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1. Introduction. Let Ψ(x, u) denote the number of integers up to x
having all their prime factors no more than u in size. Write Ψ(x, u; a, q) for
the number of such integers congruent to a (mod q). Many authors have
studied these functions ([4], [7], [9], [12], [13], [15] for example), either for
their own sake, or because of possible applications (see the Royal Society
Theme issue in which [9], [13] and [17] appeared). In this paper we shall
be concerned with non-trivial lower bounds for Ψ(x + y, u) − Ψ(x, u) and
Ψ(x, u; a, q) in ranges of the parameters inaccessible to earlier workers’ meth-
ods. The number e−1/2 arises in all of our results (compare [2] and [8] for
example), so we write % = e−1/2 for convenience. Note that % = 0.606 . . .

Theorem 1. Let ε > 0. Then, for all large x, we have

(1.1) Ψ(x+ x1/2, u)− Ψ(x, u)� x1/2

provided that u ≥ x%/4+ε. The implied constant in (1.1) depends only on ε.

Remarks. This shows that, for all large x the interval [x, x+x1/2) con-
tains integers with all their prime factors less than x1/6 (compare the com-
ment on page 339 of [9]). We note that our lower bound in (1.1) has the cor-
rect order of magnitude. If one increases the interval length above x1/2 much
stronger results have been proved (see [3], [9] and [15]), with an asymptotic
formula for Ψ(x + z, u) − Ψ(x, u) provided that u ≥ exp((log x)5/6+ε), z ≥
x1/2u2 exp((log x)1/6). Of course, it is a well-known phenomenon that the
quality of results for multiplicative problems in short intervals changes at
this point because the more powerful Dirichlet polynomial techniques do not
work for shorter interval lengths. The proof of Theorem 1 combines ideas
used in discussing the greatest prime factor of the integers in [x, x + x1/2)
(see [1] and [18] for example) with Friedlander’s method in [7]. We next
consider what happens for shorter intervals.

1991 Mathematics Subject Classification: Primary 11N25.

[279]



280 G. Harman

Theorem 2. Let y = xγ , 3/7 < γ < 1/2 and ε > 0. Write

(1.2) θ = θ(γ) = inf
κ,λ

1 + 4λ− 2κ− (3 + 4λ− 2κ)γ
4λ− 4κ

where the infimum is taken over all known exponent pairs (κ, λ) 6= (1/2, 1/2).
Then, if θ(γ) < γ, we have

(1.3) Ψ(x+ y, u)− Ψ(x, u)� y

provided that u ≥ x%θ+ε. In particular , if the exponent pair conjecture, that
(ε, 1/2 + ε) is an exponent pair for every ε > 0, is true, then we can take

(1.4) θ = (3− 5γ)/2 for 3/7 < γ ≤ 1/2.

Remarks. Note that θ → 1/4 as γ → 1/2 with, or without, the exponent
pair conjecture. For γ < 1/2, though, the value given by (1.4) improves on
that given by (1.2) with currently known exponent pairs. Using these we have
θ(0.45) > 0.45, but θ(0.46) < 0.46, so (1.3) remains valid for decreasing y
down to some value between x0.45 and x0.46. See [10] for results valid for
smaller y.

We now move to the consideration of arithmetic progressions.

Theorem 3. Let x > 1, xε < q < x1/2−ε, ε > 0, (a, q) = 1. We have

(1.5) Ψ(x, u; a, q)� x/q

provided that

(1.6)
u > q%/2+ε if q ≥ x3/7−ε,

u > q%/3+ε if q ≤ x3/7−ε.

Moreover , if q is cube-free, then we can replace (1.6) by u > q%/4+ε for
q ≤ x4/9−ε.

Remarks. Granville [12] proved (1.5) for

u > q3/4, x ≥ max(u3/2+ε, q3/4+ε).

He also gave an asymptotic formula [13] for

u ≥ q1+ε when log x/log q →∞.

