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1. Introduction. In [8] we defined an E-algebraic function, an analogue
of the concept of a differentially algebraic function over a perfect field K of
characteristic p > 0. In this paper, we shall study the Hadamard product
of differentially algebraic and E-algebraic power series. The p-multiplicative
and p-additive power series are introduced and it will be shown that these
two classes of series are closed under the Hadamard product operation. We
also show that the Hadamard product of a rational power series with a
D-algebraic (respectively, E-algebraic) power series in several variables is
not necessarily D-algebraic (respectively, E-algebraic).
From now on L will denote a field of characteristic zero. Suppose that

P (x0, x1, . . . , xn+1) is a non-zero polynomial in n + 2 variables with coeffi-
cients in L. Then the equation

P (x, ω(x), ω′(x), . . . , ω(n)(x)) = 0,

where ω(n) = dω(n−1)/dx, ω(0)(x) = ω(x), is called an algebraic differential
equation (ADE, for short). A function (or a formal power series) f(x) ∈
L[[x]] which satisfies an ADE as above is called differentially algebraic (D-
algebraic, for short) over L(x). In other words, a function f(x) is D-algebraic
(over L(x)) if and only if f, f ′, . . . , f (n), . . . are algebraically dependent over
L(x).

Example 1.1. (i) The series f(x) =
∑
n≥0 n!x

n is D-algebraic since
x2f ′(x) + (x− 1)f(x) + 1 = 0.
(ii) The series f =

∑
n≥0 x

n2 is also D-algebraic (see [4]).

A function (or a power series) f is called transcendentally transcendental
(TT, for short) if it is not D-algebraic. That is, if it satisfies no algebraic
differential equation. For example, the series g =

∑
n≥0 x

2n is TT (see [4]).
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Remarks 1.2. (i) Let f =
∑∞
n=0 anx

n ∈ L[[x]] and M = L(x, f, f ′, . . .
. . . , f (n), . . .). Then f is a D-algebraic series (over L(x)) if and only if
tr.deg.L(x)M <∞, where tr.deg.K F means the transcendence degree of F
over K.
(ii) Recall that for a field K, an element f ∈ K((x)) is called an algebraic

function over K if f is algebraic over the field of rational functionsK(x). An
algebraic formal power series over the field L of characteristic zero is a series
which satisfies a differential equation of zero order and hence a D-algebraic
power series. In other words, if f is algebraic, then tr. deg.L(x)M = 0.
A special type of a D-algebraic power series is a differentially finite (D-

finite, for short) power series. Roughly speaking, a D-finite power series is a
series which satisfies a linear differential equation. In other words, a power
series f ∈ L[[x]] is said to be D-finite if f together with all its derivatives
f (n) = dnf/dxn, n ≥ 1, span a finite-dimensional subspace of L((x)), re-
garded as a vector space L(x).
The function of Example 1.1(i) is D-finite, while the function tan(x) is

not [10].

2. E-algebraic functions. Since the pth derivative of a power series
f over a field of characteristic p > 0 collapses to zero, the notion of D-
algebraicity is not so significant over fields of characteristic p > 0. In [8] we
defined an analogue of the concept of a D-algebraic function over a perfect
field K of characteristic p > 0, as follows. From now on K will denote a
perfect field of characteristic p > 0 and Zp will denote the ring of p-adic
integers.

Lemma 2.1. If f(x) ∈ K[[x]] (respectively K((x))), then f can be written
uniquely as

(1)
p−1∑
i=0

xifpi

for some fi ∈ K[[x]] (respectively K((x))).
P r o o f. See [9]. (Note that fi =

∑∞
n=0 a

1/p
pn+ix

n.)

For each i ∈ {0, 1, . . . , p−1} define Ei : K((x))→ K((x)) by Ei(f) = fi.
Now for f ∈ K((x)), we have

(2) f =
p−1∑
i=0

xi[Ei(f)]p.

The operator Ei is semilinear; that is, if f, g ∈ K((x)) and λ ∈ K, then
Ei(λf + g) = λ1/pEi(f) + Ei(g).

Moreover, Ei(gpf) = gEi(f).
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Let Ω be the semigroup generated by the identity operator and the Ei
for i ∈ {0, 1, . . . , p − 1} with ordinary composition as multiplication. With
each f ∈ K((x)) we associate its orbit Ω(f) = {E(f) : E ∈ Ω}.
Definition. Suppose that f ∈ K((x)). We say that f is an E-algebraic

function (over K(x)) if tr.deg.K(x)K(x,Ω(f)) <∞.
Notation. We shall denote by ΓK the set of all E-algebraic functions.

