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1. Introduction. Let N and D be two finite sets of complex numbers
defined by

N ≡ {α1, . . . , αk}, D ≡ {β1, . . . , βl}
where k ≥ 0, l ≥ 1, k ≤ l and Σ∗ ≡∑k,∗

j=1 Re(βj−αj) < 1 where the asterisk
denotes the sum over only positive terms. We stress here that neither the α’s
nor the β’s need be distinct. Let P (s) be any finite Dirichlet series. Then,
defining the empty product to be 1, we have the following theorem.

Theorem. Let F (s) defined by

F (s) ≡
(
P (s)

∏

α∈N
ζ(s+ α)

)( ∏

β∈D
ζ(s+ β)

)−1
≡ F1(s)(F2(s))−1

(with an obvious notation) be a non-terminating Dirichlet series for Re(s) ≥
1000+

∑ |α|+∑ |β|. Then F (s) has infinitely many poles in |Im(s)| ≥ c for
every fixed c > 0. Furthermore the result is still true if we replace F (s) by
any finite sum of functions of the type F (s) (for various P (s), N and D).

Remark 1. In our theorem some (or all) of ζ(s+ α) can be replaced by
their derivatives of bounded order.

Remark 2. Here some (or all) of ζ(s+ β) can be replaced by the corre-
sponding ordinary L-functions. At the same time some (or all) of ζ(s + α)
can be replaced by the derivatives of bounded order of L(s+α) for ordinary
L-functions or those of

∑∞
n=1(an+ b)−s−α where a, b are positive integers.

Remark 3. Here some (or all) of ζ(s+ β) can be replaced by L∗(s+ β)
where L∗ are the L-functions of quadratic fields. At the same time some (or
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all) of ζ(s + α) can be replaced by L∗(s + α), or ζ∗(s + α) (where ζ∗ are
zeta-functions of ray classes of quadratic fields) or derivatives of these of
any bounded order. The result is true with an obvious modification of the
condition Σ∗ < 1.

Remark 4. This paper arose out of an attempt to generalize a result
of E. C. Titchmarsh (see Theorem 14.27 on p. 372 of [T]). We can also
state results corresponding to the divergence of

∑ |%ζ ′(%)|−1. Titchmarsh
makes some assumptions like the Riemann hypothesis and for the divergence
problem he needs the simplicity of the zeros of ζ(s). Our results do not
depend on any unproved hypothesis.

Remark 5. In many of our results above we can solve the following
problem (see §6). Given any T1 > 0, we can find an explicit T2 > T1 such
that there is at least one pole % of F (s) satisfying

T1 < Im(%) < T2.

Combining this with a method of R. Balasubramanian and K. Ramachandra
(see [BR1]) we can solve the following problem effectively. Let

F (s) =
∞∑
n=1

ann
−s, Re(s) > 1000 +

∑
|α|+

∑
|β|,

for any of the functions above. Suppose that an are all real and that F (s)
does not have a pole with real s > 0. Put Re(%) = Θ for the pole % above.
Then

∑
n≤x an = Ω±(xΘ) provided Θ > 0. Note that if the poles of F (s)

are situated symmetrically with respect to the half line then we can take
Θ ≥ 1/2 and so definitely Θ = 1/2. In particular we can prove things like
(here Λ(n) is the von Mangoldt function)

∑

n≤x
n≡1 (mod 5)

Λ(n)−
∑

n≤x
n≡−1 (mod 5)

Λ(n) = Ω±(x1/2),

and so ∑

p≤x
p≡1 (mod 5)

log p−
∑

p≤x
p≡−1 (mod 5)

log p = Ω±(x1/2)

which are effective. No doubt such results are already in the famous works
of S. Knapowski and P. Turán who founded the subject “comparative Prime
Number Theory”. But our theorem is more in the spirit of generalization.
One may note that this theorem enables us to prove things like (here µ(n)
is the Möbius function)

∑

n≤x
n≡1 (mod 5)

µ(n) = Ω±(x1/2).
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Remark 6. We are unable to put our theorem in such a way as to include
the case F (s) = (ζ ′(s))2(ζ(s))−1. In this case the poles of F (s) are precisely
the simple zeros of ζ(s). A simple ingenious proof of infinitude of the simple
zeros of ζ(s) in Im(s) > 0 is due to J. B. Conrey, A. Ghosh and S. M. Gonek
[CGG]; see also Section 5.4 of [R1].

