
ACTA ARITHMETICA
XCI.3 (1999)

On the distribution of the nontrivial
zeros of quadratic L-functions close to the real axis
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1. Introduction. The object of this paper is to investigate the distri-
bution of the nontrivial zeros, near the real axis, of quadratic L-functions.

Interest in the zeros of Dirichlet L-functions close to the real axis is well
documented. For example, see [1]–[3], [7], [9]–[11]. For instance, if χ is an
odd quadratic character, then the zeros of L(s, χ) close to s = 1/2 influence
the size of the class number of the complex quadratic number field asso-
ciated with χ. Also, if χ is the nonprincipal character modulo 4, then the
location of the “first” zero of L(s, χ) in the critical strip has a bearing on
how the primes are distributed in the residue classes 1 and 3 mod 4, respec-
tively, and in particular, on a phenomenon first observed by Chebyshev [4]
concerning the discrepancies in the distribution of primes in different residue
classes. Roughly speaking, there are “more” primes congruent to 3 mod 4
than congruent to 1 mod 4.

In this paper, let K(s) be a complex function such that |K(1/2 + it)|
is a rapidly decreasing function of t > 0. Moreover, let a(x) be its Mellin
transform as defined in the next section. Define

FK(α,D) =
(

1
2K
(

1
2

)
D
)−1∑

d6=0

e−πd
2/D2 ∑

%(d)

K(%)Diαγ ,

where % ranges over the nontrivial zeros of L(s, χd), the Dirichlet L-function
associated with the Kronecker symbol χd = (d/·). Under the Generalized
Riemann Hypothesis, we show that

FK(α,D)

=

{
−1 +

(
1
2K
(

1
2

))−1
D−α/2a(D−α) logD + o(1) if |α| < 1,

0 + o(1) if 1 < |α| < 2

as D →∞.
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Notice that this so-called “form factor” correlates the distance of the
nontrivial zeros to the real axis rather than correlating the distance between
pairs of such zeros, as first investigated by H. L. Montgomery [6] for the zeros
of the Riemann zeta function.

This result is a major improvement over that in [9] where we obtained
information for |α| < 2/3 only. Our new result shows a discontinuity in FK
at α = 1. We shall see that this discontinuity is related to the phenomenon
of Chebyshev mentioned above but in a more general setting.

We then give two corollaries to the main result. One of the corollaries
implies that for quadratic L-functions, the nontrivial zeros near the real
axis are “sparser” than the expected number of such zeros. This is in direct
contrast to the zero-distribution when all Dirichlet L-functions are taken
into account. The other corollary implies that not more than 6.25% of all
integers d have the property that 1/2 is a zero of L(s, χd). As far as we
know, no quadratic L-function has been found with a zero at 1/2. If any
exist, then more than likely the density of such d would be 0.

2. Preliminaries. In this section we prove a number of lemmas which
will be needed in the proof of our main theorem. We assume that K(s) is
an analytic function in the strip −1 < <s < 2 such that

a(x) =
c+∞i\
c−∞i

K(s)x−s ds

is absolutely convergent for −1 < c < 2 and for all x > 0, K(1/2 + it) =
K(1/2 − it), and a(x) is continuously differentiable, of bounded variation,
real-valued, and of compact support on the interval (0,∞). More specifically,
we assume a(x) = 0 outside [A,B] for some 0 < A < B < ∞. Finally, we
recall the identity

K(s) =
∞\
0

a(t)ts
dt

t
.

Lemma 1.
∑
d e
−πd2/y2

= y + o(1) as y → ∞. (Here
∑
d denotes the

sum over all nonzero integers d.)

P r o o f. This is an immediate result of the transformation formula for
theta functions (see [5]).

Lemma 2.
∑
d e
−πd2/y2

log |d| = y log y +O(y) as y →∞.
P r o o f. First, we write
∑

d

e−πd
2/y2

log |d| = log y
∑

d

e−πd
2/y2

+
∑

d

e−πd
2/y2

log |d/y|.
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By Lemma 1,

log y
∑

d

e−πd
2/y2

= y log y + o(log y)

as y →∞. On the other hand, by Riemann–Stieltjes integration,

∑

d

e−πd
2/y2

log |d/y| = 2
∞\
1−
e−πu

2/y2
log(u/y) d[u]

= 2
∞\
1

e−πu
2/y2

log(u/y) du

− 2
∞\
1−
e−πu

2/y2
log(u/y) d{u}.