Example 2.2. (i) Any algebraic function over K is E-algebraic.
(ii) Let K = F2 and α be a 2-adic integer. Let fα = (1 + x)α ∈ F2[[x]].

Then fα ∈ ΓK . (Note that if α �∈ Q, then f is not algebraic; see, for example,
[5, 7].)
In [8] we showed that ΓK with ordinary addition and multiplication of

series is a field with some natural properties. Note also that by Example 2.2,
we have

K(x) ⊂ ΓK ⊂ K((x)).

3. Hadamard products of D-algebraic and E-algebraic power
series. Recall that for the power series f =

∑
n≥0 anx

n and g =
∑
n≥0 bnx

n,

the Hadamard product of f and g, denoted by f ∗ g, is the series defined by
f ∗ g =∑n≥0 anbnxn.
DL, the set of all D-algebraic power series over L, is not closed under

the Hadamard product operation, as the following example shows.

Example 3.1. Let f =
∑
n≥0 x

n2 and g =
∑
n≥0(1/n!)x

n. Then f and
g are D-algebraic. However,

f ∗ g =
∑
n≥0

1
(n2)!
xn
2
,

which is not D-algebraic (see [4]).

An example of a subalgebra of DL which is closed under the Hadamard
product operation is the algebra of D-finite power series (see [10]).
Note that in Example 3.1, g is D-finite. Hence the Hadamard product of

a D-algebraic and a D-finite power series is not D-algebraic. However, in [6]
we proved the following result.

Theorem 3.2. Suppose that f, g ∈ L[[x]]. If f is rational and g is D-
algebraic, then f ∗ g is D-algebraic.
In analogy with the case of characteristic zero, we shall prove the follow-

ing theorem.

Theorem 3.3. Suppose that f, g ∈ K[[x]]. If f is rational and g is
E-algebraic, then f ∗ g is E-algebraic.
First we need some lemmas.
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Lemma 3.4. Suppose that M is an algebraic extension of K. Suppose that
f ∈ K[[x]]. If tr. deg.M M(x,Ω(f)) <∞, then tr. deg.K K(x,Ω(f)) <∞.
P r o o f. Since K ⊆ M is an algebraic extension, tr. deg.KM(x,Ω(f))

is finite. Now as K(x,Ω(f)) is a field contained in M(x,Ω(f)) we have
tr.deg.K K(x,Ω(f)) <∞.
Lemma 3.5. Suppose that h(x) =

∑∞
n=0 anx

n ∈ ΓK . Then

h(βx) =
∞∑
n=0

anβ
nxn ∈ ΓK for β ∈ K.

P r o o f. By Lemma 2.1 we have

h(βx) =
∞∑
n=0

anβ
nxn =

∞∑
n=0

p−1∑
i=0

apn+iβ
pn+ixpn+i

=
p−1∑
i=0

xi
(
βi/p

∞∑
n=0

a
1/p
pn+i(βx)

n
)p
.

Hence Ei(h(βx)) = βi/pEi(h)(βx) for each i ∈ {0, 1, . . . , p−1} and similarly
for “higher order” of E. Thus, when changing the variable from x to βx
in h, each element of Ω(h(βx)) differs from the corresponding element of
Ω(h)(βx) by some power β1/p, which is an element of K. By the same
argument used in the proof of Theorem 2.7 of [6], as K(x,Ω(h)(βx)) =
K(x,Ω(h(βx))), we have tr. deg.K K(x,Ω(h(βx))) < ∞. That is, h(βx) ∈
ΓK as required.

Proof of Theorem 3.3. By Lemma 3.4 we can assume that K is alge-
braically closed. Hence, as f is rational, we can write

f(x) = P (x) +
N∑
i=0

αi
(1− βix)ai ,

where P (x) ∈ K[x], αi, βi ∈ K and ai ∈ N.
Since the Hadamard product operation is a K-bilinear operation it is

enough to prove the theorem for the case f1 = 1/(1 − βx)a, a ≥ 1, where
β ∈ K. Let a′, k be non-negative integers such that a+ a′ = pk so that

f1 =
1

(1− βx)a =
(1− βx)a′
1− βpkxpk = (1− βx)

a′
∑
n≥0
βp
knxp

kn.