2. Outline of method. The trick in all our theorems is to count a
subset of the integers under discussion, the subset being chosen to fit with
our current state of arithmetical knowledge. The basic idea of Balog [3] is
to count products of two numbers mn, and note, for any set A,

∑

mn∈A
p|mn⇒p<xα

1 ≥
∑

mn∈A
p|m⇒p<xα

1−
∑

mn∈A
∃p|n, p>xα

1.
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Friedlander [8] gave a lower bound of the correct order of magnitude by
restricting m so that p |m⇒ p > xη for some small η > 0. For our theorems
we need to use products of four integers, but the same basic idea is used.
We distil Friedlander’s method in the following result. We write a ∼ A to
mean A ≤ a < 2A.

Lemma 1. Let x > 1, B = [x, 2x]∩Z, A ⊆ B. Let br be a given sequence
of non-negative reals, br � 1. Let α ∈ (0, 1/2), ε > 0. Suppose that , for
some λ > 0 and η = ε3,

(2.1)
∑

rnm∈A
m∼M,n∼N

anbr = λ
∑

rnm∈B
m∼M,n∼N

anbr +O(λx1−3η)

for any sequence an such that

(2.2) an � τ(n)

and for all M,N with xα < M,N < xα+ε. Then, writing β = α% + ε, we
have

(2.3)
∑

rk∈A
p|k⇒p<xβ

br � λ
∑

rk∈B
br +O(λx1−η).

P r o o f. Write θ = x−η, δ = 1/log x. Let an be the characteristic function
of the set of integers n such that

p |n⇒ xη
2 ≤ p ≤ xβ .

In the following we tacitly assume that the variable r is restricted by
1
4x

1−2α−2ε ≤ r ≤ x1−2α.

We record here, for future reference, the result from [7] that, since α < 2β,

(2.4)
∑

n≤N
an =

Ne−γ

η2 log x

(
1− log

(
α+ ε

β

)
+O(δ + ε3/2)

)
.

Here, and elsewhere in this lemma, γ is Euler’s constant. Clearly an satisfies
(2.2). We thus have, for xα+η < M,N < xα+ε−η,

∑

rmn∈A
m∼M,n∼N

bran = λ
∑

rmn∈B
m∼M,n∼N

bran +O(θxλ) = E(M,N) say.

Hence, a lower bound for the left side of (2.3) is

(2.5)
1
T

∑

M,N

(E(M,N)− F (M,N))
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where

F (M,N) =
∑

rmn∈A
m∼M,n∼N

anbrcm, cm =
∑

p|m
p≥xβ

1,

(note that cm only takes the values 0, 1 since α < 2β, for future convenience
we insist that cm = 0 unless xα+η ≤ m ≤ xα+ε−η)

T = max
k≤x

∑

n|k
an ≤ 2η

−2
,

and M,N are summed over values 2j , 2k with

xα+η < 2j , 2k < 1
2x

α+ε−η.

Now let dn denote the characteristic function of all integers with no prime
factor less than xη

2
. Then dn ≥ an and, by the Fundamental Lemma of

Sieve Theory (see [16] for example), there are coefficients λd with |λd| ≤ 1
such that

dn ≤
∑

d|n
λd, λd = 0 for d ≥ xη,

and

(2.6)
∑

d<xη

λd
d

=
e−γ

η2 log x
(1 + ξ)

where we have written

1 + ξ = 1 +O

(
exp

(
log η
η

))
.

Thus
∑

M,N

F (M,N) ≤
∑

M,N

∑

rmn∈A
m∼M,n∼N

brcm
∑

d|n
λd

=
∑

d<xη

λd
∑

M,N

∑

rmld∈A
m∼M, l∼N/d

brcm

= O(λx1−η) + λ
∑

d<xη

λd
∑

M,N

∑

rmld∈B
m∼M, l∼N/d

brcm

where we have applied (2.1) for each individual d with adm = cm. Now, since
B = [x, 2x], we have
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∑

rmld∈B
m∼M, l∼N/d

brcm =
1
d

∑

rmn∈B
m∼M,n∼N

brcm +O
( ∑

Nmr≤2x

brcm

)

=
1
d

∑

rmn∈B
m∼M,n∼N

brcm +O(x1−2η).