In the first integral, let v = u/y; then

2
∞\
1

e−πu
2/y2

log(u/y) du = 2y
∞\
y−1

e−πv
2

log v dv

≤ 2y
∞\
0

e−πv
2

log v dv � y.

In the second integral we integrate by parts:

−2
∞\
1−
e−πu

2/y2
log(u/y) d{u}

= [−2{u}e−πu2/y2
log(u/y)]∞1− + 2

∞\
1−
{u} d(e−πu

2/y2
log(u/y))

= 2e−πy
−2

log(1/y) + 2
∞\
1−
{u}e−πu2/y2 du

u

− 4π
y2

∞\
1−
{u}ue−πu2/y2

log(u/y) du

= 2
∞\
y−1

{vy}e−πv2 dv

v
− 4π

∞\
y−1

{vy}ve−πv2
log v dv +O(log y)

� log y.

This establishes the lemma.

Lemma 3.
∑

d=¤
e−πd

2/y2
= Iy1/2 − 1/2 +O(y−1/2)
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as y → ∞, where I = (1/4)π−1/4Γ (1/4), and
∑
d=¤ denotes the sum over

those d which are square integers.

P r o o f. Using Euler–Maclaurin summation, we have

∑

d=¤
e−πd

2/y2
=
∞\
0

e−πu
4/y2

du− [B1(u)e−πu
4/y2

]∞0

−
[

2π
y2 B2(u)u3e−πu

4/y2
]∞

0

−
∞\
0

B2(u)
(

8π2u6

y4 − 6πu2

y2

)
e−πu

4/y2
du,

where B1(u) and B2(u) are the first and second periodic Bernoulli functions,
i.e. B1(u) = {u}− 1/2 and B2(u) = {u}2−{u}+ 1/6. We evaluate the first
integral by making the substitution t = πu4/y2, obtaining

∞\
0

e−πu
4/y2

du =
1
4
π−1/4y1/2

∞\
0

e−tt−3/4 dt =
1
4
π−1/4Γ (1/4)y1/2.

Next notice that

−[B1(u)e−πu
4/y2

]∞0 = −1/2,
[

2π
y2 B2(u)u3e−πu

4/y2
]∞

0
= 0.

Finally in the second integral we let v = u4/y2 obtaining
∞\
0

B2(u)
(

8π2u6

y4 − 6πu2

y2

)
e−πu

4/y2
du

=
∞\
0

B2(y1/2v1/4)
(

8π2(y2v)3/2

y4 − 6π(y2v)1/2

y2

)
e−πv

1
4
y1/2v−3/4 dv

= O(y−1/2).

This establishes the lemma.

Lemma 4. As x→∞,
∑
p

a(p2/x) log p = 1
2K
(

1
2

)
x1/2 +

{
o(x1/2) unconditionally ,
O(x1/4 log2 x) assuming R.H.

Here
∑
p denotes the sum over primes and R.H. denotes the Riemann Hy-

pothesis.

P r o o f. Notice that
∑
p

a(p2/x) log p =
∞\
0

a(u2/x) dθ(u),
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where θ(u) =
∑
p≤u log p. We write θ(u) = u+ E(u). Then

∞\
0

a(u2/x) dθ(u) =
∞\
0

a(u2/x) du+
∞\
0

a(u2/x) dE(u).

By letting v = u2/x, we get
∞\
0

a(u2/x) du = 1
2x

1/2
∞\
0

a(v)v−1/2 dv = 1
2K
(

1
2

)
x1/2.

On the other hand, recalling that a(x) has compact support in (0,∞), we
get

∞\
0

a(u2/x) dE(u) = [E(u)a(u2/x)]∞0 −
∞\
0

E(u) da(u2/x)

= − 2
x

∞\
0

E(u)a′(u2/x)u du = −
∞\
0

E(
√
xv)a′(v) dv.

By the Prime Number Theorem (P.N.T.) we have E(u) = o(u), whence
E(
√
xv) = o(

√
xv). Thus,

∞\
0

E(
√
xv)a′(v) dv = o

(
x1/2

∞\
0

a′(v)v1/2 dv
)

= o(x1/2).

However, if we assume the Riemann Hypothesis, then E(u) � u1/2 log2 u,
in which case

∞\
0

E(
√
xv)a′(v) dv � x1/4

∞\
0

v1/4 log2(xv)a′(v) dv � x1/4 log2 x.

