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On elliptic curves in characteristic 2
with wild additive reduction

by

Andreas Schweizer (Montreal)

Introduction. In [Ge1] Gekeler classified all elliptic curves over F2r (T )
with one rational place of multiplicative reduction (without loss of generality
located at ∞), one further rational place of bad reduction (without loss
of generality located at 0) and good reduction elsewhere. So these curves
have conductor ∞ · Tn where n is a natural number (which actually can
be arbitrarily large). In [Ge2] he extended his results to characteristic 3.
Roughly, his strategy can be divided into four steps:

1. Using Drinfeld modular curves, determine the places of supersingular
reduction of the elliptic curves with such a conductor.

2. This gives control over the zeros and poles of the j-invariants of these
curves.

3. Use Tate’s algorithm to calculate the conductors of the “untwisted”
elliptic curves with the possible j-invariants.

4. Control the effect of twisting on the conductor.

In this paper we extend the results in characteristic 2 by allowing one more
place of multiplicative reduction, without loss of generality located at T = 1.

Actually we first prove a quite general and semi-explicit form of step 1,
namely: Given a finite field Fq (of any characteristic), the places of supersin-
gular reduction of an elliptic curve E over Fq(T ) with multiplicative reduc-
tion at ∞ are contained in a finite set S that depends only on the support
of the conductor of E. The set S is given in terms of a Drinfeld modular
curve. But it is difficult to make this result really explicit, and even in our
simple situation this requires circumstantial arguments and modifications.
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1. Basic facts. As usual Fq is a finite field with q elements. We denote
by A the polynomial ring Fq[T ] and by K its quotient field Fq(T ). Later we
will specialize to the case where the characteristic of Fq is 2.

We use the symbol ∞ for the place of K corresponding to the degree
valuation. In other words, ∞ is the pole divisor of T . All other places of
K are written as monic irreducible polynomials p ∈ A and divisors not
containing ∞ as monic polynomials n ∈ A. The completion of K at the
place∞ is denoted by K∞. Furthermore C is the completion of an algebraic
closure of K∞ and Ω := C −K∞ is the Drinfeld upper half-plane.

It is well known (and easy to prove) that an elliptic curve over Fq(T )
with non-constant j-invariant has only finitely many places of supersingular
reduction. The central idea of [Ge1] and [Ge2] is to make this more explicit
using Drinfeld modular curves. The following fact is fundamental in this
context.

Theorem 1.1 [G&R]. Over Fq(T ) every elliptic curve with conductor
∞ · n and split multiplicative reduction at ∞ is isogenous to a one-dimen-
sional factor of the Jacobian of the Drinfeld modular curve X0(n).

Recall that a (smooth, geometrically connected, projective) curve of
genus g over a field of characteristic p is called ordinary if the p-rank of
its Jacobian is as big as possible, namely g.

All Drinfeld modular curves (i.e. all curves coming from the action of
arithmetic subgroups of GL2(A) on Ω) are ordinary. This was shown in
[G&R] by explicit construction of their Jacobians.

Statements relating ordinarity of a curve to its quotients have been
proved (and reproved) in several degrees of generality. We cite the version
that is the most convenient for our purposes.

Theorem 1.2 [Ray]. For a curve X over a field of characteristic p and
a finite p-group G of automorphisms of X the following two conditions are
equivalent :

(a) X is ordinary ,
(b) the curve G\X is ordinary and the second ramification groups of the

covering X → G\X are trivial.
Unfortunately, for m | n the covering X0(n) → X0(m) is in general not

Galois except for some special cases for q = 2. The idea (due to [Ge1]) is to
apply the lemma to a somewhat bigger curve. Let

Γ1(n) =
{(

a b
c d

)
∈ GL2(A) : a ≡ d ≡ 1 mod n, c ≡ 0 mod n

}
.