Thus
∑

M,N

F (M,N) ≤ λ
∑

mnr∈B
brcm

∑

d<xη

λd
d

+O(λx1−η)

= x
∑
r

br
r

∑
m

cm
m
· e−γ

η2 log x
(1 + ξ) +O(λx1−η)

by (2.6). The main term in the upper bound is thus λ times

e−γ

η2 log x
(1 + ξ)x

∑
r

br
r

∑

xβ≤p≤xα+ε

1
p

∑

xα/p≤m≤xα+ε/p

1
m

=
e−γ

η2 log x
(1 + ξ)x

∑
r

br
r

∑

xβ≤p≤xα+ε

1
p

(ε log x+O(1))

=
e−γ

η2 (1 + ξ)x
∑
r

br
r

log
(
α+ ε

β

)
.

The proof is completed by noting that, using (2.4) and suppressing an error
O(λθx),

∑

M,N

E(M,N) ≥ e−γ

η2 λ

(
1− log

(
α+ ε

β

)
+O(δ + ε3/2)

)
(ε− 2η)x

∑
r

br
r
.

Thus, again suppressing an error O(λθx),
∑

M,N

(E(M,N)− F (M,N))

≥ e−γ

η2 ελx
∑
r

br
r

(
1− 2 log

(
α+ ε

β

)
+O(δ + ε3/2)

)
.

Since

2 log
(
α+ ε

β

)
= 2 log(e1/2) + 2 log

(
1− ε(1− %)

α%+ ε

)
≤ 1− ε

2
,

this gives a lower bound for the left hand side of (2.3)
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≥ 2−1/η2−1λ(1 +O(δ + ε))
e−γε
η2 x

∑
r

br
r

+O(λθx)� λ
∑

rk∈B
br +O(λθx)

as required.

In the following section we shall prove Theorems 1 and 2 by applying
the above lemma in conjunction with exponential sum estimates. In the final
section we turn to character sum estimates in order to establish Theorem 3.

3. Proof of Theorems 1 and 2. We begin with a standard tool from
Fourier analysis (compare the argument on page 39 of [11]).

Lemma 2. Let 1 ≤ y ≤ x1/2, η > 0, yx−η < M < x. Suppose |am| ≤
τ(m). Write I = [x, x+ y]. Then

(3.1)
∑

mn∈I
m∼M

am = y
∑

m∼M

am
m

+O(yx−η/2) +O

(
E

M

)
,

where

(3.2) E = max
x≤Y≤x+y

∣∣∣∣
∑

h≤H

∑

m∼M
ame

(
Y h

m

)∣∣∣∣

and
H = Mxη/y.

Remark. The formula (3.1) is elementary for M < yx−η with the final
error term removed.

Our choice of the shape of numbers to count is a consequence of the
following result (Theorem 3 in [18]).

Lemma 3. Let η > 0, 1 < x ≤ Y < 2x, H ≤ N , N2M ≤ x1−η,
|am|, |bm| ≤ 1. Also suppose that (κ, λ) is an exponent pair. Then

(3.3)
∣∣∣∣
∑

h∼H

∑

m∼M
am

∑

n∼N
bne

(
Y h

mn

)∣∣∣∣

� xη((HM2N)1/2 + (M3N4x−1)1/2

+ (x1+2κH4λM4λ−1−2κN2−4κ+4λ)1/(2+4λ)

+ (x2κ−2λH2λ−1M6λ−2κN10λ+1−4κ)1/(2+4λ)).

Remark. For Theorem 1 the older Lemma 14 of [1] would have sufficed
in place of the above. The bound (3.3) has an advantage in our proof when
y < x1/2.

Proof of Theorem 1. We first require the following result on exponent
pairs. We refer the reader to [11] for an introduction to this subject.
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Lemma 4. The exponent pair BAnB, n ≥ 1, has the form

(3.4) (κ, λ) = (1/2− (n+ 1)δ, 1/2 + δ)

with
1
2 · 3−n ≤ δ ≤ 1

3 · 2−n.
Remark. It will be vital that

1/2− κ
λ− 1/2

→∞ and δ → 0 as n→∞.