Thus the lemma is established.

Lemma 5.
∑
p

a(p/x) log p = K(1)x+
{
o(x) unconditionally ,
O(x1/2 log2 x) assuming R.H.

as x→∞.
P r o o f. We have

∑
p

a(p/x) log p =
∞\
0

a(u/x) dθ(u)

=
∞\
0

a(u/x) du+
∞\
0

a(u/x) dE(u).

On one hand,
∞\
0

a(u/x) du = x

∞\
0

a(v) dv = K(1)x.



214 A. E. Özl ük and C. Snyder

On the other hand,
∞\
0

a(u/x) dE(u) = [a(u/x)E(u)]∞0 −
∞\
0

E(u) da(u/x)

= − 1
x

∞\
0

E(u)a′(u/x) du

= −
∞\
0

E(xv)a′(v) dv.

Now, by P.N.T.,
∞\
0

E(xv)a′(v) dv = o
(
x

∞\
0

va′(v) dv
)

= o(x),

whereas, assuming R.H.,
∞\
0

E(xv)a′(v) dv � x1/2
∞\
0

v1/2 log2(xv)a′(v) dv � x1/2 log2 x.

This establishes the lemma.

Lemma 6. As x→∞,
∑
p

a

(
p

x

)
log p√
p

= K
(

1
2

)
x1/2 +

{
o(x1/2) unconditionally ,
O(log2 x) assuming R.H.

P r o o f. First notice that
∑
p

a

(
p

x

)
log p√
p

=
∞\
0

a

(
u

x

)
1√
u
dθ(u)

=
∞\
0

a

(
u

x

)
1√
u
du+

∞\
0

a

(
u

x

)
1√
u
dE(u).

On one hand,
∞\
0

a

(
u

x

)
1√
u
du = x1/2

∞\
0

a(v)
1√
v
dv = K

(
1
2

)
x1/2.

On the other hand,
∞\
0

a

(
u

x

)
1√
u
dE(u) = −

∞\
0

E(u) d
(
a

(
u

x

)
u−1/2

)

=
1
2

∞\
0

E(u)a
(
u

x

)
u−3/2 du− 1

x

∞\
0

E(u)a′
(
u

x

)
u−1/2 du
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=
1
2
x−1/2

∞\
0

E(xv)a(v)v−3/2 dv − x−1/2
∞\
0

E(xv)a′(v)v−1/2 dv

= o(x1/2) unconditionally, and
� log2 x assuming R.H.

Thus the lemma is proved.

Lemma 7. As x→∞,

∑
p

a

(
p

x

)
log p
p

= K(0) +
{
o(1) unconditionally ,
O(x−1/2 log2 x) assuming R.H.

P r o o f. First notice that

∑
p

a

(
p

x

)
log p
p

=
∞\
0

a

(
u

x

)
1
u
dθ(u)

=
∞\
0

a

(
u

x

)
1
u
du+

∞\
0

a

(
u

x

)
1
u
dE(u).

Now,
∞\
0

a

(
u

x

)
1
u
du =

∞\
0

a(v)
dv

v
= K(0).

Also,

∞\
0

a

(
u

x

)
1
u
dE(u) = −

∞\
0

E(u) d
(
a

(
u

x

)
u−1

)

=
∞\
0

E(u)a
(
u

x

)
u−2 du− 1

x

∞\
0

E(u)a′
(
u

x

)
u−1 du

=
1
x

∞\
0

E(xv)a(v)v−2 dv − 1
x

∞\
0

E(xv)a′(v)v−1 dv

= o(1) unconditionally, and
= O(x−1/2 log2 x) under R.H.

This establishes the lemma.

Lemma 8. As x→∞,

∑
p

a

(
p2

x

)
log p
p

= 1
2K(0) +

{
o(1) unconditionally ,
O(x−1/4 log2 x) assuming R.H.
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P r o o f. Notice that

∑
p

a

(
p2

x

)
log p
p

=
∞\
0

a

(
u2

x

)
1
u
dθ(u)

=
∞\
0

a

(
u2

x

)
1
u
du+

∞\
0

a

(
u2

x

)
1
u
dE(u).

But then
∞\
0

a

(
u2

x

)
1
u
du =

1
2

∞\
0

a(v)
dv

v
=

1
2
K(0).