Again by the K-bilinearity of the Hadamard product operation it is enough
to prove the theorem for the case f2 =

∑
n≥0 β

pknxp
kn+s for β ∈ K, s ∈ N,
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0 ≤ s ≤ pk − 1. Hence we have to show that if g =∑n≥0 bnxn, then
f2 ∗ g =

(∑
n≥0
βp
knxp

kn+s
)
∗
∑
n≥0
bnx
n =
∑
n≥0
βp
knbpkn+sx

pkn+s ∈ ΓK .

If we show that t(x) =
∑
n≥0 bpkn+sx

pkn+s ∈ ΓK , then by Lemma 3.5
1
βs
t(βx) =

∑
n≥0
βp
knbpkn+sx

pkn+s = f2 ∗ g ∈ ΓK .

Note that if k = 0, then as g ∈ ΓK , by Lemma 3.5 we have
f2 ∗ g = g(βx) =

∑
n≥0
βnbnx

n ∈ ΓK .

Hence we may assume that k ≥ 1. Since s ∈ {0, 1, . . . , pk − 1}, we can write
s = pk−1s1 + . . . + psk−1 + sk, where 0 ≤ si < p, for i = 1, . . . , k. Now, as
g ∈ ΓK , we have

t(x) =
∑
n≥0
bpkn+sx

pkn+s = xs
[∑
n≥0
b
1/pk

p(p(...p(pn+s1)+s2)+...)+sk
xn
]pk

= xs[Es1...sk(g)]
pk ∈ ΓK ,

where 0 ≤ s ≤ pk − 1 and Eij = Ei ◦ Ej , as required.
Note that the set ΓK is not closed under the Hadamard product opera-

tion, as the following example shows.

Example 3.6. Let K = F2, θ =
∑∞
i=0 θi2

i and φ =
∑∞
i=0 φi2

i be 2-adic
integers. Let τ =

∑∞
i=0 θiφi2

i. Then by Lucas’ Theorem (see, for example,
[2, p. 271]) we have (1 + x)θ ∗ (1 + x)φ = (1 + x)τ .
Let (fn)n≥0 and (gn)n≥0 be two sequences of series in F2[[x]] and let

f ∈ F2[[x]] be defined by f = f20 + xg
2
0 and gi = f

2
i+1 + xg

2
i+1, i ≥ 0.

r

r

r

r

r r

f

f�

f�

f�

g�

g�

g�

So f =
∑∞
n=0 f

2n+1
n x2

n−1. Then we have the following lemma.
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Lemma 3.7. f ∈ ΓF2 if and only if {f0, f1, . . .} ⊆ ΓF2 and

tr.deg.
F2(x) F2(x, f0, f1, . . .) <∞.

P r o o f. See [8].

Consider the set S = {θ ∈ Z2 : θi = 0 if i is not a power of 2} ∪ {1}.
Then S is uncountable and hence there exists an infinite sequence θ(n),
n ≥ 0, of elements of S linearly independent over Q, where θ(0) = 1. Let
g(n) = (1+x)θ(n) , n ≥ 1. Then g(n) are algebraically independent over F2(x)
(see [7]). Now we redefine θ(0) = 0 and consider the functions F and G
defined as follows:

r

r

r

r

r r

F

F�

F�

F�

r

r

r

r

r r

G

G�

G�

G�

where Fn are all equal to (1 + x)θ, θ =
∑
n≥0 2

2n . Also Gn = (1 + x)φ·2
n

,

where φ =
∑
i≥0 φi2

i ∈ Z2 is to be determined.
Note that by Example 2.2, F and G are both in ΓF2 . Then

Fn ∗Gn = (1 + x)θ ∗ (1 + x)φ·2
n

= (1 + x)λ
(n)
,

say, where λ(n) =
∑
j≥0,2j≥n φ2j−n2

2j by Lemma 3.6.

r

r

r

r

r r

F �G

F� �G�

F� �G�

F� �G�

Let θ(n) =
∑
k≥0 θ(n)(k)2

2k for n ≥ 0 as θ(n) ∈ S. We define φ as follows:
Let φ0 = 0, φ2j−n = θ(n)(j) for 2j > 2n. Then

λ(n) =
∑

j≥0, n≤2j≤2n
φ2j−n22

j

+
∑

j≥0, 2j>2n
θ(n)(j)2

2j = θ(n) + an,
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where an ∈ Z. Hence Fn ∗ Gn = (1 + x)λ(n) = (1 + x)ang(n) for n ≥ 1 are
algebraically independent over F2(x). Therefore, F ∗G �∈ ΓF2 as required.

The classes of p-additive and p-multiplicative power series are some spe-
cial types of E-algebraic power series, which are closed under the Hadamard
product operation.