Remark 7. We conjecture that the results mentioned in the Theorem
(and also in the remarks above) are valid without the condition Σ∗ < 1. For
our results in this direction see Section 6.

Corollary. The functions ζ(s +
√−1)(ζ(s))−1, ζ ′(s +

√−1)(ζ(s))−1

and (ζ(s))−1 ± (L(s))−1, where L(s) =
∑∞
n=1(−1)n−1(2n − 1)−s and its

analytic continuation, have infinitely many poles in Im(s) ≥ 10, whatever
be the combination ±.

2. Notation. We adopt the standard notation of the subject. Usually we
use C1, C2, . . . to denote large positive constants. The triple line ≡ denotes
a definition. Vinogradov’s symbols � and � denote “less than a constant
times”, and “greater than a constant times” respectively. The symbol O(. . .)
means � . . . The symbol � means both � and � together. The symbol Ω
means � infinitely often. If f and g are two real-valued functions then f =
Ω+(g) means f exceeds a positive constant times g infinitely often, and f =
Ω−(g) means that −f = Ω+(g). The symbol Ω± means both Ω+ and Ω−.

3. Sketch of the proof of the Theorem. As regards the second
assertion of the Theorem it suffices to prove it with F (s) replaced by

(1)
(∑{

P (s)
∏

α∈N
ζ(s+ α)

})( ∏

β∈D
ζ(s+ β)

)−1

where
∑

denotes a finite sum of terms similar to the ones in the curly
brackets (for various P ’s and N ’s). This can be seen by simplifying the sum
of fractions in question to a common denominator. The treatment of (1) is
not very much different from that of the first assertion of the Theorem. For
simplicity we assume P (s) = 1 and consider only the first assertion of the
Theorem. Regarding F1(s) we need only the result

(2)
1
T

2T\
T

∣∣∣∣ζ
(

1
2

+ it

)∣∣∣∣
2

dt = O((log T )C1) (T ≥ 10).

From (2) it follows that

(3)
2\

1/2−∆

(
1
T

2T\
T

|ζ(σ + it)|2 dt
)
dσ = O((log T )C1+10)

where ∆ = (log T )−1 (these results are well known).
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Such results hold for [T, T + T 1/3] in place of [T, 2T ]. We need (2) only
when F1(s) 6= 1. The relations (2) and (3) are definitely true for functions
mentioned in Remarks 1 to 3. Also whenever such functions have an Euler
product, then N(σ, T ) denoting the number of zeros (of such functions) with
Re(s) ≥ σ and |Im(s)| ≤ T , we have, by standard methods,

(4) N(σ, T ) ≤ T 3(1−σ)/(4−2σ)(log T )C2 (T ≥ 10, 1/2 ≤ σ ≤ 1).

The inequality (4) is useful to deal with F2(s). Apart from some usual tech-
niques (to deal with F1(s)) the main difficulty is to deal with F2(s) and here
we follow the pattern set out in [RS].

From now on we write s = σ + it, i =
√−1. The main idea is to start

with

(5)
∑

n≤x
an =

1
2πi

σ1+iT\
σ1−iT

F (s)
xs

s
ds+O(T−1)

(where σ1 = 1000 +
∑ |α|+∑ |β|, x is a large positive constant ≥ 100 and

we adopt the convention that whenever x is an integer the last term in the
sum on the LHS is to be halved), where the an are defined by

(6) F (s) =
∞∑
n=1

ann
−s (for σ ≥ σ1).

Put

J =
1

2πi

σ1+iT\
σ1−iT

F (s)
xs

s
ds(7)

=
1

2πi
{J1 + J2 + J3 + J4 + J5}+ S(8)

where

J1 ≡
−σ1−iT\
σ1−iT

. . . ,(9)

J2 ≡
−N−iT\
−σ1−iT

. . . ,(10)

J3 ≡
−N+iT\
−N−iT

. . . ,(11)

J4 ≡
−σ1+iT\
−N+iT

. . . ,(12)
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J5 ≡
σ1+iT\
−σ1+iT

. . . ,(13)

and

(14) S = sum of the residues of F (s)
xs

s
in the relevant rectangle.