On the other hand,

∞\
0

a

(
u2

x

)
1
u
dE(u) = −

∞\
0

E(u) d
(
a

(
u2

x

)
u−1

)

=
∞\
0

E(u)a
(
u2

x

)
u−2 du− 2

x

∞\
0

E(u)a′
(
u2

x

)
du

=
1
2
x−1/2

∞\
0

E(
√
xv)a(v)v−3/2 dv

− x−1/2
∞\
0

E(
√
xv)a′(v)v−1/2 dv

= o(1) unconditionally, and
� x−1/4 log2 x assuming R.H.

Thus the lemma follows.

Lemma 9. As x→∞,
∑
p

a(p/x)p1/2 log2 p� x3/2 log x.

P r o o f. We have

∑
p

a(p/x)p1/2 log2 p =
∞\
0

a(u/x)u1/2 log(u) dθ(u)

=
∞\
0

a(u/x)u1/2 log(u) du

+
∞\
0

a(u/x)u1/2 log(u) dE(u).
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On one hand,
∞\
0

a(u/x)u1/2 log(u) du = x3/2
∞\
0

a(v)v1/2 log(xv) dv � x3/2 log x.

On the other hand,
∞\
0

a(u/x)u1/2 log(u) dE(u) = −
∞\
0

E(u) d(a(u/x)u1/2 log u)

= − 1
x

∞\
0

E(u)a′(u/x)u1/2 log(u) du

− 1
2

∞\
0

E(u)a(u/x)u−1/2 log(u) du

−
∞\
0

E(u)a(u/x)u−1/2 du

= − x1/2
∞\
0

E(xv)a′(v)v1/2 log(xv) dv

− 1
2
x1/2

∞\
0

E(xv)a(v)v−1/2 log(xv) dv

− x1/2
∞\
0

E(xv)a(v)v−1/2 dv

� x3/2 log x.

This establishes the lemma.

3. The main theorem. Let x and D be positive real numbers. We
are interested in the distribution of the nontrivial zeros, % = β + γi with
γ small, of the L-series, L(s, χd), where χd denotes the Kronecker symbol
(d/·). More specifically, we consider the expression

∑

d

e−πd
2/D2 ∑

%(d)

K(%)x%.

The inner sum is over all the nontrivial zeros of L(s, χd) and the other sum
is over all nonzero integers. In essence we are averaging

∑
%(d)K(%)x% over

those d which are in absolute value ≤ D. For technical reasons we use the
weighting

∑
d e
−πd2/D2

instead of
∑
|d|≤D, which simplifies the calculations

at one point in the proof of the main theorem below where the Poisson
summation formula is applied.
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Theorem. If x = o(D), then as x→∞,
∑

d

e−πd
2/D2 ∑

%(d)

K(%)x%

= − 1
2K
(

1
2

)
Dx1/2 + IK(1)xD1/2 + a(1/x)D logD

+ o(Dx1/2) +O(min(xD,D logD log x)) +O(x3/2 log x).

Assume the Generalized Riemann Hypothesis (G.R.H.). Then as x,D →∞,
∑

d

e−πd
2/D2 ∑

%(d)

K(%)x%

=





− 1
2K
(

1
2

)
Dx1/2 + IK(1)xD1/2 + a(1/x)D logD

+O(Dx1/3 log x) +O(min(xD,D logD log x))
+O(x3/2 log x) if x = o(D),

O(x log2 x) +O(Dx1/3 log2 x) +O(D3/2) if D = o(x).

The statements are also true for x = 1, provided we replace O(min(xD,
D logD log x)) by O(D).

In all the statements the implied constants depend only on K(s).

P r o o f. We use the explicit formula

∑

%(d)

K(%)x% = K(1)E(χd)x−
∞∑
n=1

a(n/x)Λ(n)(d/n)

+ a(1/x) log(|d|/π) +O(min(x, log |d| log x)).

See, for example, [8]. Here E(χ) = 1 or 0 according as χ is principal or not.
Then ∑

d

e−πd
2/D2 ∑

%(d)

K(%)x% = A+B + C +O,

where

A = K(1)x
∑

d

E(χd)e−πd
2/D2

,

B = −
∞∑
n=1

a(n/x)Λ(n)
∑

d

e−πd
2/D2

(d/n),

C = a(1/x)
∑

d

e−πd
2/D2

log(|d|/π),

O = O
(

min
(
x
∑

d

e−πd
2/D2

, log x
∑

d

e−πd
2/D2

log |d|
))
.