P r o o f (of Lemma 4). The result follows quickly by induction from the
definition of the A and B processes:

A(κ, λ) =
(

κ

2κ+ 2
,
κ+ λ+ 1

2κ+ 2

)
, B(κ, λ) =

(
λ− 1

2
, κ+

1
2

)
.

We now show that it is possible to estimate
∑

lmn∈I
m∼M,n∼N

ambn

when MN ≤ x3/4−ε for a certain choice of M with y = x1/2. To do this
we need only prove that the right hand side of (3.3) is O(MNx−η) for
H ≤ MNxη/y. We put M = yx−5η, and take H at its maximum value
which will thus be Nx−4η. We thus have H ≤ N and N2M ≤ x1−η if
ε > 3η. We have

xη(HM2N)1/2 ≤ xη(M2N2x−4η)1/2 = MNx−η,

as required. Also

(M3N4x−1)1/2xη = MN(MN2x−1+2η)1/2 = MN

(
M2N2

x
· x

2η

M

)

≤MN(x1/2−2εx−1/2+7η)1/2 ≤MNx−η

assuming that 2ε ≥ 9η.
The next term is the trickiest to estimate. We need to establish that

(3.5) x1+2κN4λx−4ληM4λ−1−2κN2−4κ+4λ ≤ (MN)2+4λx−2η(2+4λ).

The inequality (3.5) is equivalent to

N4λ−4κ ≤M3+2κx−1−2κ+4λη−2η(2+4λ),

that is,

N ≤ (x3/2+κ−1−2κ+4λη−2η(2+4λ)−5(3+2κ)η)1/(4λ−4κ),

or

(3.6) MN ≤ (x1/2+2λ−3κ−5η(3−2κ+4λ)+4λη−2η(2+4λ))1/(4λ−4κ).
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Now suppose that (κ, λ) = (1/2−(n+1)δ, 1/2+δ). Then the right hand side
of (3.6) can be written X1X2 where X1 does not depend on η and X2 = x−ηc

where c does not depend on η. We have

(3.7) X1 = x(3n+5)/(4n+8).

We may therefore choose n sufficiently large so that X1 ≥ x3/4−ε/2. We
may then pick η sufficiently small so that X2 ≥ x−ε/2. Thus MN ≤ x3/4−ε

suffices as claimed. The reader will quickly verify that the final term in (3.3)
is smaller than the term we have just estimated.

Now we count numbers lkuv ∈ I with

x1/4+ε ≤ l ≤ x1/4+2ε, x1/4+ε ≤ v ≤ x1/4+2ε,

uv ∼M = x1/(2−5η), p | ku⇒ x1/10 ≤ p ≤ x%/4.
By our above working we can give the correct asymptotic formula with any
reasonable sequence am for

∑

lkuv∈I
l∼L, uv∼M

avck

where ck is the characteristic function of those integers such that p |n ⇒
x1/10 ≤ p ≤ x%/4. The result follows from Lemma 1 with ku = r, v = n,
l = m, λ = x−1/2. We here use the fact that

br =
∑

ku=r

ck < 32,

since r < x1/2 while p | ku⇒ p > x1/10. Also we noted that
∑

rk∈B
br � x.

Proof of Theorem 2. In place of (3.7) we have

(y3+4λ−2κx−1−2κ)1/(4λ−4κ).

This is x1−θ with

θ =
1 + 4λ− 2κ− (3 + 4λ− 2κ)γ

4λ− 4κ
.

Now we take the infimum of this expression over all exponent pairs (κ, λ).
The value we eventually obtain for the variable u is x%θ+ε by the above
construction, provided that θ(γ) < γ. This last condition being necessary
since we require v < yx−5η in the proof. The reader should have no trouble
completing the proof as before.
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4. Proof of Theorem 3. We first require two lemmas.

Lemma 4. Let 1 < q < x1/2−ε, (a, q) = 1. Write η = ε2. Suppose that
M,N,R satisfy

(4.1) q1/2xη ≤ N ≤ q1/2x2η, q1/2 ≤ R ≤ q1/2xη, MNR = x/8.

