Continuous functions on compact subsets of local fields

by

Manjul Bhargava and Kiran S. Kedlaya (Princeton, NJ)

A classical theorem of Mahler [4] states that every continuous function f from the p-adic ring \mathbb{Z}_{p} to its quotient field \mathbb{Q}_{p} (or to any finite extension of \mathbb{Q}_{p}) can be uniquely expressed in the form

$$
f(x)=\sum_{n=0}^{\infty} c_{n}\binom{x}{n}
$$

where the sequence c_{n} tends to 0 as $n \rightarrow \infty$. The purpose of this paper is to extend Mahler's theorem to continuous functions from any compact subset S of a local field K to K. Here by a local field we mean the fraction field of a complete discrete valuation ring R whose residue field $k=R / \pi R$ is finite.

Our theorem implies, in particular, that every continuous function from S to K can be uniformly approximated by polynomials. This generalization of Weierstrass's approximation theorem was first proved in the case $K=\mathbb{Q}_{p}$ by Dieudonné [3]. Mahler [4] made explicit Dieudonné's result in the case $S=\mathbb{Z}_{p}$ by giving a canonical polynomial interpolation series for the continuous functions from \mathbb{Z}_{p} to \mathbb{Q}_{p}. Amice [1] later extended Mahler's theorem to continuous functions on certain "very well-distributed" subsets S of a local field K. The present work provides canonical polynomial interpolation series for all S and K, and thus constitutes a best possible generalization of Mahler's result in this context.

The main ingredient in our work is a generalization of the binomial polynomials $\binom{x}{n}$ introduced by the first author [2]. Their construction is as follows. Given a subset $S \subset K$, fix a π-ordering Λ of S, which is a sequence a_{0}, a_{1}, \ldots in which $a_{n} \in S$ is chosen to minimize the valuation of $\left(a_{n}-a_{0}\right) \cdots\left(a_{n}-a_{n-1}\right)$. It is a fundamental lemma [2, Theorem 1] that the generalized factorial

$$
n!_{\Lambda}=\left(a_{n}-a_{0}\right) \cdots\left(a_{n}-a_{n-1}\right)
$$

[^0]generates the same ideal for any choice of Λ. The nth generalized binomial polynomial is then defined as
$$
\binom{x}{n}_{\Lambda}=\frac{\left(x-a_{0}\right) \cdots\left(x-a_{n-1}\right)}{n!_{\Lambda}} ;
$$
by construction, $\binom{x}{n}_{\Lambda}$ maps S into R for all $n \geq 0$. The usual binomial polynomials are of course recovered upon setting Λ to be the p-ordering $0,1,2, \ldots$ of the ring $R=\mathbb{Z}_{p}$.

Mahler's theorem implies that the ordinary binomial polynomials $\left.\left\{\begin{array}{l}x \\ n\end{array}\right)\right\}$ form a \mathbb{Z}_{p}-basis for the ring $\operatorname{Int}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ of polynomials over \mathbb{Q}_{p} mapping \mathbb{Z}_{p} into \mathbb{Z}_{p}. This fundamental property of the usual binomial polynomials was first pointed out (with \mathbb{Z} in place of \mathbb{Z}_{p}) by Pólya [5]. On the other hand, in [2] it was shown that, analogously, the generalized binomial polynomials $\left.\left\{\begin{array}{l}x \\ n\end{array}\right)_{A}\right\}$ form an R-basis for the $\operatorname{ring} \operatorname{Int}(S, R)$ of polynomials over K mapping S into R. These results are what led us to conjecture, and subsequently prove, our extension of Mahler's theorem.

Our main result is
Theorem 1. Given any continuous map $f: S \rightarrow K$, there exists a unique sequence $\left\{c_{n}\right\}_{n=0}^{\infty}$ in K such that

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} c_{n}\binom{x}{n}_{\Lambda} \tag{1}
\end{equation*}
$$

for all $x \in S$. Moreover, $c_{n} \rightarrow 0$ as $n \rightarrow \infty$, so the series converges uniformly.