By Lemmas 1 and 2, O = O(min(xD,D logD log x)) as D → ∞. By
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Lemma 3,

A = K(1)x
∑

d=¤
e−πd

2/D2
= IK(1)xD1/2 − 1

2K(1)x+O(xD−1/2),

as D →∞. By Lemma 2,

C = a(1/x)D logD +O(D),

as D →∞.
Now consider B. We decompose B as B = B1 +B2 +B3 +B4 where

B1 = −
∑
p

a(p/x) log p
∑

d

e−πd
2/D2

(d/p),

B2 = −
∑
p

a(p2/x) log p
∑

d

e−πd
2/D2

,

B3 =
∑
p

a(p2/x) log p
∑

d, p|d
e−πd

2/D2
,

B4 = −
∑

pm,m≥3

a(pm/x) log p
∑

d

e−πd
2/D2

(d/pm).

Since a(pm/x) = 0 unless pm/x ∈ [A,B], and by Lemma 1, we see

B4 �
∑

pm,m≥3

|a(pm/x)| log p
∑

d

e−πd
2/D2

� D
∑

pm,m≥3

|a(pm/x)| log p� Dx1/3 log x.

Next, notice that

B3 =
∑
p

a(p2/x) log p
∑
m

e−πm
2p2/D2

=
∑
p

a(p2/x) log p(D/p+ o(1))

= O(D) +O(x1/2)

by Lemmas 1, 4, and 8.
By Lemmas 1 and 4,

B2 =
(− 1

2K
(

1
2

)
x1/2 +O(x1/4 log2 x)

)
(D + o(1))

= − 1
2K
(

1
2

)
Dx1/2 +O(x1/2) +O(Dx1/4 log2 x)

assuming R.H., while

B2 =
(− 1

2K
(

1
2

)
x1/2 + o(x1/2)

)
(D + o(1))

= − 1
2K
(

1
2

)
Dx1/2 +O(x1/2) + o(Dx1/2)

unconditionally.
Finally we consider B1. We consider two cases.
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Case 1: x = o(D). We use the Pólya–Vinogradov bound on character
sums as follows:

∑

d

e−πd
2/D2

(d/p)�
∣∣∣
∞\
0

e−πu
2/D2

d
(∑

d≤u
(d/p)

)∣∣∣

=
∣∣∣
∞\
0

∑

d≤u
(d/p)d(e−πu

2/D2
)
∣∣∣

� D−2p1/2 log p
∞\
0

ue−πu
2/D2

du

= p1/2 log p
∞\
0

ve−πv
2
dv � p1/2 log p.

But then by Lemma 9,

B1 �
∑
p

a(p/x)p1/2 log2 p� x3/2 log x.

Case 2: D = o(x). In this case we assume G.R.H. By the transformation
formula for theta functions (see e.g. [5]),

B1 = −
∑
p

a

(
p

x

)
log p

D√
p

∑
m

(
m

p

)
e−πm

2D2/p2
.

We now write B1 = B11 +B12 +B13, where

B11 = −D
∑
p

a

(
p

x

)
log p√
p

∑

m=¤
e−πm

2D2/p2
,

B12 = D
∑
p

a

(
p

x

)
log p√
p

∑

m=¤
p|m

e−πm
2D2/p2

,

B13 = −D
∑
p

a

(
p

x

)
log p√
p

∑

m 6=¤

(
m

p

)
e−πm

2D2/p2
.

By Lemmas 3, 5, 6, and 7 (and assuming R.H.),

B11 = −D
∑
p

a

(
p

x

)
log p√
p

(√
p

D
I − 1

2
+O(

√
D/p)

)

= − ID1/2
∑
p

a

(
p

x

)
log p+

1
2
D
∑
p

a

(
p

x

)
log p√
p

+O

(
D3/2

∑
p

a

(
p

x

)
log p
p

)
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= − IK(1)D1/2x+ 1
2K
(

1
2

)
Dx1/2 +O(D1/2x1/2 log2 x)

+O(D log2 x) +O(D3/2).