As an algebraic curve the corresponding Drinfeld modular curve X1(n) is
defined over a finite Galois extension of K depending on n. Moreover, X1(n)
has good reduction at all places not dividing ∞ · n.
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Theorem 1.3. Let Fq be a finite field and let B be a finite set of places
of Fq(T ) not containing the place ∞. Then there exists a finite set S of
places of Fq(T ) (depending on q and on B) such that every elliptic curve
over Fq(T ) with multiplicative reduction at ∞ and good reduction outside
B ∪ {∞} has ordinary reduction outside S ∪B ∪ {∞}.

To be more explicit : Let m be the product of all p ∈ B. Then we can
take S to be the set of all places of K above which there is a place of good
and non-ordinary reduction of X1(m).

P r o o f. The quickest way to see that S is finite is presumably the fol-
lowing: Since X1(m) is ordinary, the determinant of its Hasse–Witt matrix
is non-zero. Hence the determinant is non-zero at almost all places of good
reduction. Therefore the reduction is ordinary at almost all places.

Now let n be a divisor of K whose support is B. We prove inductively
that the curve X1,0(m, n) belonging to the group Γ1(m)∩Γ0(n) has good and
ordinary reduction at all places not lying above the places in S∪B∪ {∞}.
Let p ∈ B; then Γ1(m) ∩ Γ0(np) is a normal subgroup of Γ1(m) ∩ Γ0(n) of
index qdeg(p). So we can apply the reasoning of [Ge2, 5.7] to the covering
X1,0(m, np) → X1,0(m, n). Namely: This covering is unramified outside the
cusps. As X1,0(m, np) is ordinary, by Theorem 1.2 the second ramification
groups are trivial. Since for a place of good reduction the reduction map
is injective on the cusps, we see from the Hurwitz formula that the second
ramification groups of the covering of the reductions are also trivial. Thus by
Theorem 1.2 the curve X1,0(m, np) has ordinary reduction at all the places
where X1,0(m, n) has.

Finally, let E be an elliptic curve with conductor∞·n. We may suppose
that the multiplicative reduction at ∞ is split. Otherwise we replace E by
its unramified quadratic twist, which has the same places of supersingular
reduction. Combining the covering X1,0(m, n) → X0(n) with Theorem 1.1
we see that E is an isogeny factor of the Jacobian of X1,0(m, n), which has
good and ordinary reduction outside S ∪B ∪ {∞}.

Of course, an elliptic curve need not have supersingular reduction at
every place in S. The real strength of Theorem 1.3 lies in characteristic 2
and 3, where the exponent of a place in the conductor is not bounded and
hence infinitely many isogeny classes of elliptic curves may share the same
places of bad reduction.

Proposition 1.4. Let Fq be a finite field of characteristic 2 or 3 and
let E be an elliptic curve over Fq(T ). Then j(E) has poles at all places
of multiplicative reduction of E and zeros at all places of supersingular
reduction. All other poles or zeros of j(E) must be among the places of
additive reduction.
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P r o o f. The proof for characteristic 2 in [Sch2] also holds in characteristic
3. Slightly modified, the proposition would even be true in all characteristics
p for which 0 is a supersingular invariant, that is, for all p ≡ 2 mod 3.

As explained in [Si], Appendix A, every elliptic curve E over a field K
of characteristic 2 with j(E) 6= 0 can be written in normal form

E : Y 2 +XY = X3 + a2X
2 + a6

with a6 = 1/j(E) and a2 ∈ K. The discriminant of this model is ∆ = a6.
For α ∈ K we call

Eα : Y 2 +XY = X3 + (a2 + α)X2 + a6

the α-twist of E. Both curves become isomorphic over the quadratic ex-
tension K(β) with β2 + β = α. The conductor of K(β) is also called the
conductor of the twist α. For every field k of characteristic 2 we write ℘(k)
for the image of k under the additive map x 7→ x2 +x. The above procedure
puts the K-isomorphism classes of elliptic curves with the same non-zero
j-invariant into bijection with K/℘(K).