Definition. Let F be a field of characteristic p > 0. We call f =∑∞
n=0 anx

n ∈ F [[x]] a p-multiplicative (respectively, p-additive) power se-
ries if for all k, n ∈ N and r ∈ [0, pk − 1] we have

apkn+r = apknar (respectively, apkn+r = apkn + ar).

These series were introduced by Gelfond in [3]. For example, for the p-adic
integer α, fα = (1 + x)α ∈ Fp[[x]] is a p-multiplicative series by Lucas’
Theorem, and the series f =

∑∞
n=0 Sp(n)x

n ∈ Fp[[x]], where Sp(n) is the
sum of the digits of n in its p-adic expansion (see [1]), is a p-additive power
series.

Proposition 3.8. Any p-multiplicative or p-additive power series in
K[[x]] is E-algebraic.

P r o o f. Suppose that f =
∑∞
n=0 anx

n is p-multiplicative. Then by (1),

f =
p−1∑
i=0

∞∑
n=0

apn+ix
pn+i =

p−1∑
i=0

aix
i
∞∑
n=0

apnx
pn =

p−1∑
i=0

aix
i(E0(f))p.

As f is p-multiplicative, a0 = 1, and hence (E0(f))p = f/
∑p−1
i=0 aix

i ∈
K(x, f) and (Ei(f))p = ai(E0(f))p ∈ K(x, f) for 0 ≤ i ≤ p − 1 (see
Lemma 2.1). By the same argument we have E0(f) =

∑p−1
i=0 a

1/p
pi x

i(E00(f))p.

Hence (E00(f))p = E0(f)/
∑p−1
i=0 a

1/p
pi x

i. Thus

(E00(f))p
2
=
(E0(f))p∑p−1
i=0 apix

pi
=

f∑p−1
i=0 aix

i
∑p−1
i=0 apix

pi
∈ K(x, f)

and similarly (Eij(f))p
2 ∈ K(x, f) for 0 ≤ i, j ≤ p − 1. Continuing this

process it follows easily that

[Ei1...ir(f)]
pr =

cf∑p−1
i=0 aix

i
∑p−1
i=0 apix

pi . . .
∑p−1
i=0 aipr−1x

ipr−1
,

where c ∈ K and Eij = Ei ◦ Ej . Thus
[Ei1...ir(f)]

pr ∈ K(x, f)
and hence tr. deg.K K(s,Ω(f)) ≤ 2. Therefore, f is E-algebraic.
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Now, suppose that f =
∑∞
n=0 anx

n is p-additive. Then

f =
p−1∑
i=0

∞∑
n=0

apn+ix
pn+i =

p−1∑
i=0

xi
∞∑
n=0

apnx
pn +

p−1∑
i=0

aix
i
∞∑
n=0

xpn

=
1− xp
1− x (E0(f))

p +
1
1− xp

p−1∑
i=0

aix
i.

Hence

(E0(f))p =
1− x
1− xp

[
f − 1
1− xp

p−1∑
i=0

aix
i

]
∈ K(x, f)

and

(Ei(f))p = (E0(f))p +
ai
1− xp ∈ K(x, f) for 0 ≤ i ≤ p− 1.

By the same argument we have

E0(f) =
1− xp
1− x (E00(f))

p +
1
1− xp

p−1∑
i=0

a
1/p
pi x

i.

Hence

(E00(f))p =
1− x
1− xp

[
E0(f)− 1

1− xp
p−1∑
i=0

a
1/p
i x

i

]
.

Thus

(E00(f))p
2
=
1− xp
1− xp2

[
(E0(f))p − 1

1− xp2
p−1∑
i=0

apix
pi

]
∈ K(x, f)

since (E0(f))p ∈ K(x, f). Similarly (Eij(f))p2 ∈ K(x, f) for 0 ≤ i, j ≤ p−1.
By using a simple induction on the order of E, one can see that

[Ei1...ir(f)]
pr ∈ K(x, f)

for ij ∈ {0, 1, . . . , p− 1} and hence tr. deg.K K(x,Ω(f)) ≤ 2. Therefore, f is
E-algebraic and the proof is complete.

A similar argument shows that the set of all p-multiplicative power series
is closed under the Hadamard product operation and hence we have the
following.

Corollary 3.9. Let f, g ∈ K((x)) be p-multiplicative. Then f ∗ g is
E-algebraic.

