
ACTA ARITHMETICA
XCI.3 (1999)

Continuous functions on compact subsets
of local fields

by

Manjul Bhargava and Kiran S. Kedlaya (Princeton, NJ)

A classical theorem of Mahler [4] states that every continuous function
f from the p-adic ring Zp to its quotient field Qp (or to any finite extension
of Qp) can be uniquely expressed in the form

f(x) =
∞∑
n=0

cn

(
x

n

)
,

where the sequence cn tends to 0 as n→∞. The purpose of this paper is to
extend Mahler’s theorem to continuous functions from any compact subset
S of a local field K to K. Here by a local field we mean the fraction field of
a complete discrete valuation ring R whose residue field k = R/πR is finite.

Our theorem implies, in particular, that every continuous function from
S to K can be uniformly approximated by polynomials. This generalization
of Weierstrass’s approximation theorem was first proved in the case K = Qp
by Dieudonné [3]. Mahler [4] made explicit Dieudonné’s result in the case
S = Zp by giving a canonical polynomial interpolation series for the contin-
uous functions from Zp to Qp. Amice [1] later extended Mahler’s theorem
to continuous functions on certain “very well-distributed” subsets S of a
local field K. The present work provides canonical polynomial interpolation
series for all S and K, and thus constitutes a best possible generalization of
Mahler’s result in this context.

The main ingredient in our work is a generalization of the binomial
polynomials

(
x
n

)
introduced by the first author [2]. Their construction is

as follows. Given a subset S ⊂ K, fix a π-ordering Λ of S, which is a
sequence a0, a1, . . . in which an ∈ S is chosen to minimize the valuation of
(an−a0) · · · (an−an−1). It is a fundamental lemma [2, Theorem 1] that the
generalized factorial

n!Λ = (an − a0) · · · (an − an−1)
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generates the same ideal for any choice of Λ. The nth generalized binomial
polynomial is then defined as

(
x

n

)

Λ

=
(x− a0) · · · (x− an−1)

n!Λ
;

by construction,
(
x
n

)
Λ

maps S into R for all n ≥ 0. The usual binomial
polynomials are of course recovered upon setting Λ to be the p-ordering
0, 1, 2, . . . of the ring R = Zp.

Mahler’s theorem implies that the ordinary binomial polynomials
{(

x
n

)}
form a Zp-basis for the ring Int(Zp,Zp) of polynomials over Qp mapping Zp
into Zp. This fundamental property of the usual binomial polynomials was
first pointed out (with Z in place of Zp) by Pólya [5]. On the other hand, in [2]
it was shown that, analogously, the generalized binomial polynomials

{(
x
n

)
Λ

}
form an R-basis for the ring Int(S,R) of polynomials over K mapping S into
R. These results are what led us to conjecture, and subsequently prove, our
extension of Mahler’s theorem.

Our main result is

Theorem 1. Given any continuous map f : S → K, there exists a unique
sequence {cn}∞n=0 in K such that

(1) f(x) =
∞∑
n=0

cn

(
x

n

)

Λ

for all x ∈ S. Moreover , cn → 0 as n → ∞, so the series converges uni-
formly.

Note that the cn for a given f may be computed recursively from the
values of f at the ai, by the formula

(2) cn = f(an)−
n−1∑

i=0

ci

(
an
i

)

Λ

,

or directly (see [2, Theorem 6]) by the formula

(3) cn =
n∑

i=0

(∏

j 6=i

an − aj
ai − aj

)
f(ai).

We begin by proving Theorem 1 first for a special class of π-orderings.
Given a π-ordering Λ = {ai} and a nonnegative integer n, we say that an
is old (modπm) if an ≡ aj (mod πm) for some j < n; otherwise, we say an
is new (mod πm). A π-ordering Λ = {ai} is proper if, for all k and m, ak is
chosen to be a new element (modπm) only when it is not possible to choose
ak to be old. Thus, for example, the p-ordering 0, 1, p, p2 + 1, 2p is proper,
whereas the p-ordering 0, 1, p, 2p, p2 + 1 is not.
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If Λ is proper, we have the following weak analogue of Lucas’s theorem
for the generalized binomials

(
x
n

)
Λ

.

Lemma 1. Assume Λ = {ai} is proper and that an is new (mod πm).
Let x, y ∈ S, and suppose x ≡ y (mod πm). Then

(
x

n

)

Λ

≡
(
y

n

)

Λ

(mod π).