Theorem 1.5 [Ge1]. Let K = Fq(T ) be of characteristic 2.

(a) The exponents f(E), f(α), and f(Eα) of a place in the conductors
of the elliptic curve E, the quadratic twist α, and the twisted curve Eα are
related by

f(Eα) ≤ max{f(E), 2f(α)},
with equality in case f(E) 6= 2f(α).

(b) The quadratic twists α that are unramified outside the place T are
represented by the unramified quadratic twist α ∈ Fq − ℘(Fq) and by the
twists

α = α0 + α1T
−1 + α3T

−3 + . . .+ α2d−1T
−(2d−1)

with αi ∈ Fq and α2d−1 6= 0. These twists have conductor T 2d.
From an elliptic curve over K (of characteristic 2) one can obtain a

K-isogenous one by simply squaring the coefficients of the equation. This
Frobenius isogeny obviously commutes with quadratic twists. Since Y 2 +
XY = X3 + a2X

2 + 1/j(E) and Y 2 + XY = X3 + a2
2X

2 + 1/j(E) are
isomorphic over K, we see that a curve is “Frobenius-minimal” if and only
if j(E) is not a square in K.

2. A special Drinfeld modular curve. On first view the previous sec-
tion looks like an effective method to classify elliptic curves with given places
of bad reduction. It is a slightly generalized version of Gekeler’s strategy in
[Ge1] and [Ge2], where he classified elliptic curves with conductor ∞ · Tn.

The next conductors to treat would be ∞ · Tn(T − 1)m. But here we
run already into a problem. If we want to classify elliptic curves with these
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conductors over all fields Fq(T ) with char(Fq) = 2 say, then we have to con-
trol the places of non-ordinary reduction of infinitely many different curves
X1(T (T − 1)). Namely, for every field Fq the curve X1(T (T − 1)) has genus
(q − 2)2 ([G&N], Corollary 5.7). So these curves are not related in an easy
way, and especially the curve for Fqr (T ) is not a base change of the one
for Fq(T ).

Actually the determination of S seems to be the main difficulty in the
whole business. For conductors∞·Tn this was so to say for free since X1(T )
has genus 0 (and hence S is empty) for all q.

Faute de mieux we compromise somewhat and restrict the third place of
bad reduction of our elliptic curves to be of multiplicative type, that is, we
treat elliptic curves with conductor ∞ · Tn(T − 1). Then we can carry out
the induction of Theorem 1.3 with a smaller curve, namely with the curve

X(n) = X1,0(T, Tn(T − 1))

belonging to the group

Γ(n) = Γ1(T ) ∩ Γ0(Tn(T − 1))

=
{(

a b
c d

)
∈ GL2(A) : a ≡ d ≡ 1 mod T, c ≡ 0 mod Tn(T − 1)

}
.

Lemma 2.1. The genus of X(1) is at most q − 2.

P r o o f. The curve X0(T (T − 1)) has genus 0 and 4 cusps. Since the
covering X(1) → X0(T (T − 1)) is abelian of degree q − 1 and unramified
outside the cusps, the Hurwitz formula yields the claimed bound.

A closer examination would reveal that the four cusps are indeed totally
ramified and hence g(X(1)) = q − 2. We will obtain this as a by-product in
the next lemma.

The points ofX(1) over C which are not cusps (i.e. the elements of Γ(1)\Ω)
are in bijection with the isomorphism classes of quadruples (φ, u, P1, P2)
consisting of a rank 2 Drinfeld module φ over C, a cyclic (T − 1)-isogeny
u of φ, a primitive T -torsion point P1 of φ, and a primitive point P2 on
the quotient of the T -torsion by 〈P1〉. Two quadruples (φ, u, P1, P2) and
(φ′, u′, P ′1, P

′
2) are isomorphic if there exists an isomorphism from φ to φ′

that maps (u, P1, P2) to (u′, P ′1, P
′
2).