Here N should not be confused with that introduced first in the intro-
duction. N (≥ σ1) and T (≥ 10) are such that the paths of integration in
the equations (9) to (13) are bounded away from the singularities of F (s)
to the extent possible. First we choose N = Nν (ν = 1, 2, . . .) such that as
N →∞,

(15) J3 → 0

for every fixed T provided x exceeds a large positive constant. Having proved
this we next prove that as N →∞ we have

(16) |J2|+ |J4| = O(T−1+Σ∗+ε) (for every ε > 0).

These follow nearly as in the proof of Theorem 14.27 on p. 372 of [T]. But
the greatest difficulty is to prove

(17) |J1|+ |J5| = O(T−1+Σ∗+ε) (for every ε > 0)

for a suitable sequence T = T
(0)
ν → ∞. We show that this is possible for

every large X and suitable T (0)
ν with X ≤ T

(0)
ν ≤ 2X. For this purpose we

select certain t-intervals I ⊂ [X, 2X] for which (on (−σ1 ≤ σ ≤ σ1)× I) we
know good upper bounds for ζ(s) and its derivatives and further

(18) min
t∈I

max
σ≥1/2

(max
β∈D
|ζ(σ + it+ i Im(β))|−1) ≤ (exp(log logX)2)C3 .

From these it follows that the sum on the LHS of (5) is the same as S, which
is a continuous function of x (for large x) if there are no poles of F (s) in
|t| ≥ C (for some C > 0). This proves our Theorem provided (15)–(17) are
established.

The remainder of the proof will be arranged as follows. In Section 4 we
prove (15) and (16). The proof of (17) is a long story; we devote Section 5
to it. In (16) and (17) it may be noted that the quantity T ε can be replaced
by a suitable positive constant power of exp((log log T )2). In Section 6 we
make some concluding remarks about effectiveness of our results.

4. Proof of (15) and (16). In treating J2, J3 and J4, the main results
that we use are

ζ(1− s) = 2(2π)−s cos(sπ/2)Γ (s)ζ(s)(19)

and

Γ (s) =
√

2π ss−1/2e−s(1 +O(|s|−1)),(20)
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the latter being valid in (|tan−1(t/σ)| ≤ π − π/1000, σ ≥ 2). We first treat
J3 (defined by (11)). Clearly

(21) J3 = J ′3 ≡
N+1+iT\
N+1−iT

x1−sF (1− s)
1− s ds.

Now

(22) F (1− s) =
(
P (1− s)

∏
α

ζ(1− s+ α)
)(∏

β

ζ(1− s+ β)
)−1

.

(Note that the set N in α ∈ N is omitted to avoid confusion with N in
N + 1± iT .) Trivially

|P (1− s)| ≤ PN0
where P0 ≥ 2 is some constant. We take care of the other factors by the
following two lemmas.

Lemma 1. For s = N + 1 + it, |t| ≤ T , and w a complex variable subject
to |w| ≤ |log s|−1, we have the inequality

|ζ(1− s− w + α)| � (2π)−Ne(π/2)|t|−N |N + it|N−Re(α)+1/2(23)

× exp
(
−|t− Im(α)| tan−1 |t− Im(α)|

N + 1

)
.

Hence by Cauchy’s theorem,

(24) ζ(ν)(1− s+ α) = O((RHS)|log s|ν)

for the derivatives of ζ(1− s+ α) of order ν ≥ 0.

P r o o f. We have by (19) and (20),

|ζ(1− s− w + α)| � (2π)−Ne(π/2)|t||Γ (s+ w − α)|.
Now |Γ (s)| � |exp(−s+ (s− 1/2) log s)| and so

|Γ (s+ w − α)| � |Γ (s− α)|
and

|Γ (s− α)| � e−N
∣∣∣∣ exp

(
(s− α− 1/2)

(
log |s− α|+ i tan−1 t− Im(α)

N + 1

))∣∣∣∣

� e−N
∣∣∣∣ exp

(
(N + 1− Re(α) + 1/2) log |N + it|

− (t− Im(α)) tan−1 t− Im(α)
N + 1

)∣∣∣∣.
This together with

1
ν!
ζ(ν)(1− s+ α) =

1
2πi

\
|w|=|log s|−1

ζ(1− s− w + α)w−ν−1 dw

proves Lemma 1.
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Lemma 2. For s = N + 1 + it, |t| ≤ T , we have

|ζ(1− s+ β)|−1 � (2π)Ne−(π/2)|t|+N |N + it|−N+Re(β)−1/2(25)

× exp
(
|t− Im(β)| tan−1 |t− Im(β)|

N + 1

)

provided
∣∣cos

(
π
2 (s − β)

)∣∣−1 � e−(π/2)|t|. The last inequality can be secured
for all β uniformly if we alter N by a small quantity.