Next, we have

B12 = D
∑
p

a

(
p

x

)
log p√
p

∞∑
m=1

e−πm
4p2D2

�
∣∣∣∣D
∑
p

a

(
p

x

)
log p√
p
· 1√

pD

∣∣∣∣� D1/2.

Finally, we consider B13. Since a(u) = 0 if u > B, we see

B13 � D
∑

m 6=¤
e−πm

2D2/(B2x2)

∣∣∣∣
∑
p

a

(
p

x

)
log p√
p

(
m

p

)∣∣∣∣.

We claim that, under G.R.H.,
∑
p

a

(
p

x

)
log p√
p

(
m

p

)
� log2mx

for m� x. For,

∑
p

a

(
p

x

)
log p√
p

(
m

p

)
=
∞\
0

a

(
u

x

)
1√
u
d

(∑

p≤u

(
m

p

)
log p

)

= −
∞\
0

∑

p≤u
(m/p) log p d(a(u/x)u−1/2)

=
1
2

∞\
0

∑

p≤u
(m/p) log p a(u/x)u−3/2 du

− 1
x

∞\
0

∑

p≤u
(m/p) log p a′(u/x)u−1/2 du

=
1
2
x−1/2

∞\
0

∑

p≤xv
(m/p) log p a(v)v−3/2 dv

− x−1/2
∞\
0

∑

p≤xv
(m/p) log p a′(v)v−1/2 dv

� log2mx,

since under G.R.H. ∑

p≤x
(m/p) log p� x1/2 log2mx
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for m� x, as readily follows as in [5]. But then

B13 � D
∑
m

e−πm
2D2/(B2x2) log2mx� x log2(x2/D).

This proves the main statements of the Theorem. The case where x = 1
follows immediately from the identity

∑

%(d)

K(%) = a(1) log |d|+O(1) as |d| → ∞.

The Theorem is now established.

We now set x = Dα and define

FK(α,D) = D−1
∑

d6=0

e−πd
2/D2( 1

2K
(

1
2

))−1∑
%

K(%)Diαγ .

Then as an immediate corollary to the Theorem, we have

Corollary 1. Assume G.R.H. Then as D →∞,

FK(α,D)

=

{
−1 +

(
1
2K
(

1
2

))−1
D−α/2a(D−α) logD + o(1) if |α| < 1,

0 + o(1) if 1 < |α| < 2.

The implied constants depend only on the kernel K.

Notice that we obtained information about FK for |α| < 2 only, even
assuming G.R.H., because of our very rough estimate on the sum B3 in the
proof of the Theorem. However, we would expect that FK(α,D) = o(1) for
all |α| > 1.

The Theorem remains valid if K(s) is replaced by the usual weighting
K(s) = 1/s, in which case a(x) = ξ[0,1](x), the characteristic function of
the unit interval. The only changes in the proof of the Theorem occur in
the error estimates in Lemmas 7 and 8, which do not affect the results in
the statement of the Theorem. If we assume G.R.H. and divide by x1/2, the
Theorem then takes the following form:
∑

d

e−πd
2/D2 ∑

%(d)

xiγ

%

=




−D + Ix1/2D1/2 + x−1/2D logD +O(x log2 x)
+O(Dx−1/6 log x) +O(min(x1/2D,x−1/2D logD log x)) if x = o(D),
O(x1/2 log2 x) +O(Dx−1/6 log x) +O(D3/2x−1/2) if D = o(x).

Since
∑
d exp(−πd2/D2) is asymptotic to D, we see, roughly speaking, that

on average (over d),
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∑

%(d)

xiγ

%
=





log d+ o(log d) if x = 1 as d→∞,
−1 + o(1) if x = o(d) as x→∞,
0 + o(1) if d = o(x), x = o(d2) as x→∞.

By examining the proof of the Theorem we see that

D−1x−1/2
∑

d 6=¤
e−πd

2/D2 ∑

p2≤x
log p+D−1x−1/2

∑

d6=¤
e−πd

2/D2 ∑

p≤x
(d/p) log p

=
{

1 + o(1) if x = o(D),
0 + o(1) if D = o(x), x = o(D2),

as x→∞. But

D−1x−1/2
∑

d 6=¤
e−πd

2/D2 ∑

p2≤x
log p = 1 + o(1)

as D,x→∞. Thus by our Theorem,

D−1x−1/2
∑

d 6=¤
e−πd

2/D2 ∑

p≤x
(d/p) log p

=
{

0 + o(1) if x = o(D),
−1 + o(1) if D = o(x), x = o(D2),

as x → ∞. This shows that, roughly speaking, on the average over d 6= ¤,
there is a preponderance of primes ≤ x which are quadratic nonresidues
mod d for x between d and d2 (probably all x = dα, α ≥ 2 fixed, based on
our predicted behavior of FK(α) for |α| > 2); whereas for x less than d the
residues and nonresidues mod d are more or less evenly distributed.