Of course (φ, u) describes the moduli problem for X0(T −1), and the one
for X1(T ) is given by (φ, P1, P2). This might be surprising when compared
with the classical modular curve X1(N) which parametrizes elliptic curves
with a primitive N -torsion point. The explanation is that when working
with SL2(Z) one of the conditions a ≡ 1 mod N and d ≡ 1 mod N in the
definition of Γ1(N) is redundant.

We also hasten to remark that for deg(n) > 1 the moduli problem for
X1(n) is not the obvious generalization of our description for X1(T ).
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From now on we restrict to the case char(Fq) = 2.
On X(1) we have at our disposal the Atkin–Lehner involution WT−1

given by the action of the matrix
(
T−1
T 2−T

1
T−1

)
on the upper half-plane. In

terms of the moduli interpretation WT−1 maps the quadruple (φ, u, P1, P2)
to (ψ, ut, u(P1), u(P2)) where ψ is the image of φ under the isogeny u and
ut is the dual isogeny.

Lemma 2.2. (a) The curve WT−1\X(1) has genus 0.
(b) The curve X(1) has genus q − 2 and is hyperelliptic for q ≥ 4.

P r o o f. The restriction of WT−1 to the rational curve X0(T −1) has one
fixed point. As explained in [Sch1], this fixed point can be represented by
the tuple (φ, λ) where φ is the Drinfeld module with complex multiplication
by Fq[

√
T ] and λ ∈ End(φ) with λ2 = T − 1.

Let P1 be a non-zero point in the kernel of the endomorphism
√
T . Ob-

viously P1 is a T -torsion point and λP1 = P1. For every T -torsion point P2

which is not contained in 〈P1〉 we have λP2 =
√
TP2+P2 with

√
TP2 ∈ 〈P1〉.

Thus for every choice of P1 and P2 mod 〈P1〉 the quadruple (φ, λ, P1, P2) is
fixed under the involution WT−1. Still Aut(φ) = F×q acts on these quadru-
ples. Fixing P1 we obtain representatives of the q − 1 fixed points of WT−1

on X(1).
Now the Hurwitz formula implies g(WT−1\X(1)) = 0 and also g(X(1))

≥ q − 2.

Remark. We point out that in odd characteristic there exist at least
two different involutions on X(1) which restrict to the usual Atkin–Lehner
involution on X0(T − 1). They differ by certain minus-signs in the matrix
and in the moduli interpretation. One has no fixed points on X(1), the other
has 2(q − 1). Therefore Lemma 2.2(b) is also true in odd characteristic.

Lemma 2.3. In characteristic 2 the curves X(n) have good and ordinary
reduction outside ∞ · T (T − 1).

P r o o f. It suffices to prove the statement for X(1). Then for X(n) we can
perform the same induction as in the proof of Theorem 1.3.

Fix a place ℘ lying above a place p of K not dividing ∞· T (T − 1). The
curve WT−1 \X(1) has genus 0 and hence ordinary reduction mod ℘. We
want to lift this property to X(1) by using Theorem 1.2. As in the proof of
Theorem 1.3 we only have to show that the fixed points of WT−1 on X(1)
do not fall together modulo ℘.

Upon reduction the Drinfeld module φ becomes supersingular, that is,
the endomorphism ring of the reduced Drinfeld module φ is a maximal order
O in the quaternion algebra over K ramified at p and ∞. Moreover End(φ)
embeds into End(φ). Clearly the quadruples (φ, λ, P 1, P 2) are distinct, but
we have to show that they are not isomorphic.
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An automorphism of (φ, λ) is a unit in O that commutes with λ. Hence
it must be an element of Fq[

√
T ]× = F×q . So the reductions of the q−1 fixed

points are indeed distinct.