P r o o f. This follows from Lemma 1.

We are now in a position to prove the following lemma.

Lemma 3. For fixed T ≥ 10 and all N ≥ T 2 we have the estimate

(26) J3 = J ′3 = O(Tx−NPN1 )

where P1 ≥ 2 is some constant. Thus if x ≥ 2P1, the quantity J3 → 0 as
N →∞ provided T is fixed.

Remark. In the O-estimate the factor (NT )ε (ε > 0 arbitrary) becomes
necessary if we want to allow for ζ(ν)(s+ α).

P r o o f (of Lemma 3). Using Lemmas 1 and 2 we have the following
estimates for all N ≥ T 2:

|F (1− s)| ≤ PN0 (2π)−N(k−l)e(k−l)((π/2)|t|−N)|N + it|(k−l)(N+1/2)

× |N + it|
∑

Re(β)−∑Re(α) < PN1

where (since k ≤ l) P1 ≥ 2 is some constant. Thus J3 = J ′3 = O(Tx−NPN1 )
and this proves the lemma.

We now prove the following lemma.

Lemma 4. We have
(27) |J2|+ |J4| = O(T−1+Σ∗)

where the O-constant is independent of T and N .

Remark. The factor T ε (ε > 0 arbitrary) becomes necessary if we want
to allow for ζ(ν)(s+ α).

P r o o f (of Lemma 4). It suffices to prove the estimate for J2 (the proof
for J4 being similar). Clearly

J2 =
−N−iT\
−σ1−iT

F (s)
xs

s
ds = −J ′2,

where

(28) J ′2 ≡
1+N+iT\
1+σ1+iT

F (1− s)x1−s

1− s ds.
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For s = σ + iT, 1 + σ1 ≤ σ ≤ N + 1 we have

(29) F (1− s) =
(
P (1− s)

∏
α

ζ(1− s+ α)
)(∏

β

ζ(1− s+ β)
)−1

.

Now for all T ≥ 2σ1 and all σ we have

exp
(
−(T − Im(α)) tan−1 T − Im(α)

σ + 1

)

� exp
(
−T tan−1 T − Im(α)

σ + 1

)
� exp

(
−T tan−1 T

σ + 1

)

and

exp
(

(T − Im(β)) tan−1 T − Im(β)
σ + 1

)
� exp

(
T tan−1 T − Im(β)

σ + 1

)

� exp
(
T tan−1 T

σ + 1

)

since
∣∣∣∣tan−1 T − Im(α)

σ + 1
− tan−1 T

σ + 1

∣∣∣∣ =
∣∣∣∣
T−Im(α)\

T

σ + 1
u2 + (σ + 1)2 du

∣∣∣∣

�
∣∣∣∣
T−Im(α)\

T

|u(σ + 1)|
u2 + (σ + 1)2

du

u

∣∣∣∣�
1
T
.

Thus for some constant P2 ≥ 2,

|F (1− s)| � P σ2 (2π)−σ(k−l)e((π/2)T−σ)(k−l)

×
∏
α

|σ + iT |σ−Re(α)+1/2
∏

β

|σ + iT |−σ+Re(β)−1/2

× exp
(

(l − k)T tan−1 T

σ + 1

)

� P σ2 e
−σ(k−l)|σ + iT |(k−l)(σ+1/2)+

∑
Re(β)−∑Re(α)

< P σ3 |σ + iT |(k−l)(σ+1/2)+
∑

Re(β)−∑Re(α)

where P3 ≥ 2 is some constant. If l ≥ k + 1 then the exponent of |σ + iT |
in the last expression is negative and so the last expression does not exceed
P σ3 . If l = k then

∑
Re(β)−∑Re(α) ≤ Σ∗ and in all cases

|J2| �
1+N\
1+σ1

(P3x
−1)σ|σ + iT |Σ∗−1 dσ ≤ TΣ∗−1

∞\
1+σ1

(P3x
−1)σ dσ

since Σ∗ < 1 by assumption. Thus if x ≥ P 2
3 we have

(30) |J2| � TΣ
∗−1.