4. Applications. We now investigate the distribution of the nontrivial
zeros of L(s, χd) which are close to the real axis.

Corollary 2. Suppose r(α) is an even function defined on (−∞,∞)
such that its Fourier transform,

r̂(α) =
∞\
−∞

r(u)e−2πiαu du,

exists and has support in [−2, 2] and that
T∞
−∞ αr(α) dα converges. Then

under G.R.H., and as D →∞,

D−1
∑

d

e−πd
2/D2( 1

2K
(

1
2

))−1∑

%(d)

K(%) r
(
γ logD

2π

)

= 2
∞\
−∞

(
1− sin 2πα

2πα

)
r(α) dα+ o(1),

where the implied constant depends only on the kernel K.
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P r o o f. By Corollary 1 and since r̂(α) is supported in [−2, 2],
∞\
−∞

FK(α,D)r̂(α) dα

=
∞\
−∞

(− ξ[−1,1](α) +
(

1
2K
(

1
2

))−1
D−α/2a(D−α) logD

)
r̂(α) dα+ o(1),

where ξ[−1,1] is the characteristic function of [−1, 1]. But

∞\
−∞

ξ[−1,1](α)r̂(α) dα =
∞\
−∞

ξ̂[−1,1](α)r(α) dα = 2
∞\
−∞

sin 2πα
2πα

r(α) dα.

On the other hand,
∞\
−∞

D−α/2a(D−α)r̂(α) dα =
∞\
−∞

(D−α/2a(D−α))∧r(α) dα.

But

(D−α/2a(D−α))∧ =
∞\
−∞

D−β/2a(D−β)e−2πiαβ dβ.

By a change of variable t = D−β , this last integral equals

1
logD

∞\
0

a(t)t1/2+2πiα/logD dt

t

=
1

logD

∞\
0

a(t)t1/2
dt

t
+

1
logD

∞\
0

a(t)t1/2(t2πiα/logD − 1)
dt

t
.

Notice that

t2πiα/logD − 1 = exp
(

2πi
log t
logD

α

)
− 1

= 2πiα
log t
logD

exp
(

2πi
log t
logD

θα

)

for some θα between 0 and α. Therefore

t2πiα/logD − 1� log t
logD

α,

so that

1
logD

∞\
0

a(t)t1/2(t2πiα/logD − 1)
dt

t
� α

log2D

where the implied constant is independent of α and D. Therefore,
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∞\
−∞

(D−α/2a(D−α))∧r(α) dα

=
1

logD
K
(

1
2

) ∞\
−∞

r(α) dα+O

(
1

log2D

∞\
−∞

αr(α) dα
)

=
1

logD
K
(

1
2

) ∞\
−∞

r(α) dα+O

(
1

log2D

)
.

Thus,
∞\
−∞

(− ξ[−1,1](α) +
(

1
2K
(

1
2

))−1
D−α/2a(D−α) logD

)
r̂(α) dα

= 2
∞\
−∞

(
1− sin 2πα

2πα

)
r(α) dα+O

(
1

logD

)
.

Consequently,
∞\
−∞

FK(α,D)r̂(α) dα = 2
∞\
−∞

(
1− sin 2πα

2πα

)
r(α) dα+ o(1).

On the other hand,
∞\
−∞

FK(α,D)r̂(α) dα

=
(

1
2K
(

1
2

)
D
)−1∑

d

e−πd
2/D2 ∑

%(d)

K(%)
∞\
−∞

eiαγ logD r̂(α) dα

=
(

1
2K
(

1
2

)
D
)−1∑

d

e−πd
2/D2 ∑

%(d)

K(%) r
(
γ logD

2π

)
,

since ̂̂r(α) = r(−α) = r(α). This establishes the corollary.

If we had considered the nontrivial zeros of all Dirichlet L-functions,
then (1 − sin 2πα)/(2πα) in the corollary would have been replaced by 1.
Thus for quadratic L-functions, the nontrivial zeros near the real axis are
sparser than on the average so that in some sense they are “being repelled”
from the real axis.