3. Elliptic curves with conductor ∞ · Tn(T − 1). We maintain the
restriction char(Fq) = 2.

We want to classify elliptic curves over K = Fq(T ) with two places of
multiplicative and one place of additive reduction where all these places are
assumed to be Fq-rational.

After a Möbius transformation T 7→ (αT+β)/(γT+δ) with α, β, γ, δ ∈ Fq
and αδ 6= βγ, we may suppose that the three places of bad reduction are
∞, 0, and 1 and that the additive reduction is located at 0.

Proposition 3.1. Every elliptic curve E over K which has conductor
∞ · Tn(T + 1) must have invariant

j(E) = ε
T k

(T + 1)l

with ε ∈ F×q and k > l > 0.

P r o o f. As in Theorem 1.3 we may suppose that E is modular. Then
Lemma 2.3 tells us that E has no places of supersingular reduction. So by
Proposition 1.4 the support of the divisor of j(E) is contained in∞·T (T+1).
Furthermore j(E) has poles at ∞ and 1. Hence it must vanish at T = 0.

Obviously, such a curve is Frobenius-minimal if and only if at least one
of k and l is odd. In the next two lemmas we treat curves with slightly more
general j-invariants.

Lemma 3.2. Let k, l ∈ Z, not both even, with k + l > 0 and let ε ∈ F×q .
The standard curve

Y 2 +XY = X3 +
ε

T k(T + 1)l

has split multiplicative reduction at ∞ and conductor ∞ · Tn(T + 1)m with

n =





0 if k = 0,
1 if k < 0,
k + 2 if 2 - k and k > 0,
k if 2 | k and k > 3,
3 if k = 2,

and analogously for m.

P r o o f. This is a straightforward application of Tate’s algorithm ([Ta]).
The cases l = 0 resp. l < 0 are already in [Ge1] resp. [Sch2].

Lemma 3.3. Let E be an elliptic curve as in Lemma 3.2 with k ≡ 0 mod 4
(and hence 2 - l). Let further δ ∈ F×q .
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(a) For k > 4 the exponent of T in the conductor of the twisted curve

Eα : Y 2 +XY = X3 +
δ

T k/2−1
X2 +

ε

T k(T + 1)l

is

ordT (cond(Eα)) =
{
k − 1 if δ2 = ε,
k if δ2 6= ε.

(b) The exponent of T in the conductor of the curve

Y 2 +XY = X3 +
δ

T
X2 +

ε

T 4(T + 1)l

is

ordT (cond(Eα)) =





2 if δ2 = ε = 1,
3 if δ2 = ε 6= 1,
4 if δ2 6= ε.

P r o o f. For l < 0 this was shown in [Sch2]. The general proof is exactly
the same.

We summarize:

Theorem 3.4. Every elliptic curve over K with conductor ∞·Tn(T +1)
is Frobenius isogenous to a curve

Y 2 +XY = X3 + αX2 + ε
(T + 1)l

T k

where k > l > 0, not both even, ε ∈ F×q and the twist α is unramified outside
T = 0.

Conversely , every curve of this form has conductor ∞·Tn(T − 1) and n
can be easily determined by means of Lemmas 3.2 and 3.3 and Theorem 1.5.
In particular all n ≥ 2 occur.

Making the equations integral , we can also say : The elliptic curves over
K with conductor ∞ · Tn(T + 1) are the ones of the form

Y 2 + T dXY = X3 + P (T )X2 + εT e(T + 1)l

with e ∈ N0, d ∈ N, 0 < l < 6d− e, ε ∈ F×q , and P (T ) ∈ Fq[T ] of degree at
most 2d.

Corollary 3.5. Elliptic curves over K with conductor ∞np where p is
a prime divisor of degree 2 exist only for n = 3 and for even n > 2.

P r o o f. Suppose E is such a curve. Over the quadratic constant field
extension Fq2(T ) the place p splits into two rational places at which j(E)
has the same pole order. Using a Möbius transformation of Fq2(T ) we can
change these two places to ∞ and 1 and the place ∞ to 0. Then j(E) is as
in Proposition 3.1 with l = k − l. If moreover E is Frobenius minimal, then
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l must be odd and hence k ≡ 2 mod 4. This restricts n to the possibilities
mentioned above.

