes it obvious that
hxx(1, 0, q2, q3) = 0, similarly for hxy and hyy. Therefore each monomial

ηi11 η
i2
2 η

i3
3 κ

j1
1 κ

j2
2 κ

j3
3

that appears in the Taylor expansion of hxx, hxy or hyy has a divisor η1 or
κ1, i.e. i1 + j1 ≥ 1. Therefore, monomials appearing in H(1, q) or Q(1, q)
have i1 + j1 ≥ 2, as they are both quadratic in hxx, hxy and hyy. Similarly
i2 +j2 ≥ 2 and i3 +j3 ≥ 2. Let us, in the first instance, consider a monomial
M that appears in Q(1, q) and which therefore has iν+jν ≥ 2 for ν = 1, 2, 3.
If we replace any ηνκν that may occur by 1

2 (η2
ν + κ2

ν) then up to eight new
monomials arise that together bound our original monomial, and all of them
have iν ≥ 2 or jν ≥ 2 for ν = 1, 2, 3. Such monomials, if they are of order
six, are summands of Q̃, which implies M ≤ Q̃. Any M of higher order has
at least one extra factor ην or κν and hence is � Q̃(|q1|+ |q2|+ |q3|). This
proves (B).

Part (A) is a bit more tricky. We note first that the summands of H̃ are
exactly those monomials which have no elements other than 0 or 2 in their
matrix of exponents (

i1 i2 i3
j1 j2 j3

)
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and where each column as well as the second line contains at least one 2,
while i1 + . . .+ j3 = 6.

On the other hand a monomial M from H(1, q) = hxxhyy − h2
xy fulfills

iν + jν ≥ 2 for each ν, as we have seen. But moreover now we have j1 + j2 +
j3 ≥ 2, as a consequence of the terms (εκ)2 and εκ in the representations
(8) of hxx, hxy and hyy respectively. Any M of this type has a divisor T for
which iν + jν = 2 for each ν = 1, 2, 3 and j1 + j2 + j3 ≥ 2, since equality
can be obtained in each column by reducing just iν unless jν ≥ 3, in which
case we replace jν by 2.

If all jν are not 1, and thus even, T is one of the summands of H̃.
Otherwise, apart from order, we have i1 = j1 = 1 and (i2 = 0, j2 = 2 or
i2 = j2 = 1) and in any case j3 may or may not be equal to 1. In the first
case we apply

|η1κ1| ≤ 1
2 (η2

1 + κ2
1)

as before, in the second case

|η1κ1η2κ2| ≤ 1
2 ((η1κ2)2 + (η2κ1)2).

If there is a factor η3κ3, we replace it too by 1
2 (η2

3 + κ2
3), so that in any

case

|T | ≤ (η2
1 + κ2

1)κ2
2(η2

3 + κ2
3) ≤ H̃ or |T | ≤ (η2

1κ
2
2 + η2

2κ
2
1)(η2

3 + κ2
3) ≤ H̃.

Any M of degree ≥ 7 contains at least one further factor ην or κν and
contributes therefore no more than O(H̃|qν |).

Proof of Theorems A and B. As the Taylor series of H(1, q) and Q(1, q)
converge for |qν | < 1/3, Lemma 6 gives

∑
n≥7Hn � δH̃,

∑
n≥7Qn � δQ̃ if

|qν | ≤ δ. The two theorems now follow with the aid of Lemma 5.

Acknowledgments. We would like to express our thanks to the col-
leagues and friends who, while comforting us on our English, still had a
wealth of valuable suggestions.

Sum peepul are sad to right well
’cause sumhow thay no how to spell ;

but keap thay you bizzy ,
bubbling kwestions like fusy ,

till phinely you sey “Go to hell!”
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