Proposition 3.10. Let f, g ∈ K((x)) be p-multiplicative or p-additive.
Then f ∗ g is E-algebraic.
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P r o o f. We just consider the case where f is p-additive and g is p-
multiplicative. Let f =

∑∞
n=0 anx

n and g =
∑∞
n=0 bnx

n. Then

h = f ∗ g =
∞∑
n=0

anbnx
n =

p−1∑
i=0

∞∑
n=0

apn+ibpn+ix
pn+i

=
p−1∑
i=0

∞∑
n=0

[apn + ai]bpnbixpn+i

=
p−1∑
i=0

bix
i
∞∑
n=0

apnbpnx
pn +

p−1∑
i=0

aibix
i
∞∑
n=0

bpnx
pn

=
p−1∑
i=0

bix
i(E0(h))p +

p−1∑
i=0

aibix
i(E0(g))p.

Since g is p-multiplicative, b0 �= 0 and hence

(E0(h))p =
1∑p−1

i=0 bix
i

[
h−

p−1∑
i=0

aibix
i(E0(g))p

]
∈ K(x, g, h),

as K(x,Ω(g), h) = K(x, g, h). Similarly, we get

(Ei(h))p = bi[(E0(h))pai(E0(g))p] ∈ K(x, g, h)
for 0 ≤ i ≤ p− 1. Now by a similar argument we get

(E00(h))p =
1∑p−1

i=0 b
1/p
pi x

i

[
E0(h)−

p−1∑
i=0

a
1/p
pi b

1/p
pi x

i(E00(g))p
]
.

Thus (E00(h))p
2
and similarly (Eij(h))p

2
are inK(x, g, h) for 0 ≤ i, j ≤ p−1.

By using a simple induction on the order of E, one can see that

[Ei1...ir(h)]
pr ∈ K(x, g, h)

for ij ∈ {0, 1, . . . , p − 1} and hence tr.deg.K K(x,Ω(h)) ≤ 3. Therefore,
h = f ∗ g is E-algebraic.

4. Diagonals of D-algebraic and E-algebraic power series. The
notions of D-algebraicity and E-algebraicity can be generalised to the case
of several variables. In this section we shall study the diagonal of such series.
For a power series

f =
∑
nj≥0
an1...nkx

n1
1 . . . x

nk
k ,

the series

D(f) =
∞∑
n=0

an...nt
n, where t = x1 . . . xk,
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is called the diagonal of f . Although taking the diagonal of f just amounts
to taking the Hadamard product of f with the rational function g =
1/(1 − x1 . . . xk), the following example shows that Theorem 3.2 is not true
for the case of several variables. That is, the diagonal of a D-algebraic power
series need not be D-algebraic.

Example 4.1. Suppose that

f(x, y) =
ey

2
[θ(x) + 1],

where θ(x) is the theta function. Let

f1(x) =
1
2
[θ(x) + 1] =

∞∑
n=0

xn
2
and f2(y) = ey.

Then f1 and f2 are both D-algebraic. Now,

f1(x)f2(y) = f(x, y) =
( ∞∑
n=0

xn
2
)( ∞∑
k=0

1
k!
yk
)

and hence D(f) =
∑
n≥0(1/n!

2)t2
n

, which is not D-algebraic (see [4]).
Therefore, we have the following

Corollary 4.2. Suppose that k > 1 and f, g ∈ L[[x1, . . . , xk]]. If f is
rational and g is D-algebraic, then f ∗ g is not necessarily D-algebraic.
We shall show below that the diagonal of an E-algebraic power series

in several variables is not necessarily E-algebraic either and hence Theorem
3.3 is not true for the case of several variables.
Let F and G be the functions of Example 3.6. Consider F (x) and G(y)

as the elements of F2[[x, y]]. Then, as ΓF2 is a field (see [8]), F (x)G(y)
is E-algebraic. Let F (x) =

∑∞
n=0 anx

n and G(y) =
∑∞
m=0 bmy

m. Then
F (x)G(y) =

∑∞
n=0

∑∞
m=0 anbmx

nym. So D(FG) =
∑∞
n=0 anbnt

n, where
t = xy. However, D(FG) = F (x) ∗G(x). Therefore, we have the following
Corollary 4.3. Suppose that k > 1 and f, g ∈ K[[x1, . . . , xk]]. If f is

rational and g is E-algebraic, then f ∗ g is not necessarily E-algebraic.
The only remaining cases in studying the Hadamard products of D-

algebraic and E-algebraic power series are the following questions for series
in one variable, which seem to be open.

Is the Hadamard product of an algebraic power series and a D-alge-
braic (respectively , E-algebraic) power series D-algebraic (respectively , E-
algebraic)?
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