Note that the c_{n} for a given f may be computed recursively from the values of f at the a_{i}, by the formula

$$
\begin{equation*}
c_{n}=f\left(a_{n}\right)-\sum_{i=0}^{n-1} c_{i}\binom{a_{n}}{i}_{\Lambda}, \tag{2}
\end{equation*}
$$

or directly (see [2, Theorem 6]) by the formula

$$
\begin{equation*}
c_{n}=\sum_{i=0}^{n}\left(\prod_{j \neq i} \frac{a_{n}-a_{j}}{a_{i}-a_{j}}\right) f\left(a_{i}\right) . \tag{3}
\end{equation*}
$$

We begin by proving Theorem 1 first for a special class of π-orderings. Given a π-ordering $\Lambda=\left\{a_{i}\right\}$ and a nonnegative integer n, we say that a_{n} is old $\left(\bmod \pi^{m}\right)$ if $a_{n} \equiv a_{j}\left(\bmod \pi^{m}\right)$ for some $j<n$; otherwise, we say a_{n} is new $\left(\bmod \pi^{m}\right)$. A π-ordering $\Lambda=\left\{a_{i}\right\}$ is proper if, for all k and m, a_{k} is chosen to be a new element $\left(\bmod \pi^{m}\right)$ only when it is not possible to choose a_{k} to be old. Thus, for example, the p-ordering $0,1, p, p^{2}+1,2 p$ is proper, whereas the p-ordering $0,1, p, 2 p, p^{2}+1$ is not.

If Λ is proper, we have the following weak analogue of Lucas's theorem for the generalized binomials $\binom{x}{n}_{A}$.

Lemma 1. Assume $\Lambda=\left\{a_{i}\right\}$ is proper and that a_{n} is new $\left(\bmod \pi^{m}\right)$. Let $x, y \in S$, and suppose $x \equiv y\left(\bmod \pi^{m}\right)$. Then

$$
\binom{x}{n}_{\Lambda} \equiv\binom{y}{n}_{\Lambda}(\bmod \pi) .
$$

Proof. If $x \not \equiv a_{i}\left(\bmod \pi^{m}\right)$ for all $i<n$, we have

$$
\binom{y}{n}_{\Lambda}=\binom{x}{n}_{\Lambda} \prod_{j=0}^{n-1} \frac{y-a_{j}}{x-a_{j}} \equiv\binom{x}{n}_{\Lambda}(\bmod \pi)
$$

since $y-a_{j}$ and $x-a_{j}$ have the same valuation and the same final nonzero π-adic digit.

On the other hand, suppose $x \equiv a_{i}\left(\bmod \pi^{m}\right)$ for some $i<n$. The fact that a new element a_{n} was chosen for the proper π-ordering Λ, instead of x, which would have been old modulo π^{m}, means that $\left(x-a_{0}\right) \cdots\left(x-a_{n-1}\right)$ has strictly higher valuation than $\left(a_{n}-a_{0}\right) \cdots\left(a_{n}-a_{n-1}\right)$. Hence we have

$$
\binom{x}{n}_{\Lambda} \equiv 0(\bmod \pi) .
$$

Applying the same argument with y in place of x, we find

$$
\binom{x}{n}_{\Lambda} \equiv\binom{y}{n}_{\Lambda} \equiv 0(\bmod \pi),
$$

and this completes the proof.
From Lemma 1 we obtain
Corollary 1. Assume the π-ordering Λ is proper, and let T be the set of n such that a_{n} is new $\left(\bmod \pi^{m}\right)$. If $h: S \rightarrow k$ is a function such that $h(x)=h(y)$ whenever $x \equiv y\left(\bmod \pi^{m}\right)$, then there exists a unique function $g: T \rightarrow k$ such that

$$
h(x) \equiv \sum_{n \in T} g(n)\binom{x}{n}_{\Lambda}(\bmod \pi) \quad \text { for all } x \in S
$$

Proof. There are $|k|^{|T|}$ functions of each kind, and each h is represented by at most one g, since g can be recovered from h using the formula

$$
\begin{equation*}
g(i)=h\left(a_{i}\right)-\sum_{\substack{n \in T \\ n<i}} g(n)\binom{a_{i}}{n}_{\Lambda} . \tag{4}
\end{equation*}
$$

Thus every h is represented by exactly one g.