P r o o f. If x 6≡ ai (mod πm) for all i < n, we have
(
y

n

)

Λ

=
(
x

n

)

Λ

n−1∏

j=0

y − aj
x− aj ≡

(
x

n

)

Λ

(mod π),

since y− aj and x− aj have the same valuation and the same final nonzero
π-adic digit.

On the other hand, suppose x ≡ ai (mod πm) for some i < n. The fact
that a new element an was chosen for the proper π-ordering Λ, instead of x,
which would have been old modulo πm, means that (x − a0) · · · (x − an−1)
has strictly higher valuation than (an − a0) · · · (an − an−1). Hence we have

(
x

n

)

Λ

≡ 0 (mod π).

Applying the same argument with y in place of x, we find
(
x

n

)

Λ

≡
(
y

n

)

Λ

≡ 0 (mod π),

and this completes the proof.

From Lemma 1 we obtain

Corollary 1. Assume the π-ordering Λ is proper , and let T be the set
of n such that an is new (mod πm). If h : S → k is a function such that
h(x) = h(y) whenever x ≡ y (mod πm), then there exists a unique function
g : T → k such that

h(x) ≡
∑

n∈T
g(n)

(
x

n

)

Λ

(mod π) for all x ∈ S.

P r o o f. There are |k||T | functions of each kind, and each h is represented
by at most one g, since g can be recovered from h using the formula

(4) g(i) = h(ai)−
∑

n∈T
n<i

g(n)
(
ai
n

)

Λ

.

Thus every h is represented by exactly one g.
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We may now give a proof of Theorem 1 in the case when Λ is proper.

Proof of Theorem 1 for a proper π-ordering Λ. Since S and its image
under the continuous map f are both compact, each is contained in πmR
for some m, and a suitable rescaling allows us to assume that S and f(S)
are both contained in R. If f admits a representation as in (1), then, as
noted before, the cn may be recovered from the values of f at the ai using
(2) or (3). Hence the sequence {cn} is unique if it exists. (Note that for this
part of the argument we did not need that Λ is proper or that cn → 0.)

To prove existence of the desired null sequence under the assumption
that Λ is proper, it suffices to exhibit a sequence cn with finitely many
nonzero terms such that

f(x) ≡
∞∑
n=0

cn

(
x

n

)

Λ

(mod π),

since we can then apply the same reasoning to
[
f(x) −∑ cn

(
x
n

)
Λ

]
/π, and

so on.
Let h be the composite of f with the projection of R onto k. Since h is

continuous, the preimage of each element of k is a closed-open subset of S.
It follows that h satisfies the condition of Corollary 1 for some m, in which
case setting cn ≡ g(n) (mod π) for n ∈ T and cn = 0 otherwise furnishes
the desired sequence.

We may now deduce Theorem 1 for arbitrary π-orderings using a change-
of-basis argument. In fact, we prove something even stronger.

Theorem 2. Let {Pi}∞i=0 be any R-basis of the ring Int(S,R). Then for
each continuous map f : S → K, there exists a unique sequence {cn} in K
with cn → 0 as n→∞ such that

(5) f(x) =
∞∑
n=0

cnPn(x)

for all x ∈ S.

Note that the hypothesis of Theorem 2 is essentially the weakest possible,
since the truth of the conclusion for given polynomials {Pi} implies that
they form (when appropriately scaled) an R-basis of Int(S,R). However, we
must settle for a slightly weaker uniqueness statement in Theorem 2 than
we had in Theorem 1; for as we shall see, if the polynomials Pi are not
generalized binomial polynomials, and the condition cn → 0 is relaxed, then
the representation (5) may not remain unique!

P r o o f (of Theorem 2). For Λ a proper π-ordering of S, we have already
shown that there exists a unique sequence bm such that
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(6) f(x) =
∞∑
m=0

bm

(
x

m

)

Λ

for all x ∈ S, and that bm → 0 as n → ∞. Since both the Pi and the
binomial polynomials form R-bases of Int(S,R), there exist transformations
T = (tmn) and U = (umn) over R such that

(
x

m

)

Λ

=
∞∑
n=0

tmnPn(x) and Pn(x) =
∞∑
m=0

unm

(
x

m

)

Λ

;

in particular, these summations each contain only finitely many nonzero
terms. More precisely, there exist integers N(m) and M(n) such that tmn =
0 for all n ≥ N(m) and unm = 0 for all m ≥M(n).