The next application gives an upper bound on the number of d’s for
which L(1/2, χd) = 0.

Corollary 3. Suppose 1/2 is a “zero” of L(s, χd) of multiplicity md

≥ 0. Assuming G.R.H.,
∑

d

e−πd
2/D2

md ≤ 1
8
D +O

(
D

logD

)
as D →∞.
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P r o o f. Choose a kernel K with <(K(1/2 + it)) ≥ 0. Let λ ∈ (1, 2]
and r(u) = (sinπλu/(πλu))2. A direct computation shows that r̂(α) =
λ−2 max(λ− |α|, 0). From the proof of Corollary 2,

(
1
2K
(

1
2

)
D
)−1∑

d

e−πd
2/D2 ∑

%(d)

K(%) r
(
γ logD

2π

)
=
∞\
−∞

FK(α,D)r̂(α) dα.

By Corollary 1, we have
∞\
−∞

FK(α,D)r̂(α) dα

=
∞\
−∞

(− ξ[−1,1](α) +
(

1
2K
(

1
2

))−1
D−α/2a(D−α) logD

)
r̂(α) dα+ o(1)

= − 1
λ2

1\
−1

(λ− |α|) dα+
(

1
2K
(

1
2

))−1
logD

∞\
−∞

D−α/2a(D−α)r̂(α) dα+ o(1)

= − 2
λ2

[
λα− α2

2

]1

0
+
(

1
2K
(

1
2

))−1
logD

K(1/2)
logD

∞\
−∞

r(α) dα+O

(
1

logD

)

=
1
λ2 −

2
λ

+ 2r̂(0) +O

(
1

logD

)
=

1
λ2 +O

(
1

logD

)
.

On the other hand,
∞\
−∞

FK(α,D)r̂(α) dα

=
(

1
2K
(

1
2

)
D
)−1∑

d

e−πd
2/D2 ∑

%(d)

K(%)
(

sin
(
λ
2 γ logD

)
λ
2 γ logD

)2

.

Therefore,

2
D

∑

d

e−πd
2/D2

md

=
(

1
2K
(

1
2

)
D
)−1∑

d

e−πd
2/D2 ∑

%(d)
%=1/2

K(%)

≤ ( 1
2K
(

1
2

)
D
)−1∑

d

e−πd
2/D2 ∑

%(d)

K(%)
(

sin
(
λ
2 γ logD

)
λ
2 γ logD

)2

=
1
λ2 +O

(
1

logD

)
.
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By taking λ = 2, we have

2
D

∑

d

e−πd
2/D2

md ≤ 1
4

+O

(
1

logD

)
.

Multiplying by D/2 establishes the corollary.

Remark. Since md is always even, this corollary implies that L(1/2, χd)
= 0 for at most 1/16 of all d’s.

Acknowledgements. We would like to thank Professor Hugh L. Mont-
gomery for bringing this problem to our attention.

Added in proof. Since the acceptance for publication of this paper,
the BAMS article of N. Katz and P. Sarnak appeared in Bull. Amer. Math.
Soc. 36 (1999), 1–26. Their article contains the statement of our Corollary
2. (A proof different from ours may be found in the appendix of an early
unpublished version of their BAMS article.)

Several months later, we had communication with Peter Sarnak in which
he offered some input concerning our article. We would like to thank Pro-
fessor Sarnak for reading our manuscript and offering improvements which
we have tried to realize in this article’s final form.

Also, it has been brought to our attention that Sarnak’s Ph.D. student
K. Soundararajan has proven unconditionally that L(1/2, χd) = 0 for at
most 1/8 of all d’s.
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théorème relative aux nombres premiers continus dans les formes 4n+ 1 et 4n+ 3,
Bull. Classe Phys. Acad. Imp. Sci. St. Petersburg 11 (1853), 208.

[5] H. Davenport, Multiplicative Number Theory, 2nd ed., Springer, 1980.
[6] H. L. Montgomery, The pair correlation of the zeros of the zeta function, in: Proc.

Sympos. Pure Math. 24, Amer. Math. Soc., Providence, RI, 1973, 181–193.
[7] H. L. Montgomery and P. J. Weinberger, Notes on small class numbers, Acta

Arith. 24 (1974), 529–542.
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