We may now give a proof of Theorem 1 in the case when Λ is proper.
Proof of Theorem 1 for a proper π-ordering Λ. Since S and its image under the continuous map f are both compact, each is contained in $\pi^{m} R$ for some m, and a suitable rescaling allows us to assume that S and $f(S)$ are both contained in R. If f admits a representation as in (1), then, as noted before, the c_{n} may be recovered from the values of f at the a_{i} using (2) or (3). Hence the sequence $\left\{c_{n}\right\}$ is unique if it exists. (Note that for this part of the argument we did not need that Λ is proper or that $c_{n} \rightarrow 0$.)

To prove existence of the desired null sequence under the assumption that Λ is proper, it suffices to exhibit a sequence c_{n} with finitely many nonzero terms such that

$$
f(x) \equiv \sum_{n=0}^{\infty} c_{n}\binom{x}{n}_{\Lambda}(\bmod \pi)
$$

since we can then apply the same reasoning to $\left[f(x)-\sum c_{n}\binom{x}{n}_{\Lambda}\right] / \pi$, and so on.

Let h be the composite of f with the projection of R onto k. Since h is continuous, the preimage of each element of k is a closed-open subset of S. It follows that h satisfies the condition of Corollary 1 for some m, in which case setting $c_{n} \equiv g(n)(\bmod \pi)$ for $n \in T$ and $c_{n}=0$ otherwise furnishes the desired sequence.

We may now deduce Theorem 1 for arbitrary π-orderings using a change-of-basis argument. In fact, we prove something even stronger.

Theorem 2. Let $\left\{P_{i}\right\}_{i=0}^{\infty}$ be any R-basis of the $\operatorname{ring} \operatorname{Int}(S, R)$. Then for each continuous map $f: S \rightarrow K$, there exists a unique sequence $\left\{c_{n}\right\}$ in K with $c_{n} \rightarrow 0$ as $n \rightarrow \infty$ such that

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} c_{n} P_{n}(x) \tag{5}
\end{equation*}
$$

for all $x \in S$.
Note that the hypothesis of Theorem 2 is essentially the weakest possible, since the truth of the conclusion for given polynomials $\left\{P_{i}\right\}$ implies that they form (when appropriately scaled) an R-basis of $\operatorname{Int}(S, R)$. However, we must settle for a slightly weaker uniqueness statement in Theorem 2 than we had in Theorem 1; for as we shall see, if the polynomials P_{i} are not generalized binomial polynomials, and the condition $c_{n} \rightarrow 0$ is relaxed, then the representation (5) may not remain unique!

Proof (of Theorem 2). For Λ a proper π-ordering of S, we have already shown that there exists a unique sequence b_{m} such that

$$
\begin{equation*}
f(x)=\sum_{m=0}^{\infty} b_{m}\binom{x}{m}_{\Lambda} \tag{6}
\end{equation*}
$$

for all $x \in S$, and that $b_{m} \rightarrow 0$ as $n \rightarrow \infty$. Since both the P_{i} and the binomial polynomials form R-bases of $\operatorname{Int}(S, R)$, there exist transformations $T=\left(t_{m n}\right)$ and $U=\left(u_{m n}\right)$ over R such that

$$
\binom{x}{m}_{\Lambda}=\sum_{n=0}^{\infty} t_{m n} P_{n}(x) \quad \text { and } \quad P_{n}(x)=\sum_{m=0}^{\infty} u_{n m}\binom{x}{m}_{\Lambda}
$$

in particular, these summations each contain only finitely many nonzero terms. More precisely, there exist integers $N(m)$ and $M(n)$ such that $t_{m n}=$ 0 for all $n \geq N(m)$ and $u_{n m}=0$ for all $m \geq M(n)$.