This completes the proof of Lemma 4.



Riemann zeta-function, II 359

5. Proof of (17). We begin with a few lemmas of which many are of
interest in themselves.

Lemma 5. Put ∆ = (log T )−1. Then

(31)
2\

1/2−∆

( 2T\
T

|ζ(σ + it)|2 dt
)
dσ � T log log T.

P r o o f. The assertion follows from∣∣∣ζ(σ + it)−
∑

n≤10T

n−σ−it
∣∣∣� T−σ (0 ≤ σ ≤ 2, T ≥ 10, T ≤ t ≤ 2T ),

where the implied constant is absolute. This result is well known (see (4.11.1)
on p. 77 of Titchmarsh’s book [T]). See also [BR2] for an alternative ap-
proach to this result.

Lemma 6. Let 10∆ ≤ M ≤ T 1/2 and let I run over all disjoint sub-
intervals (of length M) of [T, 2T ] excluding at most one subinterval. Let
m(I) denote the maximum of |ζ(σ + it)| in [1/2, 2]× I. Then

(32)
∑

I

(m(I))2 � ∆−2T log log T.

P r o o f. From Cauchy’s theorem we can prove (see [R1], Theorem 1.7.1)
that

(m(I))2 ≤ 1
π∆2

\ \
D0

|ζ(σ + it)|2 da

where the integration is over the disc D0 of radius ∆ and centre being the
point of the rectangle [1/2, 2]× I at which m(I) is attained. Here da is the
element of area. Summing up over all intervals I we obtain

∑

I

(m(I))2 ≤ 2
π∆2

2\
1/2−∆

( 2T+∆\
T−∆

|ζ(σ + it)|2 dt
)
dσ = O(∆−2T log log T ).

This proves the lemma.

Lemma 7. We have, for some I, the estimate

(33) m(I) = O(∆−1M1/2(log log T )1/2).

In particular , choosing M = 10∆, we obtain

(34) min
T≤t≤2T

max
1/2≤σ≤2

|ζ(σ + it)| = O((log T )1/2(log log T )1/2).

Choosing M = (log T )C4 , we have

(35) m(I)� (log T )(1/2)C4+1(log log T )1/2,

for at least one interval I of length M .
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For our purposes, we record

Corollary to Lemma 6. Let M = (log T )D1 where D1 is any positive
constant ≥ 3. Then the number N1 of intervals I (of length M) with m(I) >
(log T )E , where E > 0 is any constant , satisfies

(36) N1 = O(T (log T )3−2E)

and the total number of such intervals is � T (log T )−D1 .

P r o o f. This follows from Lemma 6.

Lemma 8. We have, with the notation of (4),

(37) N(σ, T )� T (4(1−σ))/(3−2σ)(log T )100

where 1/2 ≤ σ ≤ 1, T ≥ 10 and the implied constant is absolute.

P r o o f. This is (4) with C2 = 100 and this result is well known (see
Titchmarsh’s book [T] and also Ramachandra’s book [R2]).

Lemma 9. Put σ2 = 1/2 + G(log log T )(log T )−1, where G is a large
positive constant. Let D1 be as in Corollary to Lemma 6. Then

(38) N(σ2, 2T )−N(σ2, T )� T (log T )100−G

and so if N2 is the number of subintervals I such that the rectangle [σ2, 1]×I
contains a zero of ζ(s), then

(39) N2 = O(T (log T )100−G).

P r o o f. This follows from
4(1− σ)
3− 2σ

= 1−
(

1− 4− 4σ
3− 2σ

)
= 1− 2σ − 1

3− 2σ

≤ 1− 2σ − 1
2

= 1−
(
σ − 1

2

)
.

Lemma 10. With the exception of O(T (log T )3−2E+T (log T )100−G) sub-
intervals I (⊂ [T, 2T ]) of length (log T )D1 we have the following results:

(40) ζ(s) 6= 0 in [σ2, 1]× I
and also

(41) |ζ(s)| ≤ (log T )E in [1/2, 2]× I.
Trivially the total number of such subintervals is ≤ T (log T )−D1 + 1.