Define cn by the formula

cn =
∞∑
m=0

bmtmn;

the series converges for every n since tmn ∈ R and bm → 0. Moreover, for any
nonnegative integer i, there exists M such that πi divides bm for m ≥ M ,
and there exists N such that t1n = · · · = tMn = 0 for n ≥ N . Hence πi

divides cn for n ≥ N , and so cn → 0.
To demonstrate that

(7)
∞∑
n=0

cnPn(x) = f(x),

it suffices to verify that the two sides of the equality agree modulo πi for
all nonnegative integers i. With notation as in the preceding paragraph, we
have

f(x) =
∞∑
m=0

bm

(
x

m

)

Λ

≡
M∑
m=0

bm

∞∑
n=0

tmnPn(x)

=
M∑
m=0

N∑
n=0

bmtmnPn(x) (mod πi).

On the other hand,

∞∑
n=0

cnPn(x) ≡
N∑
n=0

Pn(x)
∞∑
m=0

bmtmn

≡
N∑
n=0

M∑
m=0

bmtmnPn(x) (mod πi),

and the desired congruence follows.
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To show uniqueness, suppose that in addition to (5) we have

(8) f(x) =
∞∑
n=0

c′nPn(x)

for some sequence {c′n} with c′n → 0. Define the sequence {b′m} by

b′m =
∞∑
n=0

c′nunm.

Then the same argument as before (with the transformation U in place of
T ) shows that the series

∞∑
n=0

b′n

(
x

n

)

Λ

converges uniformly to f(x) on S. By Theorem 1, it follows that bn = b′n for
all n, and upon reapplying T , we obtain cn = c′n for all n. This completes
the proof of Theorem 2.

As noted above, Theorem 2 includes the condition cn → 0 as a hypoth-
esis rather than a conclusion. To illustrate why this occurs, we provide an
example of a regular basis of Int(R,R) (an R-basis of Int(R,R) consisting of
one polynomial of each degree) which admits a nontrivial representation of
the identically zero function. In the case R = Fq[[t]], this resolves a question
of Wagner [6, Section 4].

Let q be the cardinality of the residue field k, and choose a complete
set of residues a0, . . . , aq−1 modulo π such that a0 = 0. We construct a
π-ordering Λ = {ai} by the following rule: if

∑
i ciq

i is the base q expansion
of n, then

an =
∑

i

aciπ
i.

For m a nonnegative integer, let

Qm(x) =
(
x+ aqm−1

q2m − 1

)

Λ

,

and define the regular basis {Pn(x)} of Int(R,R) as follows:

Pn(x) =
{
Qm(x)−Qm−1(x) if n = q2m − 1 for some m > 0,(
x
n

)
Λ

otherwise.

Also, let cn = 1 if n = q2m − 1 for some m ≥ 0 and cn = 0 otherwise.
We claim that the series

∑
n cnPn(x) converges pointwise to 0 on R, even

though the cn are not all zero. Since
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N∑
n=0

cnPn(x) = Qm(x) for q2m − 1 ≤ N < q2(m+1) − 1,

it is equivalent to show Qm(x) converges pointwise to 0 as m→∞.
We may assume x 6= 0, since Qm(0) = 0 for all m > 0; in this case, x 6≡ 0

(mod πl) for some l. Expanding the generalized binomial coefficient, we find

Qm(x) =
q2m−2∏

i=0

x+ aqm−1 − ai
aq2m−1 − ai

.

Note that if i and j are distinct nonnegative integers and s is the small-
est integer such that i 6≡ j (mod qs), then ai 6≡ aj (mod πs). Hence the
denominator in the above product runs through each nonzero residue class
modulo π2m exactly once, while the numerator runs through each residue
class once except that of x+ aqm−1 − aq2m−1. For m > l, the latter fails to
be divisible by πl; it follows that for some π-adic integer r,

Qm(x) =
π2mr

x+ aqm−1 − aq2m−1
≡ 0 (mod π2m−l+1).

In particular, Qm(x)→ 0 as m→∞, as desired.

We conclude by briefly stating the implications of Theorem 1 for K-
valued measures on S. Recall that a K-valued measure on S is a K-linear
map µ from C(S,K) toK, where C(S,K) denotes the set of continuous func-
tions from S to K. By convention, one writes µ(f) symbolically as

∫
S
f dµ.

With this notation, Theorem 1 immediately translates into the following
characterization of measures on S.

Theorem 3. A K-valued measure µ on S is uniquely determined by
the sequence µk =

∫
S

(
x
k

)
Λ
dµ of elements of K. Conversely , any bounded

sequence {µk} in K determines a unique K-valued measure µ on S by the
formula

∫
S
f dµ =

∑∞
k=0 ckµk, where {ck} is the sequence corresponding to

f as in Theorem 1.
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