Define c_{n} by the formula

$$
c_{n}=\sum_{m=0}^{\infty} b_{m} t_{m n}
$$

the series converges for every n since $t_{m n} \in R$ and $b_{m} \rightarrow 0$. Moreover, for any nonnegative integer i, there exists M such that π^{i} divides b_{m} for $m \geq M$, and there exists N such that $t_{1 n}=\cdots=t_{M n}=0$ for $n \geq N$. Hence π^{i} divides c_{n} for $n \geq N$, and so $c_{n} \rightarrow 0$.

To demonstrate that

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n} P_{n}(x)=f(x) \tag{7}
\end{equation*}
$$

it suffices to verify that the two sides of the equality agree modulo π^{i} for all nonnegative integers i. With notation as in the preceding paragraph, we have

$$
\begin{aligned}
f(x) & =\sum_{m=0}^{\infty} b_{m}\binom{x}{m}_{\Lambda} \equiv \sum_{m=0}^{M} b_{m} \sum_{n=0}^{\infty} t_{m n} P_{n}(x) \\
& =\sum_{m=0}^{M} \sum_{n=0}^{N} b_{m} t_{m n} P_{n}(x)\left(\bmod \pi^{i}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\sum_{n=0}^{\infty} c_{n} P_{n}(x) & \equiv \sum_{n=0}^{N} P_{n}(x) \sum_{m=0}^{\infty} b_{m} t_{m n} \\
& \equiv \sum_{n=0}^{N} \sum_{m=0}^{M} b_{m} t_{m n} P_{n}(x)\left(\bmod \pi^{i}\right)
\end{aligned}
$$

and the desired congruence follows.

To show uniqueness, suppose that in addition to (5) we have

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} c_{n}^{\prime} P_{n}(x) \tag{8}
\end{equation*}
$$

for some sequence $\left\{c_{n}^{\prime}\right\}$ with $c_{n}^{\prime} \rightarrow 0$. Define the sequence $\left\{b_{m}^{\prime}\right\}$ by

$$
b_{m}^{\prime}=\sum_{n=0}^{\infty} c_{n}^{\prime} u_{n m} .
$$

Then the same argument as before (with the transformation U in place of T) shows that the series

$$
\sum_{n=0}^{\infty} b_{n}^{\prime}\binom{x}{n}_{\Lambda}
$$

converges uniformly to $f(x)$ on S. By Theorem 1, it follows that $b_{n}=b_{n}^{\prime}$ for all n, and upon reapplying T, we obtain $c_{n}=c_{n}^{\prime}$ for all n. This completes the proof of Theorem 2.

As noted above, Theorem 2 includes the condition $c_{n} \rightarrow 0$ as a hypothesis rather than a conclusion. To illustrate why this occurs, we provide an example of a regular basis of $\operatorname{Int}(R, R)$ (an R-basis of $\operatorname{Int}(R, R)$ consisting of one polynomial of each degree) which admits a nontrivial representation of the identically zero function. In the case $R=\mathbb{F}_{q}[[t]]$, this resolves a question of Wagner [6, Section 4].

Let q be the cardinality of the residue field k, and choose a complete set of residues a_{0}, \ldots, a_{q-1} modulo π such that $a_{0}=0$. We construct a π-ordering $\Lambda=\left\{a_{i}\right\}$ by the following rule: if $\sum_{i} c_{i} q^{i}$ is the base q expansion of n, then

$$
a_{n}=\sum_{i} a_{c_{i}} \pi^{i} .
$$

For m a nonnegative integer, let

$$
Q_{m}(x)=\binom{x+a_{q^{m}}-1}{q^{2 m}-1}_{\Lambda},
$$

and define the regular basis $\left\{P_{n}(x)\right\}$ of $\operatorname{Int}(R, R)$ as follows:

$$
P_{n}(x)= \begin{cases}Q_{m}(x)-Q_{m-1}(x) & \text { if } n=q^{2 m}-1 \text { for some } m>0, \\ \binom{x}{n}_{\Lambda} & \text { otherwise } .\end{cases}
$$