From (41) and the functional equation it follows that

(42) |ζ(s)| = O(T 1/2−σ(log T )E) in [−σ1, 1/2]× I.
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Hence by Cauchy’s theorem, namely (k not to be confused with that in N
in the introduction)

(43)
1
k!
ζ(k)(s0) =

1
2πi

\
|s−s0|=(log |s0|)−1

ζ(s)(s− s0)−k−1 ds

valid in Im(s0) ≥ 10, we have

(44) |ζ(k)(s)| = O(T 1/2−σ(log T )E+k+3)

and

(45) |ζ(k)(s)| = O((log T )E+k+3)

valid respectively in [−σ1, 1/2]×I and [1/2, 2]×I, the upper and lower por-
tions of length 1 being deleted from these rectangles so as to accommodate
the application of (43). We denote by I1 the corresponding intervals I. We
further delete from I1 intervals of length log T on both sides so as to ac-
commodate ζ(k)(s± i Im(α)) (α ∈ N) (for both signs) and ζ(k)(s± i Im(β))
(β ∈ D) (for both signs) in (44) and (45) and also to have

H(s) ≡
∏

β∈D
ζ(s+ i Im(β)) ζ(s− i Im(β)) 6= 0

in [σ2, 1]× I2 where I2 are the new intervals. Further we delete intervals of
length (log T )2 on both sides of I2 and call them I3. Let k ≥ 1 be an integer
(not to be confused with k in N of the introduction). Writing

(H(s))k ≡
∞∑
n=1

bnn
−s

we approximate LHS by
∑∞
n=1 bne

−n/Xn−s for s in [σ2, 1]× I3 and proceed
as in Lemmas 1 to 8 of our previous paper [RS] with the same title as the
present one to obtain the following lemma.

Lemma 11. We have

(46) min
I3

min
t∈I3

max
σ≥1/2

|H(s)|−1 ≤ (exp(log log T )2)C5 .

Lemma 12. Let

(47) K(s) =
∑

β∈D
|ζ(s+ i Im(β))|−1 +

∑

β∈D
|ζ(s− i Im(β))|−1.

Then there exists an interval I3 for which

(48) min
t∈I3

max
σ≥1/2

|K(s)| ≤ (exp(log log T )2)C6 .

P r o o f. Put

(49) H(s)K(s) = Q(s).
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Let t ∈ I3, the interval for which minI3 . . . in (46) is attained. Hence the
expression Q(s) in (49) can be estimated to be (log T )C7 by our remarks
following Lemma 10. This proves Lemma 12.

Lemma 13. In J1 and J5, we have

(50) |F (s)| � TΣ
∗+ε.

Remark. In fact T ε can be replaced by a positive constant power of
(exp(log log T )2).

P r o o f (of Lemma 13). Combining Lemmas 10 and 12, we have

|F (s)| � Tλ+ε

where

λ =
k∑

j=1

(max(1/2− σ − Re(αj), 0)−max(1/2− σ − Re(βj), 0)).

If now −Re(αj) ≤ −Re(βj), then for such j the terms of the sums are not
positive. On the other hand, if −Re(αj) > −Re(βj), i.e. Re(αj) < Re(βj),
then for such j the terms are

Re(βj − αj) + max(1/2− σ − Re(βj), Re(αj − βj))
−max(1/2− σ − Re(βj), 0)

≤ Re(βj − αj) + max(1/2− σ − Re(βj), 0)−max(1/2− σ − Re(βj), 0)

and the lemma follows.

This completes the proof of the Theorem.

Remark 1. This has relevance to Remark 3 following our Theorem. If
we assume the estimate

T−2/3
T+T 2/3\

T

∣∣∣∣ζ∗
(

1
2

+ it

)∣∣∣∣ dt� (log T )D2

(where D2 is some positive constant and ζ∗(s) is the zeta-function of a ray
class in a quadratic field; this result is due to M. Jutila [J]), then in place of
X ≤ T

(0)
ν ≤ 2X we can have X ≤ T

(0)
ν ≤ X +X2/3(logX)−100. If however

we do not assume the above estimate (which is very deep), then we can have
X ≤ T (0)

ν ≤ X +X(logX)−100.