On the other hand, for odd l the curve Y 2+XY = X3+εpl has conductor
∞np with n = 3 for l = 1 and n = 2l for l ≥ 3. The values n ≡ 0 mod 4 can
be realized by twisting.

4. Some further results. We recall that the curve X1(T (T − 1)) has
genus (q−2)2. Analogously to WT−1 which is an involution on X1(T (T −1))
we can define the involution WT =

(
T 2

T 2−T
1
T

)
on X1(T (T − 1)). The two

commute and their product is the full Atkin–Lehner involution WT 2−T =( 0
T 2−T

1
0

)
.

Lemma 4.1. If q ∈ {2, 4}, then the Drinfeld modular curve X1(T (T −1))
has good and ordinary reduction outside ∞ · T (T − 1).

P r o o f. For q = 2 this is trivial because then the curve has genus 0.
So let q = 4. We fix a place not dividing ∞ · T (T − 1) and denote

the reduction at this place by a tilde. WT−1 has 3 fixed points on X̃(1).
Over each of these there lies at least one fixed point on (X1(T (T − 1)))∼.
Analogously WT has at least 3 fixed points on (X1(T (T −1)))∼ and WT 2−T
has at least one (lying over the unique fixed point on the rational
curve (X0(T (T − 1)))∼). So the Hurwitz formula shows that the curve
〈WT ,WT−1〉\(X1(T (T − 1)))∼ has genus 0 and that the second ramification
groups are trivial. Thus (X1(T (T − 1)))∼ is ordinary by Theorem 1.2.

Combining the previous lemma with Theorem 1.3 and Proposition 1.4
we obtain

Proposition 4.2. Let q ∈ {2, 4}. Then every elliptic curve over Fq(T )
with conductor ∞ · Tn(T + 1)m is Frobenius isogenous to a quadratic twist ,
unramified outside T (T + 1), of a standard curve from Lemma 3.2. The
pairs (m,n) that occur are exactly the ones where at least one of m,n is
incongruent to 2 mod 4 and greater than 2.

Similarly to Corollary 3.5 we can conclude from this that elliptic curves
over F2(T ) with conductor ∞ · (T 2 +T+1)n exist if and only if 3 ≤ n 6≡ 2
mod 4. But this could also be obtained directly from [Ge2].

If the j-invariant of an elliptic curve E over K has a pole at a place p,
then there exists a quadratic twist α, unramified outside p, such that the
twisted curve Eα has multiplicative reduction at p (compare the proof of
Proposition 2.1 in [Ge1]). Using this and the previous results we obtain

Proposition 4.3. If char(Fq) = 2, there are three types of elliptic curves
E over Fq(T ) with conductor ∞e · Tn(T − 1)m:

(a) j(E) is not constant. Without loss of generality (i.e. after a Möbius
transformation) j(E) has a pole at ∞. If q ∈ {2, 4}, then E is of the form
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Y 2 +XY = X3 + αX2 +
ε

T k(T + 1)l

where k+l > 0 and ε ∈ F×q and the twist α is unramified outside∞·T (T+1).
(It is quite likely that this holds for all even q.) Moreover , in this case
e ≡ 0 mod 4 unless e = 1.

(b) j(E) ∈ F×q . Then E is of the form

Y 2 +XY = X3 + αX2 + ε

where ε ∈ F×q and the twist α is unramified outside ∞·T (T +1). Necessarily
e ≡ n ≡ m ≡ 0 mod 4.

(c) j(E) = 0. In this case E is of the form

Y 2 + εT k(T + 1)lY = X3 + a4X + a6

with k, l ∈ N0, ε ∈ F×q and a4, a6 ∈ Fq[T ].
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