Also, let $c_{n}=1$ if $n=q^{2 m}-1$ for some $m \geq 0$ and $c_{n}=0$ otherwise. We claim that the series $\sum_{n} c_{n} P_{n}(x)$ converges pointwise to 0 on R, even though the c_{n} are not all zero. Since

$$
\sum_{n=0}^{N} c_{n} P_{n}(x)=Q_{m}(x) \quad \text { for } q^{2 m}-1 \leq N<q^{2(m+1)}-1
$$

it is equivalent to show $Q_{m}(x)$ converges pointwise to 0 as $m \rightarrow \infty$.
We may assume $x \neq 0$, since $Q_{m}(0)=0$ for all $m>0$; in this case, $x \not \equiv 0$ $\left(\bmod \pi^{l}\right)$ for some l. Expanding the generalized binomial coefficient, we find

$$
Q_{m}(x)=\prod_{i=0}^{q^{2 m}-2} \frac{x+a_{q^{m}-1}-a_{i}}{a_{q^{2 m}-1}-a_{i}}
$$

Note that if i and j are distinct nonnegative integers and s is the smallest integer such that $i \not \equiv j\left(\bmod q^{s}\right)$, then $a_{i} \not \equiv a_{j}\left(\bmod \pi^{s}\right)$. Hence the denominator in the above product runs through each nonzero residue class modulo $\pi^{2 m}$ exactly once, while the numerator runs through each residue class once except that of $x+a_{q^{m}-1}-a_{q^{2 m}-1}$. For $m>l$, the latter fails to be divisible by π^{l}; it follows that for some π-adic integer r,

$$
Q_{m}(x)=\frac{\pi^{2 m} r}{x+a_{q^{m}-1}-a_{q^{2 m}-1}} \equiv 0\left(\bmod \pi^{2 m-l+1}\right)
$$

In particular, $Q_{m}(x) \rightarrow 0$ as $m \rightarrow \infty$, as desired.
We conclude by briefly stating the implications of Theorem 1 for K valued measures on S. Recall that a K-valued measure on S is a K-linear map μ from $C(S, K)$ to K, where $C(S, K)$ denotes the set of continuous functions from S to K. By convention, one writes $\mu(f)$ symbolically as $\int_{S} f d \mu$. With this notation, Theorem 1 immediately translates into the following characterization of measures on S.

Theorem 3. A K-valued measure μ on S is uniquely determined by the sequence $\mu_{k}=\int_{S}\binom{x}{k}_{\Lambda} d \mu$ of elements of K. Conversely, any bounded sequence $\left\{\mu_{k}\right\}$ in K determines a unique K-valued measure μ on S by the formula $\int_{S} f d \mu=\sum_{k=0}^{\infty} c_{k} \mu_{k}$, where $\left\{c_{k}\right\}$ is the sequence corresponding to f as in Theorem 1.

References

[1] Y. Amice, Interpolation p-adique, Bull. Soc. Math. France 92 (1964), 117-180.
[2] M. Bhargava, P-orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math. 490 (1997), 101-127.
[3] J. Dieudonné, Sur les fonctions continues p-adiques, Bull. Sci. Math. 68 (1944), 79-95.
[4] K. Mahler, An interpolation series for a continuous function of a p-adic variable, J. Reine Angew. Math. 199 (1958), 23-34.
[5] G. Pólya, Über ganzwertige ganze Funktionen, Rend. Circ. Mat. Palermo 40 (1915), 1-16.
[6] C. Wagner, Interpolation series for continuous functions on π-adic completions of GF (q, x), Acta Arith. 17 (1971), 389-406.

Department of Mathematics
Princeton University
Princeton, NJ 08544, U.S.A.
E-mail: bhargava@math.harvard.edu
kedlaya@math.mit.edu

Received on 15.8.1997
and in revised form on 4.1.1999

[^0]: 1991 Mathematics Subject Classification: 11S05, 11S80.