Then, for any coefficients am, cr with |am| � τ(m), |cr| � τ(r), we have

(4.2)
∑

mnr≡a mod q
m∼M,n∼N, r∼R

amcr =
1

φ(q)

∑

(mrn,q)=1
m∼M,n∼N, r∼R

amcr +O(x1−η/4q−1).

P r o o f. We have the left hand side of (4.2) equal to

1
φ(q)

∑

χmod q

χ(a)
∑

m∼M
amχ(m)

∑

n∼N
χ(n)

∑

r∼R
crχ(r)

=
1

φ(q)

∑

χmod q

χ(a)A(χ)B(χ)C(χ) say.

The term χ = χ0 gives the main term on the right of (4.2). We use Hölder’s
inequality on the remaining terms to obtain an error

≤
(

1
φ(q)

∑

χ6=χ0

|A(χ)|2
)1/2( 1

φ(q)

∑

χ6=χ0

|B(χ)|4
)1/4

(4.3)

×
(

1
φ(q)

∑

χ 6=χ0

|C(χ)|4
)1/4

.

We note that

1
φ(q)

∑

χmod q

∣∣∣
∑

d∼D
bdχ(d)

∣∣∣
2
≤
(

1 +
D

q

)∑

d∼D
|bd|2

(see [18], Theorem 6.2) and

1
φ(q)

∑

χ 6=χ0

∣∣∣
∑

n∼N
χ(n)

∣∣∣
4
� qηN2

(see [14], Lemma 2). We thus obtain an error

� xη/2qη/4
((

x

MNR

)2 1
q

)1/2(
R4

q

)1/4

N1/2

� x3η/4x

q

(
q

N2

)1/2

≤ x1−η/4

q

as required.
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Lemma 5. Given the hypotheses of Lemma 4 except that 1 < q < x3/7

and M,N,R satisfy

(4.4) q1/3xη ≤N ≤ q1/3x2η, (x/N)1/2 ≤R ≤ (x/N)1/2xη, MNR = x/8.

Then (4.2) holds. Moreover , if q is cube-free with 1 < q < x4/9 then one can
replace (4.4) with

(4.5) q1/4xη ≤N ≤ q1/4x2η, (x/N)1/2 ≤R ≤ (x/N)1/2xη, MNR = x/8.

In this last case the error in (4.2) becomes x1−η2/4/q.

P r o o f. Instead of Hölder’s inequality in the last proof we use Cauchy’s
inequality to bound the error as

(4.6) ≤
(

1
φ(q)

∑

χ 6=χ0

|A(χ)|2
)1/2( 1

φ(q)

∑

χ 6=χ0

|C(χ)|2
)1/2

max
χ6=χ0

|B(χ)|.

We now use the Burgess bound (see [5]), that

|B(χ)| � q1/9N2/3+δ

for any δ > 0, to bound (4.6) as

� xη/12q1/9N2/3
((

x

NR

)2 1
q

)1/2(
R2

q

)1/2

(noting that both of x/(NR), R exceed q by (4.4)),

� x1+η/12

q
N−1/3q1/9 ≤ x1−η/4

q
.

This completes the proof for general q.
For q cube-free we note that the Burgess bound can be improved to

|B(χ)| � qη/4+η2
N1−η ≤ Nx−η2/2

(take k = [η−1] in [5] with ε = η2/2). This suffices to obtain the claimed
result.

Proof of Theorem 3. We consider numbers in an analogous way to The-
orem 1:

lkuv ≡ a (mod q)
with

q1/2xη ≤ l, v ≤ q1/2x2η, q1/2 ≤ k ≤ q1/2xη,

lkuv ≤ x, p | ku⇒ q%/8 ≤ p ≤ q%/2.
The proof may then be easily completed for u > q%/2+ε. For q < x3/7−ε the
choice of variable size becomes

q1/3xη ≤ l, v ≤ q1/3x2η,

(
x

lv

)1/2

≤ k ≤
(
x

lv

)1/2

xη,

while the cube-free case requires q1/3 to be replaced by q1/4 in the above.
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