Remark 2. This has relevance to Remarks 1 and 2 following our Theo-
rem. Here we can have T (0)

ν with X ≤ T (0)
ν ≤ X +X1/3(logX)−100.

Remark 3. In the above remarks the constant 100 is unimportant. We
can have any positive constant in place of 100.
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Remark 4. If we assume the Riemann hypothesis we can have T (0)
ν with

X ≤ T (0)
ν ≤ X +Xδ (for every fixed δ > 0).

Remark 5. In connection with our Theorem, we here recall the “explicit
formula” ∣∣∣S −

∑

n≤x
an

∣∣∣ = O((T (0)
ν )−1+Σ∗+ε)

which satisfies the above requirements according to various conditions. Note
that S depends upon T

(0)
ν . Here in the O-estimate (T (0)

ν )ε can be replaced
by a positive constant power of (exp(log log T )2).

6. Concluding remarks. Probably the following hypothesis is true of
all functions F (s) in our Theorem and in the remarks following it whenever
F (s) (Re(s) ≥ σ1) is a non-terminating Dirichlet series (even on ignoring
the condition Σ∗ < 1).

Hypothesis. There exist effective constants C8, C9 and C10 such that
for all y ≥ C8,

(51) max |an| ≥ n−C9

where the maximum is taken over all n with y ≤ n ≤ yC10 .

Using this hypothesis we solve the following problem:

Problem. Given any T1 ≥ 100, determine effectively a T2 > T1 such
that there exists a pole % of F (s) satisfying

(52) T1 ≤ Im(%) ≤ T2.

S o l u t i o n. Let T3 and T4 be two of the numbers T (0)
ν (ν = 1, 2, . . .)

such that

(53) X ≤ T3 ≤ 2X and 4X ≤ T4 ≤ 8X.

Denote by R the rectangle [−T3, T3]× [T3, T4]. Suppose there are no poles of
F (s) in R. Then we derive a contradiction as follows: Now F (s) is analytic
in R. Let s ∈ B, the boundary of R. By our results of Sections 4 and 5 we
have

(54) |F (s)| < XΦ on B

and hence by the maximum-modulus principle we have

(55) |F (s)| < XΦ for all s ∈ R.
Here X exceeds a large constant and Φ is some positive constant. Hence by
the third main theorem on p. 51 of [R1], we have



364 K. Ramachandra and A. Sankaranarayanan

(56)
(

9
10
T4 − 11

10
T3

)−1 (9/10)T4\
(11/10)T3

|F (σ + it)|2 dt� n−2σ|an|2

where |σ| ≤ (1/2)T3 and n is any integer such that X1−ε ≥ n ≥ XA−1
,

A > 1 is any large positive constant. By our hypothesis there exists an n in
this range for which |an| ≥ n−C9 . Thus (selecting a suitable n given by the
hypothesis)

max
(11/10)T3≤t≤(9/10)T4

|F (σ + it)| � n−σ|an| ≥ n−C9−σ > (XA−1
)−C9−σ.

Now by choosing σ to be a large negative constant we see that

(XA−1
)−C9−σ > XΦ+1.

This contradiction proves what we want, namely (52).
Similarly there exists another pole with imaginary part between −T2

and −T1.

Remark. Of course we can give (avoiding the deep result of [R1] men-
tioned above due to R. Balasubramanian and K. Ramachandra) a self-
contained proof of these results using the Montgomery–Vaughan theorem
(see [MV]). But it is convenient to use the Balasubramanian–Ramachandra
result.
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a serious oversight and for pointing out that some work in this direction
has been done by E. Grosswald [G] and later also by J. Kaczorowski and
A. Perelli [KP]. In these two references the authors have used upper bounds
for things like

max
∣∣∣∣
dn

dsn
log ζ(s)

∣∣∣∣ and max
∣∣∣∣
dn

dsn
logL(s, χ)

∣∣∣∣
on certain horizontal lines. (Both the papers deal with applications to com-
parative prime number theory.) The essential point of difference in our work
are the sharp upper bounds [RS] for things like

max |ζ(s)|−1 and max |L(s, χ)|−1

on certain horizontal lines. Also we have established in the present paper
simultaneity results for things like

max |ζ(s+ α)|−1 and max |L(s+ α, χ)|−1

(for a finite set of complex constants α) on certain horizontal lines.
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